
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural resistance of high-strength steel CHS members.

Citation for published version:
Pournara, AE, Karamanos, S, Mecozzi, E & Lucci, A 2016, 'Structural resistance of high-strength steel CHS
members.', Journal of Constructional Steel Research, vol. 128, pp. 152–165.
https://doi.org/10.1016/j.jcsr.2016.08.003

Digital Object Identifier (DOI):
10.1016/j.jcsr.2016.08.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Constructional Steel Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.jcsr.2016.08.003
https://doi.org/10.1016/j.jcsr.2016.08.003
https://www.research.ed.ac.uk/en/publications/3ee3dd5a-8b4a-4aac-a303-e6a8ba8fbae4


 

 

Pournara et al. – JCSR-D-16-00323   Page 1 of 29 

Structural resistance of high-strength steel CHS members 
Aglaia E. Pournara and Spyros A. Karamanos1 

University of Thessaly, Volos, Greece 

Elisabetta Mecozzi and Antonio Lucci  
Centro Sviluppo Materiali S.p.A., Rome, Italy 

ABSTRACT 

The structural resistance of high-strength steel seamless tubular beam-columns of circular cross-section 

subjected to axial compression and bending loading is investigated, using experimental testing and numerical 

finite element simulations. Experiments on short and slender seamless tubular specimens are conducted, and 

simulated with rigorous finite element models. Prior to experimental testing, initial imperfections and residual 

stresses are measured, and the measurements are taken into account in the numerical models as initial conditions. 

Α good comparison is achieved between numerical simulations and experimental results in terms of ultimate 

strength capacity. Using the finite element tools, parametric numerical analyses are conducted under combined 

axial-bending loading conditions. First, the influence of initial imperfections (wrinkling) on the structural 

behaviour of high-strength steel tubular members is examined, in terms of their cross-sectional strength. 

Subsequently, stability curves for axial compression, and thrust-bending interaction diagrams for the high-

strength steel tubular members are obtained. The cross-sectional strength, the stability curves and the interaction 

diagrams obtained numerically are compared with existing relevant provisions of European and American 

specifications (ΕΝ 1993, ΑΡΙ RP 2Α and AISC) for the design of beam-column tubular members. The 

comparison shows that the provisions of those specifications, originally developed for mild steel CHS members, 

result in reasonable, yet conservative, predictions for the structural resistance of high-strength steel seamless 

CHS members. It is also suggested that significant improvement of EN 1993 predictions can be achieved revising 

the classification of high-strength steel CHS sections. 

1. INTRODUCTION 

Tubular CHS members offer reliable and cost-effective structural design solutions because of their excellent 

structural and architectural properties. They are used as steel building columns or members of lattice structures 

(masts or towers). In those applications, tubular members are primarily subjected to axial and bending loading, 

which may result in failure due to structural instabilities i.e. global or local buckling. During the last two decades, 

high-strength steel CHS members have become commercially competitive and their use in steel construction 

industry is continuously growing due to the increasing demand for lightweight structural systems with high 

structural performance. In addition, the use of high-strength steel, with yield strength from 460 to 690 MPa, 

could provide cost efficient solutions in column and beam-column member design because of increased structural 

                                                      
1 Corresponding author; email: skara@mie.uth.gr     

mailto:skara@mie.uth.gr


 

 

Pournara et al. – JCSR-D-16-00323   Page 2 of 29 

strength, resulting in structures with high values of strength-to-weight ratio. One should notice that the stress-

strain material behavior of high-strength steel is considerably different from that of mild steel, exhibiting 

significant strain-hardening at lower strain levels, despite its lower overall material ductility. Previous studies οn 

the buckling behavior of high-strength steel structural members (mainly to Η, Ι and box sections) have been 

reported by Rasmussen and Hancock [1], Beg [2], Sivakumaran and Bing [3], Johansson and Collin [4], Shi et 

al. [5]. These works have indicated that those structural members of H, I or box section have a good structural 

performance and have also suggested that, as a conservative approach, the existing design rules for mild steel 

members (e.g. ΕΝ 1993-1-1) can be used for the design of high strength steel members.  

The existing research work on the ultimate capacity of CHS structural members refer almost exclusively to 

steel grades up to 460 MPa. Notable experiments on CHS tubulars subjected to bending have been reported in 

the ‘70s by Sherman [6] on 10-inch-diameter fabricated tubes with D t  ranging from 18 to 110, and Korol [7] 

on eleven tubular specimens with D t between 29 and 80. Chen and Ross [8] have performed axial compression 

tests on fabricated tubular members with D t  ratio between 48 and 70 and reported residual stress 

measurements. Prion and Birkemoe [9] performed tests on twenty two 450-mm-diameter tubular specimens 

subjected to combinations of axial compression and bending, whereas more recently, a series of bending tests on 

tubular members with D t  ranging from 36 to 120 have reported by Elchalakani et al. [10] towards examining 

existing slenderness limits for CHS sections.  The reader is referred to the review papers of Miller [11], Kulak 

[12] and Dorey et al. [13] for an overview and evaluation of numerous test data on tubular CHS members. 

