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Abstract 17 

Trends in urban fraction around meteorological station are used to quantify the 18 

relationship between urban growth and local urban warming rate in records from 19 

Chinese temperature stations. Urban warming rates are estimated by comparing 20 

observed temperature trends with those derived from ERA-Interim reanalysis data. 21 

With urban expansion surrounding observing stations, daily minimum temperatures 22 

are enhanced, and daily maximum temperatures slightly reduced. On average, a 23 

change in urban fraction from 0% to 100% induces additional warming in daily 24 

minimum temperature of +1.7±0.3 ºC; daily maximum temperature changes due to 25 

urbanization are -0.4±0.2 ºC. Based on this, the regional area-weighted average trend 26 

of urban-related warming in daily minimum (mean) temperature in eastern China is 27 

estimated to be +0.042±0.007 (+0.017±0.003) ºC/decade, representing about 9% (4%) 28 

of overall warming trend and reducing the diurnal temperature range by -0.05 29 

ºC/decade. No significant (at a 95% confidence level) relationship between 30 

background temperature anomalies and the strength of urban warming were found. 31 

 32 
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Key points: 37 

Relationship between urban growth and local urban warming rate in Chinese 38 

temperature records is quantified; 39 

A change in urban fraction from 0% to 100% induces additional warming in daily 40 

minimum temperature of +1.7±0.3 ºC; 41 

No significant relationship was found between background temperature anomalies 42 

and the strength of urban warming; 43 

 44 

 45 

1. Introduction 46 

Apart from data inhomogeneity, the effect of urbanization is probably the most 47 

common source of systematic bias in land station temperature records. While many 48 

studies have documented that urbanization processes imposed negligible influence on 49 

the global temperature series [Jones et al., 1990; Hansen et al., 1999, 2001; Peterson 50 

et al., 1999; Folland et al., 2001; Parker, 2004, 2006, 2010], the urbanization-induced 51 

effect in local and even regional temperature observations, especially in some 52 

developing countries or regions, could be considerable [Wang et al., 1990; Portman et 53 

al., 1993; Ren et al., 2007; Jones et al., 2008; Yan et al., 2010]. Many authors have 54 

estimated the urban-related warming in large-scale temperature series (for example 55 

[Ren et al., 2008; Hua et al., 2008; Yang et al., 2011]), mostly based on comparison of 56 

urban and rural temperature series. Wang and Yan [2016] presents a concise review of 57 

urban warming, noting that there is considerable uncertainty in the magnitude of the 58 

urban warming bias [Peterson and Owen, 2005]. 59 

 60 

    The most straightforward way to obtain regionally averaged temperature series 61 

that are free of urbanization effect is to use nonurban stations [Hansen et al., 1999; 62 

Ren and Zhou, 2014; Sun et al., 2014, 2016]. This is a useful approach for the regions 63 

with numerous uniformly distributed nonurban stations. But, in most cases, long-term 64 

temperature series observed at purely rural stations are rare. Faced by this challenge, 65 



Karl et al. [1988] developed a series of equations that related the effect of increasing 66 

population to the annual/seasonal averaged temperatures using the station 67 

observations across the United States (US). Based on the equations in Karl et al. 68 

[1988], Jones et al. [1989] assessed the significance of the urban warming effect on 69 

hemispheric mean temperature series to be less than 0.1°C over the first eight decades 70 

of 20
th 

century. However, population information is spatially generalized and outdated, 71 

and the urban-related changes in the observing environment surrounding the stations 72 

could not be reflected objectively and precisely [Peterson and Owen, 2005]. Satellite 73 

remote-sensing data provide a basis to identify the extent to which the effect of 74 

urbanization has been imposed on the temperature records [Gallo et al., 1999; Hansen 75 

et al., 1999, 2001; Yang et al., 2011]. Since urbanization is a dynamic process, 76 

changes in urban land use around observing stations, rather than current urban status, 77 

can be used to better understand the urban warming effects [Jones et al., 2008]. 78 

 79 

    Climate models simulate large-scale average changes in temperature, which are 80 

not directly comparable with site observations in regions of rapid urbanization such as 81 

eastern China for the recent decades. From a different point of view, as human 82 

populations are concentrated in cities, if we want to quantify the changing risk of 83 

extreme temperatures to the human society based on projections of climate modeling, 84 

we need to apply a correction for the impact of urbanization to these results. One of 85 

the goals of this study is to produce such a correction. In this study, we employed the 86 

satellite-derived data of urban fraction surrounding meteorological station to estimate 87 

urban warming bias in surface temperature records in China, and compared the results 88 

with previous studies. Since most previous studies applied fixed values to adjust 89 

urban bias in annual or seasonal temperature averages [Karl and Jones, 1989; Jones et 90 

al., 1989; Sun et al., 2016], we also examine whether there is a significant relationship 91 

