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Abstract 
 

Changes in gut microbiota have been associated with several diseases. Here the international 

Multiple Sclerosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients 

(36% untreated), and genetically unrelated household healthy controls (1,152 total subjects). We 

observed a significantly increased proportion of Akkermansia muciniphila, Ruthenibacterium 

lactatiformans, Hungatella hathewayi and Eisenbergiella tayi and decreased Faecalibacterium 

prausnitzii and Blautia species. The phytate degradation pathway was over-represented in 

untreated MS, while pyruvate-producing carbohydrate metabolism pathways were significantly 

reduced. Microbiome composition, function and derived metabolites also differed in response to 

disease modifying treatments. The therapeutic activity of interferon-β may in part be associated to 

upregulation of short chain fatty acid transporters. Distinct microbial networks were observed in 

untreated MS and healthy controls. These results strongly support specific gut microbiome 

associations with MS risk, course and progression, and functional changes in response to 

treatment. 
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Introduction 
 

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) 

characterized by demyelination, axonal damage, and progressive neurologic disability. The 

etiology and pathogenesis of MS is complex and remain elusive, although both genetic and 

environmental factors are involved. Gut microbiota, an important modulator of the immune 

response(Geva-Zatorsky et al., 2017) and brain function, has emerged as a likely environmental 

contributor to MS.(Esmaeil Amini et al., 2020; Kadowaki and Quintana, 2020; Probstel and 

Baranzini, 2018)  

  

Alterations in commensal gut microbiota (referred to as dysbiosis) have been linked to many 

inflammatory conditions.(Honda and Littman, 2016) Numerous studies including ours have shown 

both depletion and enrichment of certain bacteria in MS patients compared with healthy 

controls,(Berer et al., 2017; Cekanaviciute et al., 2017; Chen et al., 2016a; Cox et al., 2021; Jangi 

et al., 2016) suggesting certain taxa might be associated to either disease pathogenesis or 

progression. For instance, Akkermansia muciniphila was found to be increased in MS samples and 

exacerbated intestinal inflammation in mouse models.(Cekanaviciute et al., 2017; Jangi et al., 

2016) However, a recent report showed a protective effect of MS-derived Akkermansia in 

experimental allergic encephalomyelitis (EAE),(Cox et al., 2021) suggesting a complex scenario 

in which context, rather than individual taxa, might be the driving factor of bacteria-human 

interactions.  It remains uncertain as to whether the disease state occurs in response to microbial 

alterations, or alternatively that the disease drives these gut microbiome alterations. mouse and 

human studies indicate that microbiota can potentially affect the onset and progression of diseases 

mediated by different immune effector cells and soluble metabolic, immune, and neuroendocrine 

factors modulated by gut microbes.(Camara-Lemarroy et al., 2018; Probstel and Baranzini, 2018)  

 

Although microbial changes in MS have been detected across different studies, most of the 

alterations were reported in relapsing-remitting MS (RRMS), whereas few studies investigated the 

microbiome in progressive MS. Furthermore, it is difficult to identify a common pattern since 

results are rarely concordant. Kozhieva et al. found an increase of Gemmiger sp. and 

Ruminococcaceae species in a Russian cohort of 15 primary progressive (PPMS)  patients 

compared to healthy subjects,(Kozhieva et al., 2019)  while a Belgian cohort of 26 PPMS patients 

showed a decrease of Gemmiger and Butyricicoccus.(Reynders et al., 2020) A recent study 

identified elevated Enterobacteriaceae, Bifidobacterium animalis, Clostridium g24 FCEY, Dorea 

massiliensis, Longicatena, and Ruminococcaceae FJ366134 in 44 progressive MS patients 

compared to both RRMS and healthy subjects.(Cox et al., 2021)  The gut microbiota can also be 

altered by drugs with either beneficial or undesirable effects. Many common drugs have 

antimicrobial effects, or exert a large impact on the composition of gut microbiome.(Maier et al., 

2018) Studies in MS and other diseases have suggested that therapy-induced microbial change 

may contribute to efficacy by favoring microbes with anti-inflammatory properties, or able to 

metabolize the drug more effectively.(Alexander et al., 2017; Sand et al., 2019) For instance, 

glatiramer acetate or dimethyl fumarate treatments were associated with an increase in the 

abundance of common bacterial groups with anti-inflammatory effects, like Bacteroides, in people 

with RRMS.(Sand et al., 2019)  Several RRMS associated microbial changes, (e.g. decrease of 

Prevotella copri, Faecalibacterium prausnitzii and Roseburia intestinalis), were modulated by 
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disease modifying therapies (DMTs), (Castillo-Alvarez et al., 2018; Cox et al., 2021; Jangi et al., 

2016) suggesting that therapeutic efficacy may be due to the effects of DMTs on gut microbiota.  

 

However, current microbiome studies in MS are limited by the relatively small size of the cohort 

analyzed, and inadequate handling of multiple confounding factors, such as genetic heterogeneity 

of participants, geographic location, disease subtype, treatment and diet.  Also, many studies rely 

on 16S ribosomal RNA sequencing, which offers low resolution to identify MS associated species. 

To overcome these challenges, the international MS Microbiome Study (iMSMS) is systematically 

recruiting MS patients and household healthy controls in the US, Europe and South America. The 

advantages of the household-controlled experimental design, sequencing method and handling of 

confounding factors (e.g. geographic location and diet) on gut microbiome were recently reported 

in a pilot cohort of 128 patient:control pairs.(Zhou et al., 2020) In this study, we present a large 

microbiome study of MS and healthy controls (n= 576 pairs), and investigate relationships with 

MS susceptibility, progression, and treatment.  
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Methods 
 

Recruitment.  

A total of 576 MS patients and their household healthy controls were included in this study. The 

first 128 MS-control pairs were recruited as Cohort 1(Zhou et al., 2020) and the subsequent 448 

pairs were recruited as the Cohort 2. Recruitment details have been described elsewhere.(Zhou et 

al., 2020) participants were recruited through MS clinics at UCSF (San Francisco, CA), Brigham 

and Women’s Hospital (Boston, MA), Mount Sinai (New York, NY), the Anne Rowling Clinic 

(Edinburgh, UK), University of Pittsburgh (Pittsburgh, PA), Biodonostia Health Research Institute 

(San Sebastián, Spain) and FLENI (Buenos Aires, Argentina). Each collaborating site obtained 

human subject research approval through their respective ethics review committees, following a 

master protocol established at UCSF (protocol no. 15-17061). All participants provided written 

informed consent and signed a HIPAA Authorization allowing for the use of their medical record 

for research purposes. 

Inclusion criteria required that participants carry a diagnosis of MS;(McDonald et al., 2001) be of 

White (Hispanic or non-Hispanic) ethnicity (i.e. to match characteristic genetic risk profile of 

MS(Baranzini and Oksenberg, 2017)); and be enrolled with a genetically unrelated household 

control with cohabitatation for at least six months. Exclusion criteria for MS and control subjects 

included the presence of other autoimmune disorders, gastrointestinal infections, and other 

neurological disorders. Participants were excluded if they received oral antibiotics within the past 

three months, corticosteroids within the past 30 days, or were on a disease modifying therapy for 

less than three months.  

 

Sample preparation for sequencing.  

For the first cohort, Q-tip samples (i.e. dry) and snap frozen (i.e. wet) samples were processed 

using the QIAamp PowerFecal DNA Kit (ref 12830-50).  After lysis solution was added to bead 

beating tubes, dry samples were transferred by grinding the Q-tips into the bottom while snap 

frozen samples were chipped to an appropriate size for the kit.  Sample processing was done on a 

QIAcube platform according to the protocols generated by the manufacturer (QIAGEN).  DNA 

sample quantity and purity were measured by NanoDrop spectrophotometry (Thermo 

ScientificTM).  The second cohort samples were processed using the MagAttract PowerSoil DNA 

EP Kit (ref 27100-4-EP).  After lysis solution was added to the bead beating plate, samples were 

added to each well in in the same manner used previously for bead beating tubes.  Physical lysis 

was executed using a mixer mill and subsequent steps were automated using the EpMotion 

platform. Sample quality and quantity were assessed with the same method used for the first 

cohort.  

 

16S rRNA sequencing.  

The V4 region of the bacteria 16S ribosomal RNA gene was amplified on an Illumina MiSeq 

platform using the Earth Microbiome Project protocol.(Caporaso et al., 2012) Amplicon reads 

from two cohort samples were analyzed using QIITA(Gonzalez et al., 2018; Hillmann et al., 2018) 

to combine the forward and reverse reads, trim short reads of less than 150bp and assign filtered 

reads to amplicon sequencing reads (ASVs) using default Deblur parameters against Greengenes 

(version 13.8 at 99% identity) as described in QIIME2 documents.(Caporaso et al., 2010) As the 

impact of sample collection method on microbial composition is negligible,(Zhou et al., 2020) 

sequencing counts of samples from each participant were summed. ASVs were filtered to retain 
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only the ones covering at least 10 total reads and present in at least 5% of samples for downstream 

analyses.  

 

Microbial diversity.  

The ASVs characterized by 16s rRNA sequencing were rarefied to 10,000 sequences per 

participant sample for microbial diversity analysis. -diversity was measured by 

Shannon(Shannon, 1997) and Chao1(Chao, 1984) indexes. Both weighted and unweighted 

UniFrac(Lozupone and Knight, 2005) distances were computed between all samples, and principal 

coordinates analysis (PCoA) was applied to visualize the -diversity. All these analyses were 

performed with QIIME2. Bray-Curtis(Bray JR, 1957) dissimilarities were calculated to compare 

gut microbiome among individuals in terms of geographic distance. Statistical significance was 

determined by ANOVA. The PERMANOVA test(McArdle and Anderson, 2001) was used to 

assess the effect of host metadata categories (confounders): demography, lifestyle, diseases, 

medication and physiology, on the variation of microbiome abundance. The test was performed 

by using the “adonis” function implemented in R package vegan(Zapala and Schork, 2006) and 

tested on weighted UniFrac distances of paired MS and HHC samples with reported host factors. 

The variance of microbial abundance between MS and control or between treated/untreated MS 

and controls were tested by specifying “strata” as household to control the within house 

comparison. The empirical P-value was obtained by running 999 permutations. When appropriate, 

statistical P-values were adjusted by false discovery rate (FDR).  

 

Shallow whole metagenome shotgun sequencing (WMGS) and data processing. 

1 ng of input DNA was used in a 1:10 miniaturized Kapa HyperPlus protocol. For samples with 

less than 1 ng DNA, a maximum volume of 3.5 μl input was used. Library 

concentration was determined with triplicate readings of the Kapa Illumina Library Quantification 

Kit (cohort 1) or Pico Green Quantification Kit (cohort2); 20 fmol of sample libraries were pooled 

and size selected for fragments between 300 and 800 bp on the Sage Science PippinHT to exclude 

primer dimers. The pooled library was sequenced as a paired-end 150-cycle run on an Illumina 

HiSeq2500 v2 (cohort1) or NovaSeq 6000 (cohort2) at the UCSD IGM Genomics Center with 

sequencing depth 0.5 million reads per sample. 