Furthermore, a significant number of experiments have been performed to determine strength and deformation 

of steel tubes and pipes, motivated by offshore pipeline applications; bending tests on small-scale scale 

specimens have been reported by Reddy [14] and Kyriakides and Ju [15], whereas Gresnigt and Van Foeken 

[16] performed bending tests on four UOE and seamless 20-inch-diameter tubes. In addition to the above tests, 

analytical investigations on the ultimate capacity of tubular members have been reported by Toma and Chen 

[17], Sohal and Chen [18], Wagner et al. [19], using a simplified analytical methodologies whereas more rigorous 

results on beam-column behavior have been reported by Karamanos and Tassoulas [20], using a special-purpose 

numerical technique. 

In a series of publications, Zhao and co-workers [21] [22] investigated experimentally the ultimate capacity 

of CHS members made of very high-strength steel (yield stress equal to 1350 MPa), subjected to compression 

and bending. These test results indicated that the value of diameter-to-thickness ratio D t required so that the 

bending strength of these tubes reaches the yield bending moment and the plastic bending moment values is 

equal to 48.9 and 36.7 respectively. Furthermore, it was shown that those very high-strength steel tubes with  

D t  equal to 21 are capable of sustaining a bending curvature larger than four times the curvature at first yield 

yk . The above D t values are significantly higher than the ones predicted by the EN 1993-1-1 classification for 

CHS sections. Despite the fact that the work in [21] [22] refers to CHS members with yield stress equal to 1350 
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MPa (significantly higher than the steel grade range of interest), the above observations are a clear indication 

that EN 1993-1-1 provisions on classification penalize the strength of high-strength steel sections, by a 

substantial amount. 

In structural engineering practice, the design of CHS tubular beam-columns under axial compression and 

bending conditions is covered by the current provisions of EN 1993 standard. In particular, for CHS members 

of class 1, 2 and 3, the EN 1993-1-1 provisions in sections 6.2 and 6.3 should be used for strength calculations 

[23], whereas the designer should also employ the provisions of the EN 1993-1-6 standard [24] for calculating 

the cross-sectional strength of class 4 sections. These provisions in EN 1993 are applicable for steel grade up to 

460 MPa. It should be noted that the recent ΕΝ 1993-1-12 standard [25] for the use of high strength steel in 

structural applications does not impose any restriction on the use of EN1993-1-1 design rules for CHS beam-

columns made of high-strength steel (up to S700 steel grades). The AISC specification for hollow sections [26] 

contains rules for structural steel tube design. In addition, the ΑΡI RP2A specification [27], which refers to the 

design of fixed offshore steel platforms, is another source of design provisions for tubular CHS members 

(Chapter D). However, these American specifications do not cover the case of high-strength steel. Moreover, the 

CIDECT guidelines [28] for the stability of the tubular CHS members have adopted the provisions of European 

pre-standard ENV 1993-1-1, issued before the launch of EN 1993, and will not be considered in the present 

study. 

In this paper, experimental and numerical work is reported aimed at providing background on the structural 

behaviour and resistance of CHS high-strength steel beam-columns. In particular, it examines the buckling 

strength of seamless CHS tubulars made of T590 steel grade, subjected to combined axial and bending loading 

conditions. The study constitutes a joint research effort of Centro Sviluppo Materiali S.p.A. and the University 

of Thessaly, is a part of European RFCS project ATTEL [29], and it is aimed at developing structural design 

guidelines for high-strength steel CHS members and welded tubular connections within the ΕΝ 1993 framework. 

Cross-sectional strength, stability curves under axial compression of slender columns, and interaction diagrams 

for the combined action of thrust and bending loads are presented. Finally, a critical evaluation of slenderness 

limits for CHS member classification in EN 1993 is performed, and a comparison is conducted with the buckling 

provisions for CHS members from three major specifications in Europe and in the U.S. 

2. EXPERIMENTAL INVESTIGATION 

2.1 Tubular Specimens 

Full-scale experiments have been performed on ten 1.5-meter-long tubular specimens (“short” specimens) 

and eight 5-meter-long tubular specimens (“long” specimens) summarized in Table 1. The steel tubes are 

seamless, made of TS590 steel material (nominal yield stress equal to 590 MPa), produced by Tenaris Dalmine 

S.p.A. Two cross-sections have been chosen for the specimens; the nominal outer diameter nomD   and thickness 

t  of the first tubular section, denoted as “A”, are equal to 355.6 mm (14 inches) and 12.5 mm, respectively, while 
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for the second cross-section, denoted as “B”, the outer diameter is equal to 323.9 mm (12.75 inches) and the 

thickness equal to 10 mm. 

 

2.2 Material Properties 

Uniaxial tension tests on coupon strip specimens have been conducted to obtain the real properties of the 

steel material. The material stress-strain curve is shown in Figure 1, indicating that the values of yield stress yσ   

and ultimate stress uσ  are equal to 723MPa and 802MPa, respectively, significantly higher than the nominal 

values. Following a small initial “plastic plateau” (a region with very small hardening modulus), significant 

strain hardening of the material starts at 0.5% engineering strain, reaching an ultimate stress of 802MPa at 7% 

strain, indicating a rather low ductility, which is typical for high-strength steel, compared with mild steel 

ductility. 

  
Figure 1. Material stress-strain curve of TS590 high-strength steel tubular specimens. 

 

2.3 Imperfection and residual stresses measurements 

Measurements on thickness variation and initial wrinkling of tube wall have been obtained from the tubular 

specimens prior to testing. This information is used in the finite element simulations, described in detail in a later 

section of the present paper. In addition to those geometric measurements, residual stress measurements have 

been obtained.  