(at a 95% confidence level) between the intensities of urban warming and background 92 

temperature anomalies on monthly timescales. 93 

 94 

In the rest of this paper, we next describe the data and analysis methodology we 95 

use, following this with our results before concluding. We find the urbanization has a 96 

significant (at a 95% confidence level) warming effect on daily minimum 97 

temperatures, but only a negligible cooling impact on daily maximum temperatures. 98 



We also find no evidence of significant (at a 95% confidence level) relationship 99 

between large-scale temperature variability and urban warming intensity, meaning 100 

that a fixed urbanization correction is adequate. 101 

 102 

 103 

2. Data and Method 104 

We use a homogenized daily surface air temperature data set observed at 753 105 

meteorological stations in China for 1980–2009 [Li and Yan, 2009; Li and Yan, 2010], 106 

ERA-Interim reanalysis data set [Dee et al., 2011], and a long-term land cover data set 107 

in China for the years 1980 and 2009 [Hu et al., 2015]. We focus our analysis on 108 

eastern China (east of 105 ºE) as this is where large growth in urbanization has 109 

happened. 110 

 111 

The station temperature observations we used have been corrected for most of 112 

the non-climatic biases due to the changes in the local observing system, such as 113 

station relocation. In most cases, meteorological stations had to be relocated to more 114 

rural sites due to the rapid urbanization [Yan et al., 2010]. Large cooling biases could 115 

be introduced in by such relocations, which have been corrected for in the 116 

homogenized series. The Multiple Analysis of Series for Homogenization (MASH) 117 

method was used to homogenize station temperature series. MASH is an iterative 118 

procedure designed to detect break points by mutual comparison among all available 119 

series. MASH chose a candidate series from the available series and treated the 120 

remaining series as references. MASH algorithm changed the roles of candidate and 121 

reference series step by step. Homogenizations are made to the whole dataset based 122 

on statistical tests via Monte-Carlo method. More details about MASH can be found 123 

in Szentimrey [1999; 2008]. Homogenization was made for the local time series of 124 

daily maximum and minimum temperatures, respectively, in order to diminish any 125 

discontinuity due to non-climatic factors such as site-moves of a station [Li and Yan, 126 

2009; Li et al., 2016]. Since homogenization process considers only abrupt changes in 127 

surface temperature, the slowly varying urban warming trends are still retained in 128 

observations. 129 

 130 

We used the fused land cover dataset of Hu et al. [2015] which classifies land by 131 



fractions of seventeen types of land cover (using the IGBP land cover classification 132 

scheme; USGS [2003]), for four representative years (1980, 1990, 2000 and 2009). Hu 133 

et al. [2015] made a detailed investigation of the accuracy of the land cover 134 

classification for data fusion, with multi-source best-quality datasets derived from 135 

satellite platforms including Landsat TM/ETM+, USGS, MODIS land cover and 136 

Chinese national land cover datasets. Based on multiple linear regressions, the fused 137 

urban land cover dataset used in this study was developed, combining the 138 

multi-source products. Based on previous studies [Yang et al., 2011 (7km); Wang and 139 

Ge, 2012 (16km); Chrysanthou et al., 2014 (10km)], we chose the land cover data set 140 

with spatial resolution of 10 km to represent the extent of environmental changes 141 

surrounding the observing stations due to urbanization. For each station we computed 142 

the linear trend in urban land fraction for the nearest 10x10 km pixel. 143 

 144 

We treat the temperature trend observed at each urban station as a sum of 145 

large-scale trend, local urban trend, and noise representing unknown processes. 146 

Reanalysis data do not assimilate surface observations of daily 2-m maximum (Tmax) 147 

and minimum (Tmin) temperatures and so should be insensitive to the changes in urban 148 

land use. Thus, temperature trends derived reanalysis data can be used to represent the 149 

signal of large-scale climate change [Dee et al., 2011]. ERA-Interim reanalysis data 150 

perform better than other reanalysis datasets regarding the long-term trend and 151 

low-frequency variability in surface temperature series in China [Wang et al., 2013a]. 152 

We used it to separate the signal of local urban warming from overall warming trends. 153 

Specifically, Tmax and Tmin from ERA-Interim data set were linearly interpolated to 154 

stations located below 500m [Kalnay and Cai, 2003] in eastern China and converted 155 

to monthly-average anomalies relative to 1980–2009. Linear trends in both were 156 

estimated by ordinary least squares (OLS). Interpolated temperature trends in 157 