Demultiplexed shallow shotgun metagenomic sequences were processed using Atropos (v1.1.24 ) 

(Didion et al., 2017) to remove adapters (forward 

“GATCGGAAGAGCACACGTCTGAACTCCAGTCAC” , reverse 

“GATCGGAAGAGCGTCGTGTAGGGAAAGGAGTGT”) and filter reads with lower quality 

score than 15 and length less than 80 base pairs. For taxonomic assignment reads were aligned to 

the Web of Life(Zhu et al., 2019) of 10,575 bacterial and archaeal genomes using SHOGUN 

(Hillmann et al., 2018) in the Bowtie2 alignment mode. Sequencing counts of samples from each 

participant were summed.  

 

Metabolite measurement. 

Fecal and serum samples were shipped on dry ice to Metabolon Inc. (Durham, North Carolina) 

and maintained at −80°C until processed following their published protocols.(Evans et al., 2009; 

Long et al., 2017; McMurdie et al., 2022) Global metabolite and 8 targeted short-chain fatty acid 

profiling were and analyzed in a sub-set of samples.  
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Statistical analysis.  

Microbial composition was normalized as relative abundance and further transformed with a 

variance-stabilizing arcsine square-root transformation.(Lloyd-Price et al., 2019; Morgan et al., 

2012; Sokal, 1982) Global metabolite intensity and SCFA concentration were normalized by log 

transformation. Mixed linear regression model was applied on transformed data to identify 

differential features (species, pathways and metabolites) by adjusting random effects of house and 

recruitment site, and fixed effects of age, sex and BMI. The linear regression was performed using 

lmer function from R package “lme4”. In order to reduce the effect of zero-inflation in microbiome 

data, a variance filtering step was applied to remove species features with very low variance (<1E-

5). The contribution of individual species in a specific pathway was visualized in a bar plot using 

HUMAnN2 “humann2_barplot” function. The organism-pathway-reaction-compound network 

was built by Scalable Precision Medicine Oriented Knowledge Engine (SPOKE), a large graph 

with multiple types of nodes and relationships integrated from more than 30 publicly available 

databases covering human and bacterial molecular interactions.(Himmelstein et al., 2017; Nelson 

et al., 2021) Altered metabolites were linked to gut microbes through reactions (MetaCyc and 

KEGG) mediated by microbial gene families screened in our WGMS data. Functional KEGG 

enrichment analysis of metabolites was performed using MetaboAnalyst 5.0.(Pang et al., 2021)  

To identify species associated with disease severity, the updated global Multiple Sclerosis Severity 

Score (uGMSSS) was calculated by combining the Expanded Disability Status Scale (EDSS) and 

disease duration using global_msss function from R package “ms.sev”. We focused on the species 

with prevalence in more than 50% samples, spearman correlations were calculated and tested 

adjusting for age and BMI using pcor.test function from R package “ppcor”. 

 

Microbial co-abundance network.  

Co-abundance network inference was performed using SparCC(Friedman and Alm, 2012) method 

(in R using SpiecEasi package(Kurtz et al., 2015)), which is a tool to infer linear relationships with 

high precision for high diversity compositional data. SparCC correlations were adjusted for age, 

sex and BMI using cor2por function from R package “corpcor”. Significant co-abundance was 

controlled at FDR 0.05 level using 100 × permutation. In each permutation, the abundance of each 

microbial factor was randomly shuffled across samples. To keep the co-abundances with high 

correlations in a dense microbial network, we filtered co-abundances with a lower absolute 

correlation than 0.4 and subnetworks with only two species.  

To test whether the microbial co-abundance relationships showed case or control specificity, i.e. 

whether the effect size of co-abundance in MS group was very different from that in healthy 

control, we applied the IQR (interquartile ranges) based the outlier detection method as adapted in 

paper.(Chen et al., 2020) The effect size for co-abundance was measured by the SparCC 

correlation coefficient in our analysis. The effect sizes were ranked from low to high and extracted 

corresponding 25%, 50% and 75% quartile values (Q1, Q2 and Q3, respectively). IQR was then 

calculated as Q3-Q1. The specific co-abundance was defined in each corresponding MS or healthy 

group if the effect size fell outside of Q1 − 2 × IQR (smallest) or Q3 + 2 × IQR (largest). Cohort 

specific species were linked to their MetaCyc pathways, as many species share pathways, we 

focused on those that are unique to the cohort specific species. 

 

Diet analysis. 

A validated Block 2005 food frequency questionnaire (FFQ)(Block, 2005) was set up through an 

external vendor (NutritionQuest). The intake of foods and nutrients were measured by 
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NutritionQuest in a standardized fashion for all participants based on their responses to the FFQ. 

37 nutrient items were summarized and grouped as antioxidants, average intake, B-vitamins, food 

group servings and minerals. Dietary dissimilarity was measured using Jaccard distance of the 

nutrient intake. The effect of confounders on the variation of diet and the effect of dietary items 

(covariates) on the variation of gut microbiome were accessed by PERMANOVA (Permutational 

multivariate analysis of variance).(McArdle and Anderson, 2001) The test was performed by using 

the “adonis” function implemented in R package vegan.(Zapala and Schork, 2006) The empirical 

P-value was obtained by running 999 permutations.  

 

Availability of data and materials.  

The dataset generated and analyzed during the current study are available in the EMBL-ENA 

repository (https://www.ebi. ac.uk) with accession number ERP115476 (Supplementary Data S1). 

No custom software was written for this manuscript. R code is available at GitHub 

(https://github.com/BaranziniLab/iMSMS_study). 
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Results 
A total 576 pairs of MS patients and genetically unrelated household healthy controls (HHCs) 

were recruited between September 2015 and January 2019 from seven sites (recruiting centers) 

located in San Francisco, Boston, New York, Pittsburgh, Buenos Aires, Edinburgh and San 

Sebastián (Figure 1, Table 1, Supplementary Data S1). The first 128 pairs were recruited before 

October 2016 (Cohort1(Zhou et al., 2020)) and the subsequent 448 pairs were recruited before 

January 2019 (Cohort 2). The majority of participants (97.3%) are Caucasian and/or Hispanic. As 

expected, an uneven proportion of female MS patients was observed (69.4%), but there was no 

significant difference in age or body mass index (BMI) between the MS and control groups. The 

mean Expanded Disability Status Scale (EDSS) score of MS patients was 2.6 (IQR: 1-4) with a 

mean of disease duration 14.2 years (IQR: 6-21). The median disease duration corrected Multiple 

Sclerosis Severity Score (MSSS) was 3.37 (IQR: 0.86-5.57). Among the 576 MS patients, 209 

(36%) were untreated and 367 (63%) were treated with a disease modifying therapy (DMT). 

Treatments included oral agents Fingolimod (n=71), and dimethyl fumarate (DMF, n=86);, 

injectables glatiramer acetate (GA, n=68) and interferon (IFN, n=87); and infusion agents anti-

CD20 monoclonal antibodies (n=28), and natalizumab (n=27). Of the total of 576, 437 (76%) 

patients had RRMS, 68 (12%) secondary progressive MS (SPMS) and 71 (12%) primary 

progressive (PPMS). Given the heterogeneity in the assessment of patients with SPMS and PPMS, 

they were combined into a single category, progressive MS (PMS, n=139, 24%) for subsequent 

analyses. As a natural consequence of the disease process, patients with progressive disease were 

relatively older, and had higher MSSS than those with RRMS. In addition, 74% RRMS patients 

were on a DMT, while only 30% of PMS were treated, reflecting the higher effectiveness of 

available therapies for relapsing disease and the lack of therapies for progressive MS.  

 

All participants completed a clinical survey to report the disease status and treatment, and a high 

proportion of participants (94%, n = 1,086) completed the subject survey to report the 

demographics, medication, lifestyle and physiology factors (Figure 1A, and Supplementary Data 

S1).  The majority of participants (90%, n= 1,034) also completed the online food frequency 

questionnaire (FFQ). A summary of dietary questionnaires and the dietary intakes, including 

average intake, food group servings, antioxidants, minerals and vitamins is provided in 

Supplementary Data S2. The Healthy eating index (HEI2015 with 10 components) was also 

calculated for all qualifying participants (Supplementary Data S3).  

 

 

Altered Gut microbial composition in MS  

We first used 16s rRNA data to study the global microbial composition (α-diversity and β-

diversity).  16S rRNA sequencing has been more commonly used in microbiome studies to date, 

thus several well-established databases (e.g. Greengenes(DeSantis et al., 2006)) are available. The 

576 pairs were processed and sequenced in two cohorts (128 pairs in Cohort 1 and 448 pairs in 

Cohort 2) (Methods, Supplementary Data S4). The microbial composition and diversity were 

highly correlated in duplicate samples sequenced in the two cohorts (Figure S1A-C), and also in 

duplicated samples processed by different DNA isolation methods (Figure S1D-F), thus allowing 

us to merge all sequencing samples for a joint analysis. After removing samples with low coverage 

(<10,000 reads), 500 pairs of MS and household control participant samples were used for 

diversity analysis (Supplementary Data S5). 
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No significant difference in α-diversity was observed between MS and HHC groups as measured 

by Shannon (Figure 1B) and Chao1 indexes (Figure S2A). We also found no significant difference 

in α- diversity across patient:HHC pairs of RRMS, PMS (Figure 1B), untreated MS, and treated 

MS (Figure S2B). Intriguingly, β-diversity-based sample clustering revealed a significant 

difference in MS regardless of treatment, and also differed in untreated or treated MS group status 

compared to their HHC (Figure 1C, PERMANOVA, p < 0.05). No significant difference was 

observed between untreated and treated MS patients (Figure 1C, PERMANOVA, p > 0.05).  

Different microbial communities were also observed across patient:HHC pairs of RRMS and PMS 

patients, and when comparing RRMS versus PMS patients (Figure 1D).  

 

We next tested how much of the variance in microbial diversity (weighted uniFrac distances) was 

explained by the host confounders, including demographics, lifestyle, disease, medication, and 

physiology factors (Supplementary Data S5).(Vujkovic-Cvijin et al., 2020; Zhou et al., 2020) Not 

surprisingly, the recruitment site showed a significant and dominant effect on the microbial 

composition, as we and other studies have reported (Figure 1E).(Gaulke and Sharpton, 2018; Zhou 

et al., 2020) By checking the gut microbial -diversity in individuals from each recruitment site, 

we observed lower microbial diversity in both healthy and MS participants from New York 

whereas a higher diversity in participants from San Francisco and San Sebastián (Figure S2C). We 

hypothesize that these differences in microbial diversity might be associated with varied dietary 

habits (see dietary analysis). Microbial differences associated with geography were also shown by 

the PCoA of the microbiome β-diversity (Figure S2D, PERMANOVA, P < 0.05). The second and 

third largest component was explained by disease status (RRMS/HHC, PMS/HHC) and treatment 

status (treated MS/HHC, untreated MS/HHC), implying an altered gut microbiome in MS patients 

versus HHC as well as an effect of treatment on changing microbial structure.   