Thickness variation is measured at eight equally-spaced points around several cross-sections along the 

specimen using an ultrasonic device. The mean thickness values are summarized in Table 1 for each specimen. 

In Table 1, labels AS and BS refer to short tubular specimens of cross-section "A" and "B" respectively, while 

the AL and BL labels, refer to long specimens with "A" and "B" cross-sections. In AS specimens, thickness 

values range from 12.1 mm to 13.83 mm, while for BS specimens the thickness varies between 9.80 mm and 
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11.59 mm. Similarly, the actual thickness values of specimens ΑL range from 12.08 mm to 13.97 mm, while the 

thickness of ΒL specimens varies between 10.08 mm and 11.83 mm [30]. 

Initial wrinkling measurements have been obtained before experimental testing using special-purpose 

equipment, shown in Figure 2a. The equipment consisted of a stiff aluminium reference frame, capable of 

rotating around the reference axis of the column, and is equipped with a sliding guide supporting an LVDT, 

always in contact with the outer surface profile of the cylindrical member. Each tubular member has been placed 

on the measuring device, as shown in Figure 2a, and initial wrinkling of the tube wall has been measured at 

several points along eight equally-spaced generators of the cylinder. The maximum value of wrinkling amplitude 

is measured equal to 3.62% of tube thickness, as described in detail by Pappa et al. [30], which is a rather small 

value but quite reasonable for seamless tubes. 

Residual stresses have also been measured, in the axial and hoop direction. In the hoop direction, the 

"splitting ring" method has been used according to ASTM E1928-99. Two (2) rings of 18-mm-width each have 

been extracted from tube specimen of section A, and split as shown in Figure 2b. This resulted in an opening 

ring size (gap) g  equal to 17.7 mm, corresponding to a maximum/minimum hoop stress equal to ±122 MPa 

(about 17% of the actual yield stress) calculated as follows: 

( )
1 0

2
0 12 1

R Rt ES
R Rv

 −
= ±  

−  
     (1) 

where E  is Young’s modulus, t   is tube thickness, ν  is Poisson's ratio and 0 1,R R  are the mean outside radii 

before and after splitting respectively, which can be readily expressed in terms of gap g . The residual stresses 

in the axial direction have been measured from the curvature of longitudinal strips extracted from the tubular 

specimens. Using elementary beam-bending theory, this resulted in the calculation of a maximum longitudinal 

stress equal to 26 MPa, which is only 4% of the yield stress of the tube material [30]. Therefore, the longitudinal 

residual stresses can be disregarded in the finite element simulation. 

  

2.4 Experimental set-up  

The specimens are subjected to axial and bending loading, with the use of the testing rig shown in Figure 3 

located at CSM Full Scale facilities. This testing device can accommodate tubular specimens of length up to 5 

meters, with diameter sizes from 8 to 20 inches. The main actuator can apply a maximum axial force of 25 MN 

in tension and 30 MN in compression. Furthermore, bending can be applied using the two hydraulic cylinders 

located on each side of the specimen, with a maximum bending capacity of 3 MNm. 
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Table 1. Mechanical properties and loading pattern of tubular specimens 
 

Specimens ID nomD  (mm) meant  (mm)  L  (mm) Type of Loading 

Short  

AS1 355.6 12.49 1490 Axial  

AS-13 355.6 12.50 1850 Axial 13%→  Bending 

AS-25 355.6 12.64 1850 Axial 25% →  Bending 

AS-50 355.6 12.79 1850 Axial 50% →  Bending 

AS-75 355.6 12.62 1850 Axial 75% →  Bending 

BS1 323.9 10.26 1490 Axial  

BS-13 323.9 10.00 1850 Axial 13% →  Bending 

BS-25 323.9 10.86 1850 Axial 25% →  Bending 

BS-50 323.9 10.86 1850 Axial 50% →  Bending 
BS-75 323.9 10.79 1850 Axial 75% →  Bending 

Long  

ΑL1 355.6 12.74 4490 Axial  

AL-25 355.6 12.78 4850 Axial 25% →  Bending 

AL-50 355.6 12.97 4850 Axial 50% →  Bending 
AL-75 355.6 12.84 4850 Axial 75%→  Bending 

BL1 323.9 10.88 4490 Axial  

AL-25 323.9 10.84 4850 Axial 25% →  Bending 

AL-50 323.9 10.82 4850 Axial 50% →  Bending 
AL-75 323.9 10.80 4850 Axial 75% →  Bending 

(a)  (b) 

Figure 2. (a) Device for measuring initial wrinkling of tube wall; (b) Ring specimen extracted from ∅355.6/12 
tube after splitting. 

 

The tubular members have been capped with 40-mm-thick circular plates welded to the member ends. Each 

plate is bolted to a “stiff part”, which connect the specimen ends to the hinges of the testing device, as shown in 

Figure 3. The stiff parts (C1D1 and C2D2) have a length SL  equal to 2.22 m and 1.72 m for the short and long 

tubular specimens respectively, and remain practically undeformed during the test. Eighteen Μ30 12.9 bolts are 

used in the connection of the flange to the stiff part, as shown in Figure 4. The hinges allow rotation about the 

vertical axis (i.e. rotation on the horizontal plane), but restrict the rotations with respect to the other two axes 

g
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(out-of-plane rotations). Under this set-up, the specimen (together with the 2 stiff parts) can be considered as 

simply-supported in the horizontal plane. In order tο stiffen the tube-to-flange connection and avoid local 

buckling at the two ends of the tubular member, 20-mm-thick stiffeners have been welded around the 

circumference of the tube Figure 4. 