ERA-Interim reanalysis were subtracted from station observation trends, and the 158 

difference was treated as the local urban warming trends plus other local noise. 159 

 160 

Local urban warming trends were assumed to be proportional to the changes in 161 

urbanization degree or extent. This assumption may be not precise enough for specific 162 

sites, but we believe reasonable for a large sample of stations. We estimated the 163 

relationship between urban warming and urbanization by linear regression between 164 



the urban fraction trend and Tmin/Tmax temperature trend. 165 

 166 

To determine if using a fixed value to correct urban warming bias was 167 

appropriate, we further examined the relationship between urban bias and background 168 

temperature anomalies (derived from ERA-Interim) on monthly time-scale in three 169 

representative cities in China (Beijing, Shanghai, and Guangzhou) for 1980-2009. 170 

 171 

 172 

3. Results 173 

The trends in the fraction of urban land cover are notable over three large urban 174 

agglomerations in China (Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River 175 

Delta) and in the North China Plain (Figure 1a). The trends in station observed Tmax in 176 

central-eastern China are higher than other regions (Figure 1b). Some places, such as 177 

the North China Plain and Northeast China, have experienced slight changes in Tmax. 178 

Station observed Tmin shows a strong warming trend in North China Plain and 179 

central-eastern China (Figure 1c). This pattern is quite similar to the changes in the 180 

urban fraction, as shown in Figure 1a. Trends of Tmax in ERA-Interim reanalysis are 181 

consistent with station observations on the whole (Figure 1d). In contrast, trends in 182 

Tmin show some differences between observations and reanalysis, particularly in three 183 

large urban agglomerations and North China Plain (Figure 1e). 184 

 185 

We removed reanalysis temperature trends from station observed ones (Figure S1) 186 

and see that the warming trends of Tmax in southeastern China were enhanced by 187 

urbanization, consistent with Zhou et al. [2004]. However, in the North China Plain, 188 

the warming trends in Tmax are decreased by urbanization process. For Tmin, the 189 

urban-related trends are significant (at a 95% confidence level) and almost positive, 190 

especially for the three large urban agglomerations and North China Plain. 191 

 192 

We find a weak and insignificant (at a 95% confidence level) relationship 193 

between urban fraction and urban warming trends in Tmax (Figure 2a). This suggests 194 

that urbanization has had only a small effect on Tmax. However, for Tmin, the 195 

relationship between the changes in urban fraction and urban-related warming trends 196 

is significant (at a 95% confidence level) and almost linear: the larger the trend in 197 



urban fraction, the larger the urban-related warming rates (Figure 2b). The linear 198 

regression coefficient between them is +0.017±0.003ºC/% (mean ± standard error), 199 

which implies that, on average, urban warming is about +1.7±0.3ºC for the stations 200 

with urban fraction increased from 0% to 100%. However, note that there is a large 201 

degree of scatter around the best-fit line suggesting other processes are influential for 202 

individual stations. 203 

 204 

To test sensitivity of our results we repeated our analysis using robust regression. 205 

This gives less weight to values far from the best fit line than does OLS and we use it 206 

to deal with potential data quality problems. Its impact is to increase the magnitude of 207 

the urbanization effect on both Tmin and Tmax with the Tmax effect now being 208 

significant (at a 95% confidence level; Table S1). We also replaced the interpolated 209 

ERA-Interim data with an alternative interpolated station dataset. Here, we applied 210 

multiple linear regression to estimate the patterns of large-scale climate change, using 211 

the station’s latitude, longitude, and their high-order forms (Table S2). We find very 212 

similar results to those using ERA-Interim (Table S1 and Figure S1). Our results 213 

appear insensitive to those changes to our analysis procedure (Table S1) and so we 214 

conclude that urbanization, in low-altitude eastern China, causes significant (at a 215 

95% confidence level) warming in Tmin with only a small impact on Tmax. In 216 

consequence, urbanization processes also increase the daily mean temperature (Tmean), 217 

but decrease the diurnal temperature ranges (DTR). 218 

 219 

Therefore, there is no need to correct urban bias in large-scale Tmax records in 220 

China. Urban bias in Tmin could be corrected through the relationship between trends 221 

in urban fraction and urban warming rates. Result shows that the area-weighted (2ºx2º 222 

grid box) average trend in the urban fraction around observing stations in eastern 223 

China (east of 105ºE and with elevation less than 500m) is 2.45%/ decade for the 224 

period of 1980–2009. Therefore, the urban-related warming trend in area-weighted 225 

average time series of Tmin (Tmean) in eastern China is estimated to be about 226 