 

Age, sex and BMI also showed significant effects on microbial compositions (Figure 1E). Our 

household design effectively reduces age-associated variation as the great majority of household 

participants are spouses with comparable age (Table 1). Smoking and education also exerted 

significant effects, but these were highly different across recruitment sites (e.g. participants from 

San Francisco, Boston and New York are less likely to smoke and reported higher education) 

(Figure S2E-F). Because we detected no significant difference in smoking (Fisher’s exact test P > 

0.05) and comparable education levels in MS patients and HHC, we hypothesized that these effects 

would be adjusted by controlling the site effect. A smaller effect was identified by medication use 

and MS comorbidities (Figure 1E) as MS patients tend to use more medications and have 

depression or anxiety (Figure S2G, Fisher’s exact test P < 0.001). No significant microbial 

divergence was related to factors such as household pets, birth method, or asthma in our study 

(Supplementary Data S5). 
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Disease associated microbial changes adjusted for confounders 

Whole-metagenome shotgun sequencing (WMGS) provides higher resolution in identifying 

microbial species and functional features but typically requires deep sequencing to detect unique 

species in complex communities.(Shapira et al., 2009) However, even shallow shotgun sequencing 

with as little as 0.5 million sequences per sample has been shown to be a powerful and cost-

effective alternative.(Hillmann et al., 2018) A significantly high correlation has been reported 

between 16S rRNA and shallow WMGS at both phylum and genus levels in our previous 

study.(Zhou et al., 2020) Hence, we used shallow metagenomic data to identify disease-associated 

taxa and their functions. To achieve this, we performed a mixed linear regression model on 

metagenomics taxa (Supplementary Data S6) while adjusting for fixed effects of age, sex, BMI 

and random effects of house and recruitment site (Methods) in untreated MS versus HHCs, 

excluding the effect of treatment on gut microbiome. As shown in Figure 2A, compared to HHCs, 

7 species were significantly reduced in untreated MS, including Fusicatenibacter saccharivorans, 

Blautia obeum and Faecalibacterium prausnitzii, whereas 16 species including Akkermansia 

muciniphila, Ruthenibacterium lactatiformans, Ruminococcus torques and Hugatella hathewayi 

were significantly increased in this group (FDR < 0.05). We observed a similar trend for these 

same species in untreated RRMS and progressive MS, although some did not reach significance 

likely due to the smaller sample size and relatively higher interindividual heterogeneity of these 

groups. Intriguingly, a larger decrease of F. saccharivorans and F. prausnitzii and a larger increase 

of R. lactatiformans, H. hathewayi and Eisenbergiella tayi were found in untreated PMS compared 

to untreated RRMS (Figure 2B), suggesting the alteration of these species could be associated with 

disease progression.  

 

To determine whether the microbial species identified in untreated RRMS or PMS were associated 

with disease severity, we tested the correlation between microbiota and the Multiple Sclerosis 

Severity score (MSSS), adjusting for age and BMI.  Several species showed correlations with 

disease severity in untreated RRMS and PMS patients (Figure 2C-D, Spearman’s correlation, p < 

0.05), consistent with a recent study.(Cox et al., 2021) Specifically, some Bacteroides species were 

correlated with lower MSSS in RRMS and short-chain fatty acid producers like Butyrivibrio, 

Clostridium and Ruminococcus were correlated with lower MSSS in PMS. Conversely, Collinsella 

aerofaciens, shown to increase disease severity in collagen-induced arthritis mice(Chen et al., 

2016b) was associated with a higher MSSS in RRMS patients. Consistent with studies(Larsen, 

2017) showing increased inflammatory properties of several Prevotella species (including P. 

buccalis, P. corporis, P. disiens, and P. copri) in chronic inflammation, we found these were 

associated with higher MSSS in progressive MS patients. However, the abundance of these species 

showed no significant difference in untreated RRMS (versus HHCs) or PMS (versus HHCs).  

Finally, Streptococcus thermophilus, Azospirillum sp. 47_25 and Rhodospirillum sp. UNK.MSG-

17 were also correlated with MSSS albeit in different direction for RRMS (positive) and PMS 

(negative).  

 

Functional alterations in the gut microbiome of untreated MS patients 

To explore the functional potential of the MS gut metagenome, we applied the HUMAnN2 

workflow to all individual samples. Generally, all microbes perform four core metabolic pathways, 

biosynthesis, degradation, energy metabolism and macromolecule modification (Figure S3A). No 

significant differences in the functional potential of gut microbes were observed between MS and 

HHC. PCA analysis of the abundance of functional pathways also failed to identify significant 
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changes between untreated MS patients (RRMS or PMS) and HHCs (Figure S3B, PERMANOVA 

P > 0.05). However, when testing individual pathways, we found that phytate degradation I (PWY-

4702), was significantly more represented in MS patients (Figure 3A). Several species, including 

Akkermansia muciniphila, Escerichia coli and Cronobacter sakazakii, have the ability to degrade 

phytate via this pathway. We found the increase of both A. muciniphila (Figure 2A) and two 

proteins, 4-phytase (Amuc_0145, B2ULU5, EC 3.1.3.26) and Inositol-1-monophosphatase 

(Amuc_1242, B2URI2, EC 3.1.3.25) from A. muciniphila involved in this pathway in untreated 

RRMS and progressive MS patients (Figure 3B). As multiple (and sometime opposing) functional 

capabilities have been reported for A. muciniphila strains, we implemented the Metagenomic Intra-

Species Diversity Analysis System (MIDAS) (Nayfach et al., 2016) to estimate strain-level 

genomic variation of A. muciniphila, including gene content and single nucleotide polymorphisms 

(SNPs), from our shallow shotgun metagenomic data. In total, 58 samples had sufficient 

sequencing coverage allowing us to identify single nucleotide polymorphisms (SNPs) and gene 

content from A. muciniphila (Figure S4). To distinguish possible strains from these samples, we 

compared 2,913 A. muciniphila genes (presence/absence) and found four clusters of genes in two 

clusters of samples (cluster1 and cluster2). None of the sample clusters was significantly correlated 

with disease status, sex, treatment status or geographic site. The majority of A. muciniphila genes 

were shared across samples, (i.e. core genes), but some genes showed a distinct pattern. Functional 

analysis revealed that “Sulfite reductase [NADPH] hemoprotein beta-component (EC 1.8.1.2)”, 

encoded by the cysI gene, was present in cluster1 but not cluster2.  Intriguingly, Becken et al. 

reported the cysI gene as present in AmI phylogroup but missing in AmII and AmIV.(Becken et 

al., 2021) While additional studies are needed to establish their relevance to MS, we were able to 

identify the presence of at least two A. muciniphila strains with differences in sulfur metabolism. 

 

Conversely, 6 pathways were more represented in HHC, including L-lysine biosynthesis VI 

(PWY-5097), and a carboxylates metabolism pathway, superpathway of hexuronide and 

hexuronate degradation (GALACT-GLUCUROCAT-PWY), contributed by the increase of 

Faecalibacterium prausnitzii (Figure 3B, Figure S3B). we also found four other carboxylates 

metabolism pathways, superpathway of beta-D-glucuronide and D-glucuronate degradation 

(GLUCUROCAT-PWY), D-galacturonate degradation I (GALACTUROCAT-PWY), 4-deoxy-L-

threo-hex-4-enopyranuronate degradation (PWY-6507) and D-fructuronate degradation (PWY-

7242) which produce pyruvate via protein 2-dehydro-3-deoxy-phosphogluconate aldolase (EC 

4.1.2.14), were enriched in healthy controls (Figure 3C). This protein was identified in 

Faecalibacterium prausnitzii (FP2_23290, D4K064) and significantly decreased in both untreated 

RRMS and PMS patients (Figure 3D). Finally, by integrating the metabolic pathways into higher-

class pathway level, we identified that cyclitols degradation and fermentation to acids were more 

abundant in untreated MS patients, while carboxylates degradation, lysine synthesis, S-adenosyl-

L-methionine biosynthesis and sucrose degradation were enriched in healthy controls (Figure 3E).  

 

As we observed some microbial species were significantly correlated with MS disease severity 

(Figure 2C-D), we then tested which microbial pathways were involved. We found different 

pathways associated with disease severity in untreated RRMS and PMS (Figure 3F). Particularly, 

abundances of “PWY-4981: L-proline biosynthesis II (from arginine)” was positively correlated 

with higher Multiple Sclerosis Severity score (MSSS) in untreated RRMS patients, and Collinsella 

aerofaciens is one the most dominant species involved in this pathway (Figure S3C) which was 

found to be correlated with higher MSSS as well (Figure 2C). Conversely, “PWY-5097: L-lysine 
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biosynthesis VI” pathway, a pathway reduced in MS patients compared to HHCs (Figure 3A), was 

related to a lower MSSS in untreated progressive MS dominantly contributing by species like 

Bacteroides species and F. prausnitzii (Figure S3D).  

 

Specific interacting microbial communities were enriched in MS 

As the gut microbiome is an ecosystem in which microorganisms interact closely with each other, 

we next applied microbial co-abundance network inference to explore the interconnection pattern 

across microbes in untreated MS and their HHC. We computed species-species co-abundance 

relationships by using SparCC and controlled the significant correlations at FDR 0.05 level using 

100 X permutation. In total, 1677 species were used for the analysis, resulting in 116,397 

correlations across 1372 species in MS patients and 105,304 correlations across 1375 species in 

HHC (absolute Sparcc r ≥ 0.1, FDR < 0.05, Supplementary Data S7). To generate only highly 

correlated microbial networks, we filtered out correlations with r < 0.4 (based on the network 

centrality distribution) (Figure S5A) and co-abundance subnetworks containing < 2 species. After 

correcting for age, sex and BMI differences between MS and HHC cohorts, we identified a 

network of 773 taxa with 5688 correlations in HHC dominated by 555 Firmicutes species and 196 

Bacteroidetes species, and a network of 786 taxa with 6742 correlations in MS, dominantly by 549 

Firmicutes species and 197 Bacteroidetes species (Figure S5B). Notably, the majority of taxa (n = 

702) and correlations (n = 4131) between MS and HHC microbial networks overlapped (Figure 

S5C), suggesting that the fundamental role of commensal microbes remains stable even under 

different biological conditions.  

 

To test whether any part of the co-abundance microbial communities was specific for either group 

(MS or HHC), we performed a cohort-specific analysis (Methods) and found 215 correlations 

across 119 species specifically in untreated MS patients (Figure 4A, mean r = 0.78, FDR < 0.05), 

and 195 correlations across 139 species specifically in HHCs (Figure 4B, mean r = 0.783, FDR < 

0.05). Species from the same phylum were clustered together in both MS and HHC networks, 

suggesting a cooperative role of these species in response to the environment. Remarkably, we 

observed different Firmicutes/Bacteroidetes (F/B) ratio for the MS-specific network (F/B=2.5) and 

HHC-specific network (F/B=1.03) (hypergeometric test p < 0.01). Interestingly, 45 unique species 

(largely dominated by Bacteroides and Prevotella species) composed the HHC network (Figure 

4C). 