 

2.5 Experimental Results for Tubular Beam- Columns 

2.5.1 Axial Compression Experiments 

Four axial tests are conducted under pure axial compression on short (1490mm) and long (4490 mm) tubular 

specimens. The compressive load is applied through the actuator at a constant displacement rate of 1.7mm/min. 

Twelve strain gauges have been instrumented on circumferential positions through 3 different cross sections, 

and four LVDTs are used along the axial direction around the circumference of the specimens. The specimen 

surface has been grid marked as shown in Figure 4 with a 50mm-wide square grid. The test results are depicted 

in Table 2, in terms of the maximum load maxN  sustained by the each specimen. 

The buckled geometry of the short specimen AS1 under axial compression is presented in Figure 5a. Local 

buckling occurred in the form of bulges located near the end section due to stiff end effects. The non-

axisymmetric shape of the buckled pattern is attributed to the eccentricity of the tubular specimens end with 

respect to the line of axial load application. Failure of the long tube specimen ΑL1, shown in Figure 5b, is due 

to global buckling (beam buckling). Further increase of axial compression resulted in localized damage at the 

mid-span in the form of an inward local buckle. 
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Figure 3. Experimental set-up for large scale testing: (a) three-dimensional sketch and (b) plan view. 

(a) (b) 

Figure 4. Short column BS-25: (a) in the testing machine before testing and (b) buckled shape after testing. 
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(a) 
 

(b) 
        
Figure 5. Axial compression tests: (a) short specimen ASl with local buckling near its end (top); (b) and (c) long 
specimen AL1 with global buckling (bottom left) followed by local buckling (bottom right). 
 

Table 2. Experimental results from axial compression tests. 

Specimen ID Νmax (kN) Νmax/Νy δΝmax(mm) δΝmax/L 

Short 
Column 

AS1 10254 1.289 10.4 0.00697 

BS1 7961 1.368 8.79 0.00589 

Long 
Column 

ΑL1 10857 1.365 18.7 0.00390 

ΒL1 7812 1.342 17.0 0.00361 
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The load-displacement curves for the compression tests are presented in Figure 6. In those curves, the 

reported displacement is the curve that uses the average of the four LVDT curves. The axial load is normalized 

by the plastic (yield) axial load yN , computed with the nominal yield stress of the steel material ( yσ =  590 

MPa) and the nominal geometric properties of the cross-section ( y yN Aσ= ). The values of the max yN N ratio 

are significantly higher than unity, mainly because of the actual value of yield stress, which is significantly 

higher than the nominal yield stress value. 

The experimental results are shown in Table 2 in terms of the maximum load and the corresponding 

displacement and in Figure 6 in terms of the load-displacement curve. The results show that, for the specific 

cross-section, the maximum compressive axial load appears to be similar for short and long columns. On the 

other hand, the normalized deformation capacity is significantly lower in the case of long beam-columns 

compared with the case of short members.  

 

      (a)         (b) 

Figure 6. Load-displacement curves for the axial compression tests of (a) short and (b) long specimens. 

2.5.2 Combined Loading Experiments 

Fourteen full scale tests have been performed on short (1850mm) and long (4850 mm) simply-supported 

tubular specimens of section “A” and “B”, under combined loading of axial compression and bending. Α “axial 

load →  bending” or  “N →  M ” loading sequence has been employed as follows (see also Table 1); the axial 

load is increased up to a specific value, which is a percentage (namely 13, 25, 50 and 75%) of the cross-sectional 

plastic load yN , calculated with the nominal material yield stress (590 MPa). Subsequently, the axial load is 

held fixed, and the bending is gradually applied until failure occurs, through end rotation-controlled conditions. 

Four strain gauges have been installed at four circumferential positions around the mid span section. Moreover, 

two LVDTs have been instrumented to record axial deformation and two LVDTs are used to record the 

transversal displacement of the specimen. Hinge rotation is also recorded during bending application. The 

experimental results of the combined axial-bending loading tests for the short specimens are shown in Table 3, 
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and the buckled shape of a short specimen is shown in Figure 7. A typical buckled shape for short specimens, 

denoted as “BS”, and the corresponding moment-rotation curves are presented in Figure 8. The results in those 

Figures show that an inward local buckle is developed during the application of bending, at mid-span location 

of the specimen. It is noted that bending values have been normalized with the value of the yield moment 

y y elM Wσ= , where elW  is the elastic bending resistance of the cross-section and σy is taken equal to 590 MPa. 

In Table 3 the values of axial force are also normalized with the plastic load of the cross section *
yN , calculated 

with the actual material yield stress (723 MPa), obtained from the coupon material tests. 

The experimental results of the combined loading tests for the long specimens are shown in Table 4 and the 

moment-rotation curves of the “AL” specimens are depicted in Figure 9. The buckled shape of specimen BL-50 

is shown in Figure 10, and similar buckled patterns have been observed in all long specimens; a smooth inward 

wrinkle is developed at mid-span after reaching the maximum bending moment, resulting in localization of 

deformation and excessive lateral displacement. 