+0.042±0.007 (+0.017±0.003) ºC/decade, representing an average of about 9% (4%) 227 

of overall warming in this region, and reducing the DTR by -0.052 ºC/decade. 228 

  229 

    Most previous studies corrected urban bias in large-scale temperature series 230 



using fixed values [Karl and Jones, 1989; Portman, 1993]. A compelling question is 231 

whether urban warming biases are correlated with rural or background temperature 232 

anomalies. We examine for Beijing, Shanghai and Guangzhou the relationship 233 

between urban warming and background temperature anomalies (linearly interpolated 234 

from ERA-Interim) and find no significant (at a 95% confidence level) correlation 235 

between the background Tmax or Tmin anomalies and urban warming intensity on 236 

monthly timescales for most cases (Figure 3). This result holds regardless of for both 237 

warm and cold seasons. The detailed coefficients of linear regression between the 238 

anomalies of background monthly averaged temperature and monthly averaged urban 239 

heat island are listed in Table S3. Our results suggest that the background temperature 240 

anomalies have little impact on urban warming biases in monthly averaged 241 

temperature records. 242 

 243 

 244 

4. Discussions and Conclusions   245 

    In this study, we examined the relationship between trends in urban fraction 246 

close to stations and local urban warming rate. We found that the urbanization impact 247 

on Tmax in eastern China was small and statistically indistinguishable from zero. 248 

However, we found that urbanization has caused a significant (at a 95% confidence 249 

level) increase in Tmin. Our results show that, on average, a change in urban fraction 250 

(around meteorological station within 10 km) from 0% to 100% will probably lead to 251 

an increase in urban warming by 1.7±0.3ºC. Following this relationship, we estimated 252 

that the urban-related warming contributed about 9% (0.042ºC/decade) to the trend in 253 

regional time series of Tmin in eastern China during the years 1980–2009. Based on 254 

homogenized temperature observations, Li et al. [2004] found that the average urban 255 

warming trend in Tmean series (the mean of Tmax and Tmin) was 0.012ºC/decade for the 256 

period 1954–2001. Our estimation results (urban warming rate in Tmean: 257 

+0.017±0.003ºC/decade) are consistent with this. In developed regions, urban 258 

warming bias in temperature records would be much smaller as urban fractions have 259 

changed little in recent decades. By comparing European-averaged temperatures 260 

based on all meteorological stations with those based on three subsets of stations: 261 

from rural areas, from areas with low urbanization rate, and from areas with low 262 

temperature increase, Chrysanthou et al. [2014] found that urbanization explains 263 



0.0026ºC/decade of the annual-averaged European temperature trend of 264 

0.179ºC/decade. Using four different proxy measures of urbanity, Hausfather et al. 265 

[2013] suggested that urbanization accounts for 6-9% of the rise in unadjusted 266 

minimum temperatures in US and even less than 5% for homogenized observations. 267 

 268 

Furthermore, we employed the relationship to estimate the urban warming rate 269 

for Tmin (Tmean) at three representative urban stations, using the trends of urban 270 

fraction near them (Beijing: 17.3%/decade; Shanghai: 22.9%/decade; Guangzhou: 271 

13.1%/decade). For these stations, the effects of urban warming biases in Tmin (Tmean) 272 

for 1980-2009 are estimated to be about 0.29 ºC/decade (0.11ºC/decade), 0.39 273 

ºC/decade (0.15 ºC/decade) and 0.22 ºC/decade (0.09ºC/decade), respectively. This 274 

estimation is consistent with previous studies on the urban warming bias in Beijing 275 

[Wang et al., 2013b] and East China [Jones et al., 2008]. 276 

 277 

It should be noted that urban fraction is an important factor determining the 278 

intensity of local urban warming, but not the only one. Other factors, such as 279 

urbanization degree, anthropogenic heat [Feng et al., 2014] and local background 280 

climate [Zhao et al., 2014], are also responsible for it. However, we believe it 281 

reasonable to assume, on average, that trends in urbanization degree and 282 

anthropogenic heat intensity are proportional to the trends in urban fraction. In this 283 

study, we focused on the correction of urban bias in large-scale temperature records in 284 

eastern China. Therefore, much of the influences due to background climate could 285 

cancel each other out. However, for some specific regions (e.g., southeastern China 286 

and North China Plain), local background climate should be considered in the urban 287 

bias correction. 288 

 289 

Changes associated with urbanization may impose influences on surface-level 290 

temperature observation stations both at the mesoscale (0.1-10 km) and the microscale 291 