 

Next, we evaluated whether the differentially abundant species between MS and HHC contribute 

to these group -specific microbial networks. Surprisingly, among 21 significantly altered species 

(untreated MS versus HHC, Figure 2A), seven species, A. muciniphila CAG:154, Akkermansia sp. 

54_46, Akkermansia sp. Phil8, Akkermansia sp. UNK.MGS-1, Tissierellia bacterium S7-1-4, 

Peptoniphilus grossensis and Porphyromonas bennonis, were identified in both MS and healthy 

specific networks, and only one species, Varibaculum cambriense, was found in the MS network 

(Figure 4D). This suggests that co-abundance relationships and differential microbial abundance 

reflect orthogonal information. On the other hand, the group -specific species didn’t show 

significant differences in abundance, but some have unique functions (Figure 4E-F). For example, 

[Clostridum] innocuum and Salmonella enterica with unique functions mapped to drug resistance 

and pathogenicity were specific to the MS network, while Bacteroides vulgatus, Bacteroides 

thetaiotaomicron, Prevotella fusca and Prevotella denticola with unique functions mapped to 

glycan biosynthesis, were specific to the HHC network. Altogether, these results suggest that, 
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compared to the alteration of single species, microbial co-abundance network analyses allowed us 

to identify a specific highly interacted community that may also be a contributor to health or 

disease status. 

 

Impact of treatment on gut microbiota 

We next evaluated how DMT may affect gut microbiome composition in RRMS patients receiving 

any of 6 commonly used treatments in our study, namely dimethyl fumarate (DMF, n=77), 

fingolimod (n=66), glatiramer acetate (GA, n=66), interferon (n=76), natalizumab (n=25) and anti-

CD20 (rituximab and ocrelizumab, n=15). Overall, the microbial composition measured by β-

diversity did not differ between treated and untreated RRMS patients (except for the interferon 

treated group). However, significant differences in β-diversity were observed when patients within 

each treatment group were compared to their corresponding HHC (Figure 5A).  

 

Due to the heterogeneity of treated and untreated RRMS patients recruited from multiple locations 

and unequal sample sizes of these groups, we mainly focused our analyses on gut microbiome by 

comparing untreated or treated RRMS groups to their HHCs (Figure 5B-C). A direct comparison 

between untreated RRMS and treated RRMS was shown in Figure S6A-B. Intriguingly, the 

microbial changes in untreated RRMS patients (versus HHCs) were observed to show different 

changing patterns in treated RRMS (versus HHCs). Specifically, several taxa increased in 

untreated RRMS subjects showed no difference within DMTs groups, including Parabacteroides 

merdae CAG:48, A. muciniphila and other Akkermansia species. However, it is possible that the 

smaller n as a result of stratification may limit the statistical power to detect differences. Use of 

DMTs was also associated with changes in multiple taxa that were not significantly different 

between MS and HHC. For example, DMF, which is hydrolyzed into monomethyl fumarate 

(MMF) before exerting its therapeutic properties, specifically reduced Bacteroides stercoris, 

Clostridium and Eubacterium species, and fingolimod (a sphingosine-1-phosphate receptor 

modulator prevents the egress of activated lymphocytes from the lymphoid tissue) specifically 

reduced Bacteroides finegoldii CAG:203, Roseburia faecis and Blautia species. Interferon-ß 

treatment, thought to decrease proinflammatory cytokines and prevent the migration of activated 

T cells across the blood-brain barrier, was associated with dysbiosis of short-chain fatty acid-

producing bacteria like Ruminococcus sp., Clostridium sp., Faecalibacterium prausnitzii, 

Roseburia inulinivorans and Roseburia intestinalis while also increased Parabacteroides 

distasonis, which have been shown to have multiple metabolic benefits in obesity.(Wang et al., 

2019) Notably, Bacteroides uniformis was significantly increased by interferon treatment but 

reduced by glatiramer acetate and natalizumab therapy. This bacterium was reported to be 

associated with MS(Miller et al., 2015) but also with a protective role in obesity.(Lopez-Almela 

et al., 2021) GA exerted a modest impact on gut microbes compared to other DMTs. Lastly, 

infusion of natalizumab (an α4 integrin antagonist preventing leukocyte trafficking into the CNS) 

or anti-CD20 monoclonal antibody (causing B cell depletion) altered gut microbes significantly. 

Phascolarctobacterium sp. CAG:207 was increased while Prevotella species and Bifidobacterium 

longum were decreased in response to natalizumab. Reduction of Bacteroides finegoldii CAG:203 

and Blautia sp. CAG:37 were observed in association with anti-CD20.   

 

The alteration of microbial composition can lead to a change in their overall metabolic profile. 

Based on metagenomic sequencing, numerous metabolic pathways appeared to be altered under 

the DMTs, and many of them are included in the same high-class pathway (Figure S6C). To better 
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understand the outlined functions related to the treatment, we grouped the pathways by their 

hierarchical class and found that pathways related to lysine synthesis, sugar nucleotides and 

unsaturated fatty acids biosynthesis were decreased significantly in untreated RRMS but 

modulated differently by the various DMTs. Of interest, the increased cyclitols degradation 

pathways in untreated RRMS remained highly abundant even after treatment (Figure 5C and 

Figure S6C). We also identified various metabolic pathways that were differentially modulated by 

specific therapies. For example, DMF use increased heme synthesis and enzyme cofactor 

biosynthesis pathways. In addition. DMF and interferon use was associated with an increase in L-

ornithine biosynthesis and carrier biosynthesis. Furthermore, GA use was associated with 

increased peptidoglycan biosynthesis and natalizumab with increased lipid biosynthesis, whereas 

a decrease of guanosine nucleotides degradation pathway was associated to Fingolimod treatment 

(Figure 5C and Figure S6C). Altogether, disease modifying therapies showed significant and 

specific impact on gut microbiome both structurally and functionally, indicating the importance of 

stratifying microbiome analyses by treatment status.  

To further investigate the mechanism of disease modifying therapies (DMT) in MS and their 

interactions with gut microbiota, we performed metabolomic profiling in untreated RRMS patients 

(N=79), and in those treated with dimethyl fumarate (n=47), fingolimod (n=39), glatiramer acetate 

(n=31), and interferon-β (n=49), as well as their corresponding household healthy controls. A panel 

of global metabolites and targeted short-chain fatty acids (SCFAs) in both feces and serum samples 

were measured using ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 

(UPLC-MS/MS) (Supplementary Data S8).   

We focused our analysis on the fecal metabolites involved in the reactions mediated by microbial 

proteins found by metagenomic sequencing and found 31 metabolites significantly different 

between untreated patients and controls, or in response to at least one MS drug (Figure 6A). 

Consistent with their expected functions and origin, we found higher variability in fecal 

metabolites compared their corresponding serum levels (with the notable exception of increased 

serum fumarate in DMF-treated patients). We also identified significant changes in the levels of 8 

SCFAs in either serum or stool for at least one group (Figure 6B). Remarkably, the vast majority 

of changes in microbiota-derived fecal metabolites were towards lower levels among MS patients 

and even more significantly in response to DMTs (except for GA, Figure 6A). Higher levels of 

metabolic dysfunction have been reported to be associated with increased disability in 

MS.(Lazzarino et al., 2017; Villoslada et al., 2017) We found no difference of disease severity 

(measured by global MS severity score) among RRMS patients (treated or untreated) (Figure 6C). 

This suggests the altered metabolites reported here are in response to the MS drugs, not the disease 

process. Interestingly, we found specific signatures of microbe-derived metabolites (stool) in 

RRMS patients in response to each treatment.  The most notable changes in gut metabolites were 

induced in response to Fingolimod and IFN-β.  

While Fingolimod is an oral drug, and changes to the gut microbiota might be expected, the 

profound metabolic signature of IFN-β (an injectable) was most intriguing. A functional analysis 

of the 23 IFN-β-associated metabolites, revealed a significant enrichment in pathways involving 

amino acid metabolism (e.g. “Arginine biosynthesis”), carbohydrate (i.e. “Citrate cycle”), 

nucleotide (i.e. “Purine”), and energy (“Nitrogen”) metabolism (Figure 6D). In contrast, GA 

exerted an almost null impact on stool-derived metabolites. These findings are in agreement with 
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previous studies, in which only modest transcriptional changes were observed in PBMCs after 

treatment with GA compared to IFN-β.(De Jager et al., 2009; Ottoboni et al., 2012) Also of interest, 

these distinct metabolomic alterations were consistent with functional predictions derived from 

shotgun sequencing (Figure 5B-C). 

We next addressed the question of whether these changes in metabolite levels were linked to the 

relative levels of gut microbes as identified by metagenomics. We noted that pyruvate was 

significantly decreased in both feces and serum samples from RRMS patients treated with 

Fingolimod. Interestingly, this finding correlates well with the significant depletion of taxa 

containing the pathway “CARBOXYLATES-DEG” (which produces pyruvate) in Fingolimod 

treated patients (Figure 5C, Figure S6). We also observed the concentration of fecal SCFA (such 

as acetate and propionate) was consistently lower in RRMS patients, regardless of treatment 

(Figure 6B), consistent with our finding of the depletion of F. prausnitzii (a major SCFA-producing 

bacteria) in MS. A decreased amount of fecal SCFA has also been reported in RRMS and PPMS 

patients in other studies.(Takewaki et al., 2020; Zeng et al., 2019) 

Propionate supplementation in MS patients was associated with an increased Treg/Th17 ratio, 

leading to long-term clinical improvement.(Duscha et al., 2020) Interestingly, we found a 

significant increase in serum propionic acid (Acetic and Butyric acid also followed this same trend, 

without reaching statistical significance) in RRMS patients treated with IFN-β (Figure 6E, Figure 

6B).  Since most SCFAs produced in the colonic lumen are actively transported to the lamina 

propria and further into the blood stream,(Olsson et al., 2021; Venegas et al., 2019) we 

hypothesized that IFN-β may increase the intestinal absorption of propionate, as part of its 

immunomodulatory effect. To address this hypothesis, we searched whether expression of the 

genes encoding for SCFA transporters MCT1 (SLC16A1) and SMCT1 (SLC5A8) (Miyauchi et al., 

2004; Ritzhaupt et al., 1998) were upregulated by IFN-β.The Interferome database(Rusinova et 

al., 2013) reports an increase of SLC16A1 expression in human bronchial epithelial cells (no data 

is available for intestinal epithelial cells) treated with IFN-β (Figure 6F), potentially supporting 

our hypothesis.  