Similar to previous results on short beam-columns, the bending moment capacity in those long beam-

columns is significantly decreased with increasing axial compression loading. Moreover, section Α specimens 

have higher bending capacity than section Β specimens (in both short and long members) due to their larger 

cross sectional size. 

 
Table 3. Short beam-columns: results from combined loading tests.  

specimen N  
(kN) yN N    

 
*
yN N  

maxM   
(kNm) 

max yM M  
end 

rotation 
(degrees) 

 AS-13 1340 0.169 0.143 891 1.305 2.6 

 AS-25 2500 0.315 0.267 732 1.072 1.9 

 AS-50 5000 0.629 0.534 377 0.552 1.1 

 AS-75 7600 0.956 0.812 102 0.149 0.4 

 BS-13 1000 0.172 0.140 575 1.258 2. 4 

 BS-25 1865 0.320 0.262 492 1.076 1.8 

 BS-50 3980 0.684 0.558 209 0.457 1.0 

 BS-75 5922 1.018 0.831 76 0.166 0.5 

 

 (a)  (b)  

Figure 7. Buckled specimens under combined loading tests; specimen (a) BS-13 and (b) BS-75. 
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Figure 8. Combined loading tests; moment- rotation curves for short columns “AS”. 

 

Table 4. Long beam-columns: results from combined loading tests. 

specimen N  
(kN) yN N    

 
*
yN N  

maxM   
(kNm) 

max yM M  
end 

rotation 
(degrees) 

ΑL-25 1530 0.192 0.163 670 0.981 4.4 

ΑL-50 2590 0.326 0.277 441 0.646 3.3 

ΑL-75 4588 0.577 0.490 150 0.220 1.7 

ΒL-25 1000 0.172 0.140 450 0.984 4.2 

ΒL-50 2020 0.347 0.283 232 0.507 3.0 

ΒL-75 3298 0.566 0.463 79 0.173 1.5 

 
Figure 9. Combined loading tests on long columns; moment-rotation curves. 
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Figure 10. Beam-column BL-50 after testing 

3. NUMERICAL SIMULATION OF TESTS 

The tests described in the previous section are simulated with finite element models. The comparison of 

numerical and experimental results is aimed at calibrating the finite element models, to be used in extensive 

parametric studies, to be presented in a later section of the paper.  

The finite element models are developed in ABAQUS/Standard, and are capable of describing large 

displacements and local buckling of the tubular members, as well as plastic deformations of the steel material 

through a J2 (von Mises) flow constitutive model. The tube is simulated with four-node reduced-integration shell 

elements (S4R). The tubes have been modelled with uniform thickness equal to 12.49 mm and 10.26 mm, which 

are the measured average values for sections A and B respectively. 

Initial geometric imperfections in the numerical model are considered in the form of initial wrinkles along 

the tubular member. Towards this purpose, an eigenvalue analysis of the tubular member is conducted under 

pure bending loading conditions, and the corresponding first buckling mode is scaled through an appropriate 

factor that multiplies the mode displacements to achieve a targeted value of initial wrinkling imperfection 

amplitude. The values of this amplitude have been considered quite small, equal to 2.6% of tube wall thickness, 

which is a representative value from the relevant wrinkling measurements as reported in the previous section of 

the present paper, also reported in [30]. The scaled buckling shape is superimposed to the initial perfect geometry 

of the tube, so that the initial nodal coordinates represent the initially wrinkled pattern of the tubular member. 

Furthermore, residual (initial) stresses in hoop direction have been considered as initial stresses of the model in 

the form of a linear distribution through the tube thickness with a maximum value of 122 MPa, according to 

measurements [30]. Residual stresses in the longitudinal direction have been measured quite small and are 

neglected in the numerical model. 
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The stiff parts, which connect the tubular specimen ends to the machine hinges, are simulated as rigid 

members using beam elements of very large bending and axial stiffness. The shape of the buckle may not always 

be symmetric with respect to both the middle-section and the plane of bending, therefore, the entire tube is 

simulated, without any symmetry considerations. 

In the case of combined axial/bending conditions, the analysis follows a loading sequence in accordance 

with the experimental procedure; axial compressive load is applied first up to a prescribed level and, 

subsequently, keeping the axial load constant, bending is applied gradually using a Riks algorithm. Soon after 

the maximum bending moment is reached, local buckling initiates, and continuation of bending in the post-

buckling range results in the development of a sharp local buckle (kink). Comparison of the buckled shapes 

obtained numerically with the buckled shapes observed in the experiments is also conducted. 

For consistency with the experimental set-up shown in Figure 3, in the numerical models, the end sections 

of the tubular models (sections C1 and C2) are connected to the stiff tubular segments through a “kinematic 

coupling” constraint, which relates the degrees of freedom of the shell nodes at the end section with the degrees 

of freedom of a fictitious node, referred to as the “reference node”. The latter node is located at the centroid of 

the end section. This kinematic "constraint" simulates the bolted connection of each specimen end with the 

corresponding stiff end part. The entire specimen model is considered simply-supported at both ends of the rigid 

segments D1 and D2. The model configuration is shown in Figure 11.  

For the case of axial compression, the numerical and experimental results are compared in Figure 12, in 

terms of load-displacement curves for the short specimen “AS1”. This specimen exhibited a bulging buckle near 

the end section of the tubular specimen. On the other hand, the buckling failure of AL1 model is shown in Figure 

13, which correlates well with the shape depicted in Figure 10. 