(0.001-0.1 km). For a specific observing station, small local environmental changes 292 

may overwhelm any background urban warming signal at the mesoscale. Due to the 293 

lack of a high-quality dataset of urban fraction at the macroscale, we can hardly 294 

quantify the microscale urban influence on the observed temperatures. Since data 295 

homogenization could adjust the abrupt temperature changes due to station relocations 296 



(e.g., from city center to a park-like setting or rural area) and local change such as 297 

construction developments [Yan et al., 2010], we consider that any microscale 298 

influence should have been reduced in the present analysis and should not 299 

substantially influence the result about the regional mean effect of urbanization. 300 

 301 

He et al. [2013] used historical remote sensing data to examine the impact of 302 

urban expansion on the trends in near surface air temperature in Beijing and its 303 

surrounding local regions. They found that an increase of about 10% in urban growth 304 

around the meteorological stations could contribute to 0.13 ºC rise in mean surface air 305 

temperature trend. It should be noted that He et al. [2013] focused on the impact of 306 

urbanization at specific local scale and didn’t remove the signal of large-scale climate 307 

change. Future studies could identify the contribution of local background climate 308 

(e.g., precipitation, solar radiation) to urban warming bias. There were other methods 309 

applicable for estimating the urban signal. For example, to analyze the diurnal cycle 310 

of urban heat island in the central Europe, Zakšek and Oštir [2012] used multiple 311 

regression analysis to downscale the low-spatial-resolution satellite-based land 312 

surface temperature data in a higher spatial resolution. 313 

 314 

    The reason for a more obvious urban warming trend in Tmin than in Tmax in this 315 

region could be that the radiative effect of increasing urban aerosol might cause 316 

decreasing solar radiation reaching the ground during the daytime. Meanwhile, any 317 

urban warming in Tmax could be compensated by the effect of increasing hazes. A 318 

recent study attributed a part of the urban warming in the nighttime to haze pollution 319 

in China [Cao et al., 2016]. Enhanced longwave radiative forcing of coarser aerosols 320 

contributed to additional nighttime urban warming. 321 

 322 

This study demonstrates an approach to estimate urban bias in large-scale surface 323 

temperature, particularly where there are few rural stations. This approach could be 324 

used in other regions. Compared with the equations that related urban bias to 325 

population growth in Karl et al. [1988], the regression functions developed in this 326 

study are more robust and objective with easily accessible and updated data since 327 

population data tend to be out-of-date for the cities in developing regions. 328 

 329 

http://www.sciencedirect.com/science/article/pii/S0034425711002872
http://www.sciencedirect.com/science/article/pii/S0034425711002872
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 465 

Figure 1 (a) Geographic locations of meteorological stations in China (circles) and the 466 

trends in the fraction of urban area at 10 km ×10 km resolution (%/decade: shaded 467 

colors) nearest the stations for 1980-2009; (b) Trends in annually-averaged daily 468 

maximum temperature recorded in station observations for 1980-2009 (c) Same as (b), 469 

but for daily minimum temperature; (d) Trends in annually-averaged daily maximum 470 

temperature linearly interpolated from ERA-Interim reanalysis data for 1980-2009; (e) 471 

Same as (d), but for daily minimum temperature. For b-d units are ºC/decade. 472 
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 477 

Figure 2 (a) Correlation between the trends in urban fraction and the trends in 478 

annually-averaged daily maximum temperature, but with the large-scale climate 479 

change pattern removed using ERA-Interim reanalysis data; (b) Same as (a), but for 480 

daily minimum temperature. ‘b’ indicates the linear regression slope between the 481 

changes in urban fraction and urban warming rate. ‘R
2
’ represents the proportion of 482 

the variance of urban warming rates explained by the trends in urban fraction. The 483 

number in bracket is the bootstrap estimate of the standard error of the linear 484 

regression slope. Red line shows the linear regression line, and two blue lines show 485 

the 90% confidence interval of linear regression slope based on bootstrap estimates, 486 

with 5% below the bottom line and 5% above the top line. The color of each point 487 

represents the latest urban fraction in 2009 for each station. 488 



 489 

Figure 3 (a) Correlation between the anomalies of monthly averaged daily maximum 490 

temperature (reference period: 1980-2009) linearly interpolated from ERA-Interim 491 

reanalysis and the differences of monthly averaged daily maximum temperature 492 

between observation and reanalysis (urban warming intensity) in the cities of Beijing 493 

(red squares), Shanghai (blue diamonds), and Guangzhou (green circles) for the years 494 

1980-2009; (b) Same as (a), but for daily minimum temperature. The detail regression 495 

coefficients are listed in Table S3. 496 