 

Diet and gut microbiome 

 

Diet is thought to explain over 20% of microbial structural variations in humans, implying the 

potential for dietary strategies in disease management through gut microbiota 

modulation.(Rothschild et al., 2018) To explore the association of diet with host characteristics 

and the ability of diet to modulate gut bacteria in MS, we collected validated Block 2005 food 

frequency questionnaires (FFQs)(Block, 2005) from our participants. Among the 576 pairs of MS 

and HHC, 517 pairs (89.8%) finished the questionnaires, in which 37 nutrients were quantitated 

(Supplementary Data S2) through an external vendor (NutritionQuest). Recent epidemiologic 

studies of diet and health outcomes have also focused on the overall diet quality,(Guo et al., 2004) 

which can be measured by the Heathy Eating Index (HEI-2015), where a higher HEI-2015 score 

indicates greater diet quality (See Supplemental document).  

 

We first evaluated whether diet differs significantly by disease course, household, recruitment site, 

and other variables of interest. As shown in Figure 7A, significant differences in diet were 
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associated with BMI, participant household, recruitment site, education and age. Not surprisingly, 

a higher BMI correlated with a lower HEI-2015 score in both MS patients and healthy individuals 

(Figure S7A), consistent with evidence that an imbalanced diet exerts a significant influence on 

weight.(Guo et al., 2004) We also observed that diet quality increased with age (Figure S7A). 

There is considerable variation in dietary intakes across countries (Figure 7B). In particular we 

found a significantly lower average HEI-2015 score in participants from Buenos Aires when 

compared to those in San Francisco, New York, Edinburgh and San Sabastian. While this may 

indeed indicate a lower health index, it is noteworthy that the FFQ is standardized for the US 

average participant, and diets in other parts of the world may not adjust properly to this standard. 

As gut microbial diversity differed among recruitment sites, we hypothesized that the diversity 

was influenced by diet. Indeed, we found that higher microbial diversity significantly correlated 

with a higher HEI-2015 score in both healthy and MS individuals (Figure 7C, Pearson’s 

correlation, p < 0.01). However, although participants from Buenos Aires had lower HEI-2015 

scores, their microbial diversity remained high compared to other sites, whereas New York had 

higher HEI-2015 scores but comparatively lower microbial diversity (Figure S2C). This may 

indicate that standardized questionnaires, even if validated, do not fully capture the wide range of 

dietary habits from iMSMS participants, but also suggests that the gut microbiota could be 

influenced by other factors, such as physiological activity, water and air, among other possible 

factors. Also, shifts in oral microbe composition need to be considered as studies have shown oral-

derived bacteria can colonize and persist in the intestines.(du Teil Espina et al., 2019; Hatton et 

al., 2018)  

 

Despite the large variance in dietary habits among participants, we identified a significantly higher 

diet similarity within household pairs compared to that of random pairs drawn from within the 

same city (Figure S7B). The lowest diet similarity was found when random pairs of MS and HHC 

were assembled from different cities, consistent with our previous findings(Zhou et al., 2020) and 

reflecting distinct dietary habits across cities and countries (Figure 7B). Finally, we observed a 

significant correlation between education, nonsmoker (or former smoker) status, and female sex 

with a higher HEI-2015 score (Figure S7C-E), also consistent with findings from previous 

studies.(Arabshahi et al., 2011; Thorpe et al., 2019) 

 

Although a more similar diet was shared among household participants, the HEI-2015 score of MS 

patients was significantly higher than those of healthy controls (Figure 7D, paired T-test, p < 

0.001). However, microbial taxa associated with MS status did not overlap with those associated 

with diet, thus likely not representing a confounder. Indeed, we specifically assessed which dietary 

components were consumed differently by MS and healthy participants and whether these 

differences were associated with species previously shown to be altered in MS. By comparing the 

ten components from the HEI-2015 (Supplementary Data S3), we found MS participants 

consumed more fruit, vegetables and unsaturated fatty acid when compared to HHCs (Figure 7E), 

which contributed to their scores (Figure 7D). A deeper analysis of the relationship between gut 

microbiota and diet led us to identify that Eubacterium eligens was highly correlated with a higher 

HEI-2015 score (Figure 7F), and particularly correlated with intake of whole grains, fruit and 

vegetables (after adjusting for age, sex, BMI and recruitment site, Figure S7F), consistent with 

previous studies showing that E. eligens responded significantly to dietary fiber.(Chung et al., 

2016)  Faecalibacterium sp., Eubacterium sp. and Blautia sp. were also positively correlated with 

higher intake of whole grains. Increased Alistipes obesi abundance was also correlated with 
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healthier diet (Figure 7F). Interestingly, other studies found low Alistipes abundance in individuals 

with obesity (Thingholm et al., 2019) and was linked to higher meat ,(Garcia-Ribera et al., 2020)  

while it was identified as a predictor of successful weight loss in a two-year intervention (including 

healthier diet)  in adult with obesity,(Louis et al., 2016) which suggests a potential beneficial role 

of Alistipes species in the context of metabolic health. Altogether, although diet does correlate 

with changes in the host microbiota, we were able to tease apart the effects of diet and disease in 

large part, thanks to our household paired design (Figure S7F).   

 

We further explored how taxa associated with untreated MS were related to diet. To exclude the 

impact of disease status or treatment, we stratified the analysis into healthy control, untreated MS 

and all sample groups. As expected, diet showed a modest effect on these MS-associated taxa after 

controlling for the environmental impact by household design in all three groups (Figure 7G). Still, 

some disease-associated species were also related to diet. For example, Ruminococcus torques was 

enriched in MS, and showed a negative correlation with sodium intake, whereas no difference in 

sodium intake was found between MS versus HHCs. Faecalibacterium prausnitzii correlated 

positively with fruit (which MS patients consumed more), but the bacterium remained reduced in 

MS compared to healthy controls. These examples suggest that these species were more likely 

related to disease status than diet. 

Phytate degradation I (PWY-4702) pathway was found to be overrepresented in MS patients 

(Figure 2A). Phytate, a plant-based antioxidant compound, is a strong chelator of divalent minerals 

(e.g. calcium, magnesium, iron and zinc), which bacteria metabolize into myo-inositol, a 

compound with immunoregulatory properties,(Nerurkar et al., 2020) which was found at lower 

levels in MS sera and CSF.(Zahoor et al., 2021) Thus, we hypothesized that this bacterial pathway 

was activated: i) in response to increased dietary intake of divalent minerals by MS patients or; ii) 

as a compensatory mechanism to produce more myo-inositol. To test this hypothesis, we compared 

the dietary mineral intake between MS patients and their HHCs and found no significant difference 

(after adjusting for age, BMI and sex) (Figure S8A). None of these minerals was significantly 

correlated with gut microbes or microbial pathways after multiple testing correction. Thus, we 

speculate the increased Phytate degradation pathway seen in MS may be a compensatory effect to 

restore normal myo-inositol levels.  

Finally, we observed MS patients took more vitamin D supplementation than healthy controls 

(Figure S8B), possibly in response to studies showing an association with reduced risk of 

developing MS and of disease activity in MS patients.(Munger et al., 2006; Runia et al., 2012) 

When assessing the impact of vitamin D usage on microbial composition, we were unable to find 

a correlation. We did find a trend towards a negative correlation with microbial α-diversity for 

both MS or HHCs samples, but without reaching significance (Figure S8C). Similarly, β-diversity 

was not significantly influenced by vitamin D intake (Figure S8D).  
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Discussion 
 

In this paper we characterized the gut microbiome in 576 MS patients and genetically unrelated 

household healthy controls. Microbiome composition and function significantly differed across 

disease subtypes and responded differently to disease modifying treatments and were modestly 

associated with diet. We found that the microbial composition was to a lesser extent, associated 

with factors such as geographic location, age, sex and BMI. The influence of other confounding 

factors was reduced by our paired household design, thereby potentially enhancing power to 

identify MS-associated microbial features. In addition to confirming and extending previous 

reports,(Berer et al., 2017; Cekanaviciute et al., 2017; Chen et al., 2016a; Cox et al., 2021; Jangi 

et al., 2016) this work provides a large reference dataset that can be used to understand microbial 

variation across individuals with MS, disease subtypes and in response to different therapeutic 

interventions.  

 

When studying abnormalities of microbial composition, a common approach is to evaluate changes 

in -diversity and -diversity. Consistent with earlier studies, we found no difference of -

diversity between MS patients and healthy individuals(Berer et al., 2017; Cekanaviciute et al., 

2017; Jangi et al., 2016) (either when stratified as untreated MS versus HHCs or as treated MS 

versus HHCs). However, in contrast to previous studies, we observed a significant difference of 

-diversity in disease status (regardless of treatment status) compared to healthy controls. 

Interestingly, there was no difference in -diversity between untreated MS and treated MS, 

potentially indicating that disease status exerts a stronger effect on gut microbiome than does 

treatment.(Cox et al., 2021) Overall, our findings revealed a robust alteration of gut microbial 

composition related to the disease and therapy. 

 

In line with our previous report,(Zhou et al., 2020) recruitment site explained the largest proportion 

of variance in microbial composition, followed by other confounders such as age, sex and BMI. 

These results support the concept that large, multicenter studies provide greater statistical power 

while retaining the ability to control for the main confounders.(Abeles et al., 2016; Goodrich et 

al., 2014; Lax et al., 2014; Song et al., 2013)  

 

While an increase in A. muciniphila has also been reported in previous studies,(Berer et al., 2017; 

Cekanaviciute et al., 2017; Cox et al., 2021; Probstel et al., 2020) interpretation of its specific role 

remains controversial. A. muciniphila is a mucin-degrading bacteria shown to exert pro-

inflammatory effects on T cells in vitro(Cekanaviciute et al., 2017) and to exacerbate inflammation 

during infection.(Ganesh et al., 2013) Interestingly, peptides from A. muciniphila have been 

recently shown to stimulate human myelin autoreactive CD4+ T cell clones, thus suggesting 

molecular mimicry is a potential mechanism for MS pathogenesis (Wang et al., 2020).  However, 

A. muciniphila has also been proposed as a contributor to maintaining gut health, improving 

glucose homeostasis, increasing gut mucin integrity and enhancing effect of checkpoint inhibitor 

immunotherapy.(Cani and de Vos, 2017; Liu et al., 2019; Routy et al., 2018)  Different functional 

capabilities across A. muciniphila strains that may affect how these bacteria interact with the 

host.(Becken et al., 2021; Karcher et al., 2021; Kirmiz et al., 2020) At least two A. muciniphila 

strains were identified in our samples with differences in their functions such as sulfur metabolism, 

but none of them was enriched in MS in our dataset. Through pathway analysis we found “phytate 

degradation I” (PWY-4702) (a cyclitols degradation pathway), mainly driven by A. muciniphila, 
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was significantly increased in untreated MS patients. This pathway converts phytate into Myo-

inositol. Phytate is a strong chelator of divalent minerals such as calcium, magnesium, iron and 

zinc. Previous studies suggested that high levels of iron and zinc could play a role in MS activity 

and progression,(Ferreira et al., 2017; Hametner et al., 2013; Sanna et al., 2018) whereas calcium 

and magnesium could exert neuroprotective capacities.(Enders et al., 2020; Goldberg et al., 1986) 

Dietary mineral intake was no different between MS and healthy controls, but it is still possible 

that bacterial pathways (such as Phytate degradation) modulate the bioavailability of these 

minerals, thus contributing to disease pathogenesis. Myo-inositol, a simple carbohydrate produced 

in the body and available in foods such as fruits and cereals, is involved in lipid signaling, 

osmolarity, glucose, and insulin metabolism(Gonzalez-Uarquin et al., 2020) and utilized as dietary 

supplementation in different pathological conditions, including diabetes and  metabolic  

disorders.(Pintaudi et al., 2016; Shokrpour et al., 2019) Interestingly, a very early study showed 

that patients with MS appeared to metabolize myo-inositol abnormally,(Holm, 1978) and 

administered myo-inositol was shown to have a positive effect on evoked potential responses in 

MS (n =9) and controls (n=9).(Young et al., 1986)  The role of Akkermansia in myo-inositol 

metabolism needs to be further elucidated.  