 
Figure 11. Schematic configuration of the test set-up (sketch is for short specimens, similar set-up is used for 

long specimens). 
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For the case of combined loading, the finite element predictions are compared with the experimental data in 

terms of the thrust-bending interaction curves in Figure 14. The comparison shows that the numerical models 

provide very good predictions of the ultimate capacity of the steel tubular beam-columns under consideration. 

Furthermore, the buckled shapes of the specimens obtained numerically as shown in Figure 15 compare very 

well with the corresponding buckled shapes observed in the combined loading tests (Figure 7a, Figure 7b and 

Figure 10). 

    
Figure 12. Load-displacement curve for AS1 specimen in comparison with FE analysis results. 

 

Figure 13. Detail of local buckle axial compression for AL1 specimen simulation. 

 
(a)       (b) 

Figure 14. Comparison of test results (EXP) and finite element predictions (FEA); (a) short specimens AS and 
BS and (b) long specimens AL and BL. 
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 (a) (b) 

 (c) 

Figure 15. Buckled shapes for (a) AS-75, (b) BS-75 and (c) BL-75 obtained from the numerical models. 

4. NUMERICAL PARAMETRIC STUDY 

Apart from the simulation of the experimental procedure, finite element simulations have also been 

performed to examine the cross-sectional capacity of high strength steel tubular members, as well as to obtain 

appropriate buckling curves and interaction diagrams of axial compression and bending. In the present 

parametric study, two types of cross-sections have been considered, denoted as “AA” and “AB”, as presented 

in Table 5. The length L  of the tubular member has been considered between 1 m and 14 m, covering a wide 

range of slenderness values. The tubular members are assumed simply-supported at the two ends. Despite the 

fact that length values equal to 14 m for those tubes may not be very realistic for typical structural applications, 

they have been considered in the present analysis for the sake of tracing the buckling curves for global buckling 

within the elastic buckling range. The material stress-strain curve used in the parametric analysis is considered 

as bilinear with yield stress equal to 590 MPa. The post-yield hardening modulus is equal to 500E , which is 

very close to the hardening modulus observed in the coupon tests of the high strength steel material. The 

numerical results, obtained in the present parametric study, are compared with the design provisions of European 

specification EN 1993, as well as those of American Standards AISC-LRFD and API 2A-LRFD. 

Table 5. Geometric and mechanical properties of tubular sections used in the parametric study. 

Section Outer Diameter 
D  (mm) 

Thickness 
t  (mm) 0 /D t  yσ (MPa) Class* 

AA 355.6 8 44.5 590 4 

AB 355.6 12.5 28.5 590 3 

*According to EN-1993-1-1 classification. 
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According to EN 1993-1-1, cross section AA is classified as class 4 and therefore, to obtain the 

corresponding cross-sectional strength considering local buckling phenomena, xRkσ , the provisions of EN 1993-

1-6 have been used. In this case, the value of xRkσ  replaces the yield stress yσ  in the design equations in sections 

6.2 and 6.3 of EN 1993. Furthermore, because of the very small values of initial wrinkles measured prior to 

testing (less than 2.6% as described in paragraph 2.3), excellent fabrication conditions have been assumed, so 

that the quality factor Q   defined in Annex D (Table D1) of EN1993-1-6 is taken equal to 40. 

4.1 Cross-sectional behavior and initial wrinkling sensitivity 

The first part of the parametric study is aimed at examining the axial and bending strength of tubular cross-

sections, in an attempt to evaluate the current EN1993-1-1 provisions for cross-section classification of high-

strength steel CHS members. The failure mode that governs cross-sectional strength is local buckling of tube 

wall in the form of wrinkles, due to excessive compression, a shell-type mode. Herein, local buckling under both 

axial and bending loads is examined, computing the ultimate load of the cylinder under consideration in terms 

of wrinkling imperfection. 

To perform those analyses, an eigen-value analysis of a perfect elastic tubular member under bending is 

conducted first, to obtain the corresponding buckling mode for the initial imperfection shape, as described in 

section 3. This buckling mode is characterized by non–axisymmetric wrinkles along the compression side of the 

tube with increasing amplitude from the capped ends to mid-span. The corresponding initial wrinkling pattern 

of the finite element model is shown in Figure 16. Finer mesh is employed in the mid-span of the tubular member 

in order to describe accurately the deformation of the critical region of the buckle (Figure 16), whereas coarser 

mesh is used in the regions of the tubular member away from the mid-span. The element size in the longitudinal 

direction within this 500-mm-long central region is equal to 1/10 of the half-wave length of the wrinkle. Upon 

definition of the imperfect initial geometry of the cylinder, non- linear finite element analysis is conducted to 

calculate its structural behavior and the buckling strength of the tubular member under axial and bending loading. 

 

Figure 16. The detailed geometry of a wrinkled model with 0w t = 0.15. 
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4.1.1 Axial Compression 

Initially wrinkled tubular members ∅355.6/8 (AA section) and ∅355.6/12.5 (AB section) are considered 

with various wrinkling amplitudes, subjected to axial compressive loading. The tubular members employed are 

quite short (2000 mm) to exclude any effects of global (Euler-type) buckling. The corresponding axial load- 

displacement curves are presented in Figure 17, where the load values are normalized by the plastic axial force 

value  yN  calculated equal to 5154 kN and 7949 kN for AA and AB sections, respectively, considering a yield 

stress of 590 MPa. The buckling strength of tubes AA and AB is shown with respect to wrinkling amplitude in 

Figure 18, whereas, the failure mode of AA tubular members for wrinkling amplitude equal to 6% is shown in 

Figure 19. The results show that those members are capable of reaching the plastic thrust level yN for wrinkling 

amplitude equal to 20% of wall thickness. 

 
(a)       (b) 

Figure 17. Load vs displacement curves for (a) AA and (b) AB; 2m-long tubular members with various wrinkling 
amplitudes ( 0w t ) under axial compression. 

 
Figure 18. Normalized axial compression capacity in terms of wrinkling amplitude ( 0w t ) for AA and AB 
sections. 
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Figure 19. Failure mode for AA member under axial compression; initial wrinkling imperfection amplitude 

0w t =  6%. 

4.1.2. Bending  

Initially-wrinkled short-length tubular members with cross-sections ∅355.6/8 (section AA) and ∅355.6/12 

(section AB) are subjected to bending loading. The corresponding moment-curvature diagrams are presented in 

Figure 20 for various wrinkling amplitudes. In these diagrams the moment values have been normalized by the 

value of the yield moment yM . The value of yM is equal to 448.14 kNm and 662.76 kNm for AA and AB cross-

sections, respectively, considering the yield stress value of 590 MPa. The global curvature k  obtained from the 

finite element analysis is calculated as k Lϕ= , where ϕ  is the total relative rotation of the two end sections 

and L  is the distance between the two end sections. The value of k   has been normalized with the nominal value 

of yield curvature ( yk ), calculated as y yk = M EI , where EI  is the bending rigidity of the tubular cross-section. 

The value of yk  is equal to 1.69×10-5 mm-1 and 1.719×10-5 mm-1 for AA and AB cross-sections, respectively. 

The maximum bending strength maxM  and the corresponding global curvature of the tubes, denoted as maxk ,  

has been plotted in terms of wrinkling amplitude in Figure 21 and Figure 22, respectively and the failure modes 

of the tubular models are shown in Figure 23 and Figure 24 for various wrinkling amplitudes. 

 

(a)      (b) 

Figure 20. Moment - curvature diagrams for (a) AA and (b) AB sections under pure bending loading for 
wrinkling amplitudes ( 0w t ) between 1% and 20%. 
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Figure 21. Normalized maximum bending moment in terms of normalized wrinkling amplitude curves for AA 
and AB sections. 

 

Figure 22. Maximum curvature vs normalized wrinkling amplitude curves for AA and AB tubular models. 
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significantly higher than the bending moment yM  for the range of initial wrinkling amplitudes under 

consideration. For values of normalized initial imperfection ( 0w t ) less than 8%, the maximum bending 
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corresponding curvature is higher than twice the value of yk for 0w t  greater than 10%. These results indicate 

that the current EN 1993-1-1 classification is quite conservative, penalizing severely the tubular cross-section 

capacity and resulting in a non-economical design.  

 

Figure 23. Typical failure of short AA column with imperfection 0w t = 1% under bending moment. 

 

(a)      (b) 

Figure 24. Failure mode of AB tubular members under pure bending with wrinkling amplitude 0w t  equal to 
(a) 4% and (b) 15%. 

4.2 Beam-column stability curves 

In most design specifications, the global buckling resistance ( uN ) of structural members under axial 

compressive loading is given in terms of their column flexural slenderness can be expressed as follows: 

   u yN A= χσ        (2) 

where χ  is the buckling reduction factor, a function of the column flexural slenderness cλ , and y yA Nσ =  is 

the cross sectional plastic resistance of the member.  

Using the present numerical tools, the buckling strength under axial compressive load of tubular members 

with the sections AA and AB and the corresponding reduction factor χ  is calculated, in terms of their 

slenderness and comparisons are made with the provisions of various design specifications. Measured values of 
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initial imperfections and residual stresses as described in paragraph 2.3 are taken into account. The wrinkling 

amplitude is considered equal to 2.6% of the tube thickness, and the residual stresses have a maximum value of 

±122 MPa, linearly distributed over the tube thickness. Finally, despite the fact that initial measurements on the 

tubular specimens showed that their initial out-of-straightness is negligible, a bow-type initial out-of-straightness 

with amplitude equal to 750L  is assumed, which corresponds to the maximum allowed value according to 

EN 1090-2 [31]. 

The ultimate buckling load uN  obtained numerically for the two cross sections under consideration, namely 

AA and AB, for several tube lengths corresponding to wide range of flexural slenderness cλ  is depicted in Figure 

25 and Figure 26 in the form of stability curves. The buckling load is normalized by the normal plastic load

y yN  Aσ= . The stability curves are compared with the provisions of EN 1993, API RP-2A and AISC-LRFD.  

 

  
Figure 25. Stability curve for section AA from finite element analysis, compared with EN 1993 and American 

standards. 
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Figure 26. Stability curve for section AB from finite element analysis, compared with EN 1993 and American 

standards. 