 

Ruminococcus torques is another potent mucus degrader and may decrease gut barrier 

integrity.(Cani, 2014; Rajilic-Stojanovic and de Vos, 2014) A recent study showed that R. torques 

was associated with an enhanced MRI T2 signal in multiple motor brain areas and exacerbated 

disease in an animal model of amyotrophic lateral sclerosis (ALS).(Blacher et al., 2019) 

Ruthenibacterium lactatiformans, a lactate-producing species, was previously associated with an 

increased EDSS and decreased lower extremity motor function in RRMS and progressive MS.(Cox 

et al., 2021)  

  

Overall, 7 species  were significantly reduced in untreated MS. Faecalibacterium prausnitzii, one 

of the main butyrate producers found in the intestine, has anti-inflammatory properties that were 

partly associated with secreted metabolites that block NF-κB activation, IL-8 production and 

upregulate regulatory T cell production.(Lopez-Siles et al., 2017) It can also attenuate the severity 

of inflammation through release of metabolites that enhance intestinal barrier function. (Carlsson 

et al., 2013; Martin et al., 2015) The pyruvate-producing carboxylates metabolism pathways, 

contributed by F. prausnitzii, were found to be significantly reduced in untreated MS patients. 

Altogether, we found a depletion of potentially beneficial bacteria in untreated MS patients 

compared to healthy controls, which in turn disturbed key metabolic pathways that might be 

expected to worsen the inflammation of MS. These findings could lead to the development of 

“designer probiotics” that can restore the healthy composition and function of the gut microbiome. 

 

We next tested whether these altered bacteria also associated with disease severity, and found that 

only Streptococcus thermophilus, Azospirillum sp. 47_25 and Rhodospirillum sp. UNK.MSG-17 

were. However, correlations were positive for RRMS and negative for PMS patients. This implies 

that the change of gut microbial community may be linked to the onset of disease and stabilized 

during the disease course, a hypothesis which requires further investigation by longitudinal studies. 

Several other species were found to be correlated exclusively with MS severity (e.g. not with 

disease status).  For example, Butyrivibrio, Clostridium and Ruminococcus species, which are 

short-chain fatty acid (SCFA) producers, correlated with lower MS severity in PMS. It’s well 

known that SCFAs play a critical role in immunoregulation with well-characterized anti-
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inflammatory effects on both epithelium and peripheral immune cells. This implies potentially 

beneficial effects of these bacteria by producing anti-inflammatory metabolites. On the other hand, 

Collinsella aerofaciens, a species showed to increase disease severity in collagen-induced arthritis 

mice,(Chen et al., 2016b) was associated with a higher MSSS in RRMS patients probably via the 

pathway “PWY-4981: L-proline biosynthesis II (from arginine)”.  Prevotella species such as P. 

buccalis, P. corporis, P. disiens, P. copri were associated with higher MSSS. Although Prevotella 

species have been associated with health-beneficial properties, several studies have shown 

associations with autoimmune diseases, insulin resistance and diabetes, and gut 

inflammation.(Leite et al., 2017; Pedersen et al., 2016; Scher et al., 2013) Intriguingly, we found 

pathway “PWY-5097: L-lysine biosynthesis VI”, a decreased pathway in MS versus HHCs, was 

associated with a lower disease severity. Several commensal bacteria participants in this pathway, 

including Bacteroides, Faecalibacterium and Eubacterium species. L-lysine has been shown to 

have anti-inflammatory in rat with chronic lung injury,(Zhang et al., 2019) and may play a 

neuroprotective role in intracerebral hemorrhage injury,(Cheng et al., 2020) thus suggesting a 

potential usage of L-lysine to suppress the disease progression. Based on these observations, we 

speculate that the role of gut bacteria in disease progression/severity is multi-faceted and 

individual-dependent.  

  

Although structural and functional changes of gut microbiota in untreated MS patients have been 

identified in multiple studies, very little is known about how DMTs modulate these microbial 

communities. In this large dataset, we were able to study the effects of 6 DMTs including oral 

(Fingolimod, DMF), subcutaneous (GA, IFN) and infusion (Natalizumab, B-cell depleting) 

therapies. The MS associated alterations in gut microbiota may be modulated by the therapies as 

reported in other studies.(Jangi et al., 2016; Sand et al., 2019; Storm-Larsen et al., 2019) This is 

supported by our finding that several species showing differential abundance between RRMS and 

HHCs (Firmicutes bacterium CAG:65, Sutterella wadsworthensis, Parabacteroides merdae 

CAG:48, Akkermansia muciniphila and others), showed no difference in treated groups versus 

HHCs. In addition, DMTs resulted in a decrease in the relative abundance of specific taxa that are 

not MS-associated, potentially by their innate antimicrobial properties.(Maier et al., 2018; Storm-

Larsen et al., 2019) Compared to untreated RRMS, several common gut microbes including 

Bacteroides, Blautia and Clostridium species were significantly reduced in response to oral 

medications and species like Faecalibacterium prausnitzii, Dialister invisus CAG:218 and 

Roseburia intestinalis were reduced in individual receiving injectables. Furthermore, infused 

therapies resulted in a decrease of Bifidobacterium adolescentis, which was shown to promote 

Th17 cell accumulation and exacerbated autoimmune arthritis in a mouse model, arguing for its 

pathological relevance.(Tan et al., 2016) On the other hand, we found several species that were 

increased by DMTs, in particular Ruthenibacterium lactatiformans and Ruminococcus torques 

(with Fingolimod), Eubacterium hallii (with GA) and Bacteroides uniformis (with interferon).  

Intriguingly, sequence-based analysis suggested the oral drug Fingolimod would induce the most 

metabolic changes compared to other medications, a finding validated by metabolomic analysis. 

Specifically, the depletion of microbial “CARBOXYLATES-DEG” pathways (which produces 

pyruvate) may explain the low level of pyruvate observed in feces and serum samples from RRMS 

patients treated with Fingolimod, and the depletion of F. prausnitzii (a major SCFA producing 

bacteria) could account for the lower levels of acetate and propionate found in MS. We also found 

several microbe-derived fecal metabolites were remarkably lower in treated RRMS patients, 

implying a particularly important effect of these medications, likely through direct interactions 
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with gut microbiota. Of interest, a significant increase of serum propionic acid was found in RRMS 

patients treated with interferon. Propionate supplementation in MS patients has been associated 

with an increased Treg/Th17 ratio, leading to long-term clinical improvement.(Duscha et al., 2020) 

Based on our findings, we propose the increased absorption of microbially-derived propionate via 

upregulation of the SCFA transporter MCT1 (SLC16A1) as contributing mechanism of action for 

IFN-β. Our results provide compelling evidence that DMTs have considerable effects on gut 

microbiota, not only compositionally but functionally, that may highlight therapeutic mechanisms 

requiring further investigation. Additional larger and longitudinal follow-up studies will help to 

evaluate these effects more precisely.  

 

We demonstrated that diet quality (as measured by HEI-2015), was significantly associated with 

BMI, age and geographic location. Furthermore, a higher education, nonsmoker or former smoker 

status, and being female were also associated with the higher HEI-2015, consistent with previous 

studies.(Arabshahi et al., 2011; Thorpe et al., 2019) A healthier diet associates with higher 

microbial diversity, but diet may not the only factor at play. Some bacteria remained unaffected 

by dietary change depending on host phenotype and the preexisting microbiota 

composition.(Flandroy et al., 2018) In addition, local environment (i.e. air, soil and water) could 

also influence diversity of the gut microbiota by horizontal transmission of environmental 

microbes.(Tasnim et al., 2017) Due to shared environment and a similar diet taken by the 

household MS and healthy individuals, we ensured that the household design can not only 

effectively control the impact of diet, but also the influence of environmental microbes on gut 

microbiota. Even when sharing a diet with healthy individuals, MS patients tend to eat heathier by 

taking more fruit, vegetables and unsaturated fatty acids. Vitamin D deficiency has long been 

associated with MS, and higher levels of vitamin D were associated with reduced clinical activity 

in established MS.(Munger and Ascherio, 2011) Unsurprisingly, we observed that MS patients 

took more vitamin D, but showed no significant influence on gut microbiome composition.  

 

Limitations of the study 

Shotgun metagenomics sequencing was limited to ~500,000 reads per sample. While this coverage 

is adequate to classify bacterial communities with higher resolution that 16S RNA gene 

sequencing, and to provide some insight into the metabolic potential of the communities, higher 

sequencing depth will be needed to resolve most strains, clades and DNA polymorphisms. We 

cannot exclude power limitations due to stratification by treatment. As a consequence of the paired 

household design, the majority of the pairs are spouses, thus leading to an uneven sex distribution 

of MS (69.4% of the MS participants are female, in keeping with the expected demographics for 

MS(Langer-Gould et al., 2013)). However, our model adjusted for the effect of sex on gut 

microbiome. 

 

In summary, this is a large, multi-center gut microbiome study in MS patients and HHC. The 

findings strongly support the presence of specific gut microbiome associations both with MS 

disease course and progression, and functional changes in response to treatment.  The origin and 

biological relevance of these associations remain to be elucidated. Nevertheless, our study supports 

the possibility that microbial manipulation and dietary intervention could be used as preventive 

and therapeutic strategies in MS. 
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Main figure titles and legends  
 

Figure 1. Study summary and microbial diversity in MS measured by 16S rRNA sequencing in 

500 paired MS and HHCs with sequencing depth larger than 10,000. (A) Workflow of 

microbiome study in 576 MS patients and their household healthy controls. (B) Boxplot of 

microbiome -diversity in MS, RRMS, PMS and their HHCs (ANOVA, n.s., not significant). 

(C-D) PCoA of weighted UniFrac community distance by (C) disease status, treatment status and 

(D) disease subtype (R2 and FDR adjusted P values were tested by PERMANOVA). (E) Bar plot 

showing the effect size (Adonis R2) of confounders significantly associated with gut microbial 

variations (weighted UniFrac distance, PERMANOVA FDR adjusted P < 0.05). 

 

Figure 2. Microbial taxa alterations between MS and HHC adjusted for host factors. (A) 

Metagenomics species altered in untreated MS (n= 209), untreated RRMS (n=112) or untreated 

PMS (n=97) versus their HHCs (mixed linear regression model adjusted for age, BMI, sex, 

recruiting site and house). “-” indicated the species were filtered out with lower variance across 

samples and not included in linear regression. *FDR < 0.05, **FDR< 0.01, ***FDR< 0.001. (B) 

Arcsine square-root transformed relative abundance of 3 decreased species and 3 increased 

species in untreated MS versus HHCs. (C-D) Species were significantly correlated with MS 

Severity Scores (MSSS) in untreated Relapse-remitting MS patients (RRMS, n=112, C) or in 

untreated progressive MS (PMS, n=97, D). 15 Spearman correlations are adjusted for age and 

body mass index. *p < 0.05, **p < 0.01. Averaged abundances of significant species were shown 

in untreated RRMS and their household healthy controls (HHCs), untreated PMS and their 

HHCs. 

 

Figure 3. Sequence-based functional difference between MS and HHC adjusted for host 

variables. (A) Metagenomics pathways altered in untreated MS, untreated RRMS or untreated 

PMS versus their HHCs (mixed linear regression model adjusted for age, BMI, sex, recruiting 

site and house, *FDR < 0.05, **FDR< 0.01, ***FDR< 0.001), and dominant microbial species 

contributing to “PWY-4702” and “GALACT-GLUCUROCAT-PWY” pathways. (B) Arcsine 

square-root transformed relative abundance of two proteins in Akkermansia muciniphila that 

participant in phytate degradation I pathway (PWY-4702) (Paired T-test, *p < 0.05). (C) 

Organism-pathway-reaction-compound network built on pathway “GALACT-GLUCUROCAT-

PWY: superpathway of hexuronide and hexuronate degradation” using Scalable Precision 

Medicine Oriented Knowledge Engine (SPOKE). (D) Arcsine square-root transformed relative 

abundance of protein 2-dehydro-3-deoxy-phosphogluconate aldolase in Faecalibacterium 

prausnitzii that participant in superpathway of hexuronide and hexuronate degradation pathway 

(GALACTGLUCUROCAT-PWY) (Paired T-test, *p < 0.05). (E) High-class organized pathways 

altered in untreated MS, untreated RRMS or untreated PMS versus their HHCs (mixed linear 

regression model adjusted for age, BMI, sex, recruiting site and house, *FDR < 0.05, **FDR< 

0.01, ***FDR< 0.001). (F) Pathways were significantly correlated with MS Severity Scores in 

untreated Relapse-remitting MS patients (RRMS, n=112, top panel) or in untreated progressive 

MS (PMS, n=97, bottom panel). Spearman correlations are adjusted for age and body mass 

index. *p < 0.05, **p < 0.01. Averaged abundances of significant pathways were shown in 

untreated RRMS and their household healthy controls (HHCs), untreated PMS and their HHCs. 
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Figure 4. Disease status specific co-abundance species. (A) Microbial co-abundance 

community specific in untreated MS and (B) HHCs by cohort specific analysis (quantile range 

outlier). Each node indicates one species and color indicates the phylum classification. Each 

edge represents one species-species co-abundance relationship. (C) Overlapped counts of species 

and co-abundances in untreated MS specific and HHC specific networks. (D) Differential species 

in untreated MS versus HHC were overlapped with cohort specific species. (E-F) Functional 

pathways unique to the species highlighted in untreated MS specific network (E) and HHC 

specific one (F). Line size indicates the betweenness centrality of a species in the cohort specific 

co-abundance network. 

 

Figure 5. Treatment associated metagenomic changes in RRMS patients compared to 

household healthy controls. (A) PCoA of weighted UniFrac community distance of relapsing-

remitting MS subjects without treatment or received six different disease modification therapies, 

and RRMS household healthy controls (P values were tested by PERMANOVA). (B) 

metagenomics species (C) metabolic pathways altered in untreated RRMS, treated RRMS 

versus their HHCs, respectively (mixed linear regression model adjusted for age, BMI, sex, 

recruiting site and house). *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient ≥ upper 5% 

or coefficient ≤ lower 5%. 

 

Figure 6. Treatment associated metabolomic alterations in RRMS patients compared to 

household healthy controls. (A) 31 microbe-derived metabolites and (B) 8 short chain fatty 

acids compared in untreated RRMS, treated RRMS versus their HHCs, respectively in both stool 

and serum. Linear coefficient was measured by mixed linear regression model adjusted for age, 

BMI, sex, recruiting site and house. *p < 0.05, **p < 0.01, ***p < 0.001. (C) Disease duration 

adjusted MS severity score compared between untreated RRMS and treated ones. Statistics by 

ANOVA. (D) KEGG pathways enriched by 23 microbe-derived metabolites in response to 

interferon (FDR < 0.05). (E) Concentration of propionic acid in feces (left) and serum (right) 

compared between untreated RRMS, treated RRMS versus their HHCs, respectively. DMF, 

dimethyl fumarate, GA, glatiramer acetate. (F) Expression of SLC16A in human bronchial 

epithelial cells stimulated by IFN-β from study by Shapira, S. D. et al. The SLC16A gene was 

represented by two probes (202236_at and 209900_s_at) of Affymetrix HT Human Genome 

U133 Arrays. 

 

 

Figure 7. Diet and gut microbes. (A) Bar plot showing the effect size (Adonis R2) of 

confounders associated with dietary variations (Jaccard dissimilarity). Confounders showing 

significant impact on gut microbiome were labeled (PERMANOVA, *FDR ≤ 0.05). (B) Boxplot 

of healthy eating index measured in the participants from each recruiting site. (C) Pearson’s 

correlation between healthy eating index and microbial -diversity in healthy (blue) and MS 

(red) individuals. (D) Boxplot of healthy eating index measured in MS patients and their 

household healthy controls (paired T-test, ***p < 0.001). (E) Dietary components taken 

differently by MS and HHC individuals (paired T-test, *p < 0.05, ***p < 0.001). (F) Species 

significantly correlated with healthy eating index (Pearson’s correlation with FDR < 0.05). 

(G) Correlations between dietary component and MS associated species measured in healthy 

control, untreated MS and all samples, respectively (mixed linear regression model adjusted for 

age, BMI, sex and recruiting site, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001). 
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Supplemental figure titles and legends: 
 

Figure S1. Experimental impacts on gut microbial composition. (A) Pearson’s correlation of 

microbial abundance measured in 40 samples repeatedly sequenced in two cohorts. (B) Boxplot 

of microbiome -diversity measured by Shannon index in two cohort samples (one sample 

dropped with less reads than 10000, ANOVA, not significant). (C) PCoA of weighted UniFrac 

community distance by sequencing cohorts. (D) Pearson’s correlation of microbial abundance 

measured by 16S rRNA sequencing in 20 samples with DNA isolated from QiaCube or pMotion 

platforms. (E) Boxplot of microbiome -diversity measured by Shannon index in QiaCube and 

epMotion samples (ANOVA, not significant). (F) PCoA of weighted UniFrac community 

distance by DNA isolation methods. The repeated samples were connected by a dashed line (R2 

and p value were tested by PERMANOVA). 

 

 

Figure S2. Host factors analysis. (A) Microbiome -diversity measured by Chao1 index of 16S 

rRNA sequencing data in MS versus HHCs (ANOVA, not significant). (B) Microbiome -

diversity compared in untreated MS versus their HHCs, treated MS vs their HHCs, and untreated 

MS versus treated MS (ANOVA, not significant). (C) Microbiome -diversity compared among 

recruitment sites stratified by disease status (ANOVA, *FDR < 0.05, **FDR< 0.01, ***FDR< 

0.001). (D) PCoA of weighted UniFrac community distance by recruitment site 

(PERMANOVA). (E-F) Distribution of participants in each recruitment site by smoke (E) and 

education status (F). (G) Distribution of participants have depression, anxiety, take over the 

counter medications or prescription medications (Fisher’s exact test, *** P < 0.001). 

 

 

Figure S3. MS associated metagenomic pathways. (A) Metabolic pathway classes of gut 

microbiome annotated in each group. (B) PCoA of Bray-Curtis community distance of 

metagenomic functional pathways in untreated RRMS versus HHCs (left) and untreated PMS 

versus HHCs(right). Statistical test by PERMANOVA. (C-D) Dominant microbial species 

contributing to “PWY-4981” and “PWY-5097” pathways in untreated MS patients and 

household healthy controls. 

 

 

 

Figure S4. Clustering of 2913 Akkermansia muciniphila genes in 58 samples annotated by 

MIDAS. Blue squares indicate that a gene is present, and yellow squares indicate that a gene was 

absent. Function was annotated for the genes missing in cluster2. 

 

 

Figure S5. Microbial co-abundance in untreated MS and household healthy controls. (A) 

Normalized centrality distribution of species-species co-abundance networks constructed in 

untreated MS and household healthy controls (HHCs) by setting correlation cutoff from 0.1 to 1 
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(SparCC, FDR < 0.05). (B) Microbial co-abundance network built in healthy (left, 773 species, 

5688 co-abundances) and untreated MS individuals (right, 786 species, 6742 coabundances) 

by SparCC |r| ≥ 0.4 and FDR < 0.05 after adjusting age, sex and BMI. Each node indicates a 

species and 

color indicates the family classification. Each edge represents one species-species co-abundance 

relationship and labeled in green for positive correlation, red for negative correlation. (C) 

Overlapped counts of species and coabundances in untreated MS and HHC microbial networks 

(SparCC |r| ≥ 0.4, FDR < 0.05 adjusted for age, sex and BMI). 

 

 

Figure S6. Treatment associated metagenomic changes. (A) Metagenomics species (B) 

metabolic pathways altered in treated RRMS versus untreated RRMS. (C) Metabolic pathways 

altered in untreated RRMS, treated RRMS versus their HHCs, respectively. Statistics by mixed 

linear regression model adjusted for age, BMI, sex, recruiting site and house. *p < 0.05, **p < 

0.01, ***p < 0.001 and linear coefficient ≥ upper 5% or coefficient ≤ lower 5%. 

 

 

Figure S7. Dietary pattern and gut microbes. (A) Pearson’s correlation of body mass index or 

age with healthy eating index in MS and HHC group, respectively. (B) Jaccard dissimilarity of 

dietary components measured between healthy control and MS within the same house, between 

different houses in the same time and between different houses in different sites. Random 

comparisons of healthy control and MS were female-male matched only to control sex effect 

(ANOVA, *FDR ≤ 0.05, ***FDR ≤ 0.001). (C-E) Healthy eating index compared among 

education, smoke status and sex groups in MS and HHCs, respectively (ANOVA, *FDR ≤ 0.05, 

**FDR ≤ 0.01, ***FDR ≤ 0.001). (F)Metagenomic species were significantly associate with diet 

in healthy controls by mixed linear regression model adjusted for age, BMI, sex, and recruiting 

site. *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient ≥ upper 5% or coefficient ≤ lower 

5%. 

 

 

Figure S8. Minerals, Vitamin D, and gut microbes. (A) Mineral intake from diet between MS 

and household healthy controls. No significant differences were detected by mixed linear 

regression model, adjusting for age, body mass index and sex. (B) Vitamin D intake compared 

between MS and household healthy controls. ***p <0.001, statistics by paired T-test. (C)Pearson 

correlation between vitamin D intake and Shannon diversity in MS and HHC, respectively. (D) 

Weighted UniFrac distance based β-diversity measured in healthy control and MS patients. Each 

participant was colored by vitamin D intake (IU). Statistics by PERMANOVA. 
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SUPPLEMENTAL METHODS 

 

Recruitment.  

Participants were provided with a stool sample collection kit and instructed to obtain two 

consecutive stool samples in the privacy of their own homes. Each stool sample time point included 

3 collection vials - a Q-tip (Q, dry), a snap frozen vial (S, wet), and a vial filled with Luria-Bertani 

broth (LB) and 30% glycerol. Participants were instructed to freeze the samples for at least 12 

hours and ship them frozen with the ice pack included in the kit. Samples were returned to each 

site via overnight shipping in a thermal envelope. All participants were required to complete a 

clinical survey to report the disease status and treatment, and a subject survey to report 

demographic, medication, lifestyle and physiology factors. Clinical outcomes included the 

Expanded Disability Status Scale (EDSS),(Kurtzke, 1983) and the Multiple Sclerosis Functional 

Composite (MSFC).(Fischer et al., 1999) All data were collected and stored through secure 

REDCapTM questionnaires.  

 

 

Sample preparation for sequencing. 

To test whether the DNA processing method changes microbial composition, we extracted DNAs 

from the same 20 samples using both QIAcube and epMotion platforms. A subset of 40 samples 

prepared in Cohort 1 were re-sequenced in Cohort 2 to test the impact of sequencing runs on 

microbial composition. 

 

Microbial diversity.  

Since the MS and control subjects within household are often of different sex, the random 

comparisons between households utilized only cross-sexual comparisons to control for the effect 

of gender.  

 

Shallow whole metagenome shotgun sequencing (WMGS) and data processing. 

To deal with sparse microbial data in the analysis, we focused on species present in at least 5% 

of samples, covering at least 10 total reads. This provided a list of 1,677 species for use in the 

statistical analysis. The relative abundances of gene families were characterized from UniProt 

Reference Clusters (UniRef90) using HUMAnN2 (V2.8.2),(Franzosa et al., 2018) which were 

further mapped to microbial pathways and high-classes based on pathway hierarchy from the 

MetaCyc metabolic pathway database.(Caspi et al., 2016; Caspi et al., 2018) 490 pathways 

present in at least 5% of samples were retained for statistical analysis. Microbial gene families 

present in more than 5% samples were used to link with select fecal metabolites. The 

phylogenetic diversity of Akkermansia muciniphila was measured using Metagenomic Intra-

species Diversity Analysis System (MIDAS)(Nayfach et al., 2016) with its default parameters. 

 

 

 

Diet analysis 

Healthy Eating Index-2015 (HEI-2015(Krebs-Smith et al., 2018)) was used for evaluation of the 

diet quality and calculated by NutritionQuest. The HEI-2015 adequate dietary components 

include ‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and beans’, ‘whole grains’, ‘dairy’, 

‘total protein’, ‘seafood and plant proteins’, and ‘fatty acids’, which are recommended to be high 
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in a healthy diet. In contrast, moderate dietary components where consumption is recommended 

to be limited include ‘refined grains’, ‘sodium’, ‘added sugar’ and ‘saturated fatty acids’.(Krebs-

Smith et al., 2018) Each component was measured by a maximum point scale. To make all 

components comparable with maximum point of 10, the points of ‘total fruit’ and ‘whole fruit’ 

were added as ‘fruit’, ‘total vegetables’ and ‘greens and beans’ were added as ‘vegetables’, ‘total 

protein’ and ‘seafood and plant proteins’ were added as ‘protein’. Correlation between HEI-2015 

and host phenotypes (age and BMI), microbial diversity or microbial relative abundance was 

measured by Pearson’s correlation. Correlations between each dietary component and MS 

associated species were measured by coefficients from mixed linear regression model adjusted 

for age, BMI, sex and recruiting site.  
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SUPPLEMENTAL DISCUSSION 

 

To identify disease -associated microbial features, a large microbiome study with participants 

recruited from multiple sites will increases statistical power to detect disease associated features, 

but also can introduce a greater number of confounding factors such as geography, host lifestyle, 

diet, and medication use that could shape the gut microbiome.(Gupta et al., 2017; Rothschild et 

al., 2018; Zhou et al., 2020) 

 

Using shotgun metagenomics and adjusting for household, age, sex and BMI, we identified 16 

species that were significantly increased in untreated MS versus HHCs. The same trend was 

observed for untreated RRMS (versus HHCs) and untreated progressive MS (versus HHCs), but 

some of these did not reach significance. This could be explained by the reduced power due to 

stratification. Specifically, Akkermansia muciniphila, Ruminococcus torques, Ruthenibacterium 

lactatiformans and Hugatella hathewayi were increased in MS.  Hugatella hathewayi, 

(previously known as Clostridium hathewayi), was associated with several disorders, including 

acute appendicitis.(Randazzo et al., 2015) Interestingly, we found that H. hathewayi and another 

species Staphylococcus sp. CAG:324 increased even further in PMS compared to RRMS. By 

contrast, Dialister invisus was decreased in PMS but increased in untreated RRMS; This bacteria 

has been isolated from both human oral cavity and gut, and is considered a significant human 

pathogen.(Rocas and Siqueira, 2006)    

 

 

Several other studies have reported a decrease of F. prausnitzii in MS patients(Miyake et al., 

2015; Swidsinski et al., 2017) and also in different intestinal disorders,(Lopez-Siles et al., 2017) 

suggesting this organism may have beneficial properties. F. saccharivorans belongs to 

Clostridium subcluster XIVa and plays a critical role in immune system homeostasis by inducing 

regulatory T cells (Tregs) through the production of butyrate and other short chain fatty 

acids.(Murakami et al., 2018) Interestingly, a depletion of Clostridium subcluster XIVa has been 

reported in MS patients.(Takeshita et al., 2016) Also, low abundance of F. saccharivorans was 

found in active ulcerative colitis patients, while the administration of F. saccharivorans 

ameliorated oxazolone-induced colitis in a mouse model via suppression of IL-13 

production.(Takeshita et al., 2016) Blautia obeum, an acetate-producing species, can inhibit the 

proliferation of Clostridium perfringens, Vibrio cholerae and vancomycin-resistant enterococci, 

also suggesting a possible therapeutic role.(Liu et al., 2021)  

 

Microbial co-abundance networks were computed to better understand how MS-associated 

microbes could drive changes in microbial communities. We observed a substantial alteration of 

interconnected species with an increased Firmicutes to Bacteroidetes (F/B) ratio in the untreated 

MS specific network. An increased F/R ratio is considered a hallmark of obesity and has also been 

associated with several pathological conditions(Magne et al., 2020) and we hypothesize the over-

representation of Firmicutes in the MS-associated microbial network may contribute to 

pathogenesis. Surprisingly, few species individually associated with MS were part of the co-

abundant microbial networks, implying that microbial-induced pathogenesis may not be driven by 

individual differences level but instead by shifts community structure. 
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Diet is a key modifiable factor influencing the composition of the gut microbiota, indicating the 

potential for therapeutic dietary strategies to manipulate the microbial dysbiosis related to 

diseases. A number of human and animal feeding studies have provided insight into the effect of 

specific foods or dietary components on the gut microbial composition.(David et al., 2014; Li et 

al., 2009)  We comprehensively explored the ability of the host diet to modulate not only gut 

bacteria in healthy individuals but also differential bacteria in MS patients.  

 

An increased risk of MS was found to be associated with high energy and saturated fat intake, 

while food components, including fruit, vegetables, whole grains and unsaturated fats, appeared 

to exert a protective effect.(Katz Sand, 2018) Many MS patients subscribe to a special diet or 

dietary supplements. Intriguingly, we found that a healthier diet correlated with an increase in 

beneficial bacteria like Eubacterium and Faecalibacterium species. We also found that the 

differential species between MS and HHCs were unlikely to be shaped by diet. This may be 

explained by the household design that increases the power to identify true disease associated 

microbes by controlling the impact of environment.   
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Table 1. Sample characteristics for 576 pairs of MS and their household healthy controls. 

    HHC MS RRMS PMS 

    n % n % n % n % 

Number 576 50 576 50 437 75.9 139 24.1 

Age (y) 50.6 (40.8-61) 48.9 (40-59) 45.8 (37-55) 58.6 (54-65) 

Female 201 34.9 400 69.4 312 71.4 88 63.3 

BMI  26.9 (23.5-29) 25.4 (21.8-27.6) 25.4 (21.8-27.5) 25.3 (21.8-27.8) 

EDSS    2.6 (1-4) 1.77 (0-2.5) 5.21 (3.75-6.5) 

Disease duration (y)    14.2 (6-21) 12.5 (5-18) 19.6 (9.5-28.5) 

MSSS    3.37 (0.86-5.57) 2.5 (0.655-3.65) 6.11 (4.74-7.53) 

Untreated    209 36.3 112 25.6 97 69.8 

Treated    367 63.7 325 74.4 42 30.2 

Treatment           

 Fingolimod    71 12.3 66 15.1 5 3.6 

 Dimethyl fumarate    86 14.9 77 17.6 9 6.5 

 Glatiramer acetate    68 11.8 66 15.1 2 1.4 

 Interferon    87 15.1 76 17.4 11 7.9 

 anti-CD20    28 4.9 15 3.4 13 9.4 

 Natalizumab    27 4.7 25 5.7 2 1.4 

Recruiting site           

 San Francisco 164 28.5 164 28.5 110 25.2 54 38.8 

 Boston 42 7.3 42 7.3 35 8.0 7 5.0 

 New York 59 10.2 59 10.2 45 10.3 14 10.1 

 Pittsburgh 12 2.1 12 2.1 12 2.7 0 0.0 

 Buenos Aires 129 22.4 129 22.4 120 27.5 9 6.5 

 Edinburgh 131 22.7 131 22.7 82 18.8 49 35.3 

  San Sebastián 39 6.8 39 6.8 33 7.6 6 4.3 

Data are presented as mean (interquartile range, IQR); y, year; BMI, Body Mass Index; EDSS, Expanded 

Disability Status Scale; MSSS, Multiple Sclerosis Severity Score. 
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