The numerical results in Figure 25, indicate that EN 1993 predictions are conservative for section AA. The 

results are well correlated with the stability curve proposed by API standard, while the AISC provisions provide 

conservative predictions by over 20% for all slenderness values. The stability curves of section AB, compare 

reasonably well with the EN 1993 and API predictions. For large values of column slenderness ( 1cλ ≥ ) EN 

1993 underestimates the buckling strength by approximately 10%. On the other hand, for intermediate values of 

slenderness, the AISC standard underestimates the axial buckling strength by about 10%. Buckled shapes due to 

axial compression for short and long members with section AA are depicted in Figure 27.  

 

(a) (b) 

Figure 27. (a) Buckled shape of 1-meter-long (stub) tube of section AA under axial compression ( cλ =0.13), 
exhibiting shell-type buckling instability; (b) Buckled shape of 5-meters-long tube of section AA under axial 
compression ( cλ =0.69), exhibiting a combination of Euler-type and shell-type buckling instability. 
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In non-slender members ( 0.1 0.3cλ≤ ≤ ), local buckling governs the response. Upon initial wrinkling, 

plastic deformation is accumulated at one wrinkle of the tube wall leading to the development of local buckling. 

For moderate and large values of flexural slenderness, the tubular member exhibits global (flexural) buckling, 

and deflects laterally by a substantial amount. Subsequently, following this global deflection, local buckling of 

the tube wall occurs at mid-span. 

4.3 Thrust-bending interaction diagrams 

Figure 28 and Figure 29 present interaction diagrams for the combined action of axial and bending ( N M→   

loading sequence), for 5m-long and 8m-long members with sections AA and AB, subjected to combined loading. 

The corresponding values of slenderness are 0.769 and 1.230 for section AA members and 0.759 and 1.215 for 

section AB members. These diagrams show the significant reduction of bending moment resistance of the 

member uM  with increasing level of axial compressive force. The reported values of moment correspond to the 

moment applied at the two ends of the tubular beam-column. Clearly, the maximum bending moment occurs at 

mid-span of the tube, due to the second order P δ−  effect. Similar geometrical and material properties are 

employed with the previous analysis (Sections 4.1 and 4.2) for tubes with AA and AB sections. Initial wrinkling 

imperfections, out-of-straightness and residual stresses, are assumed similar to the ones employed in the previous 

section for column stability analysis (Section 4.2).  

The axial force-moment interaction diagrams ( ,u uN M ) obtained numerically are compared with the curves 

proposed by design specifications as shown in Figure 28 and Figure 29. The axial load and bending moment 

values are normalized by the values of plastic (yield) thrust y yN = Ασ  and the yield moment yM  of the cross-

section. EN 1993 provisions are employed with the beam-column Method 1, described in the relevant Annex A 

of EN 1993-1-1. Those provisions underestimate the bending capacity of the tubular member by approximately 

35% for both AA and AB sections. This conservativeness is attributed to the fact that the CHS members under 

consideration are classified as class 4 and 3, respectively. However, the test results presented in section 2, as 

well as the present numerical results, indicate that these sections can sustain significant inelastic deformation 

before reaching their bending moment resistance. The numerical results also show that the AISC provisions 

penalize the bending strength by over 15%, whereas API RP 2A underestimates the maximum bending moment 

by approximately 18%. Finally, representative buckled shapes obtained from the finite element models AA and 

AB are shown in Figure 30. 

The comparison between numerical results and specification provisions indicates that the design standards 

under consideration are rather conservative in predicting the beam-column behavior of CHS members made of 

high-strength steel. The conservativeness of EN 1993 predictions are mainly due to the “penalizing” 

classification of CHS cross sections in EN 1993-1-1 demonstrated in section 4.1, a conclusion also reported in 

[30]. It is the authors’ opinion that re-examination of cross-sectional classification for high-strength steel tubes, 

would result in a more reliable design of tubular members. 
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 (a)  

(b)  

Figure 28. Thrust-bending interaction diagrams for beam-columns with AA section, compared with relevant 

design standard provisions ( N M→   loading sequence). 
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(a)  

 
(b)  

Figure 29. Thrust-bending interaction diagrams for beam-columns with AB section, compared with relevant 

design standard provisions ( N M→   loading sequence). 

(a) (b) 

Figure 30. Buckled shapes of (a) 5m-long tube with section AB and (b) 8m-long model with section AA under 
combined compression and bending. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

A combined experimental and numerical investigation has been described in this paper, for determining the 

ultimate strength of CHS seamless members made of high-strength steel with nominal grade 590. Eighteen full-

scale tests have been performed, on short and slender seamless tubular specimens of high-strength steel. Using 

advanced numerical tools the behavior CHS beam-column has been simulated, and compared with current design 

practice. The numerical models have been successfully predicted the behavior of pipe specimens under axial and 

bending loading, in comparison with experimental results. Furthermore an extensive numerical parametric study 

has been performed on tubular members in order to investigate the effect of wrinkling imperfection on the 

structural capacity of tubular members. It has been shown that wrinkling imperfection affects the limit bending 

and axial load values before buckling formation. Moreover stability curves and interaction diagrams have been 

obtained and compared with the current provisions. It has been concluded that stability curves proposed by EN 

1993, API RP 2A, provide reasonable yet conservative predictions for design. On the other hand, AISC 

provisions for CHS beam-columns appear to be somewhat closer to the numerical results. The EN 1993 

provisions penalize the buckling capacity of high-strength steel CHS members of relatively small thickness, 

mainly because their classification as class 4. This implies that the current EN 1993 classification should be re-

examined for high-strength steel CHS sections. Because of this conservative classification, the thrust-bending 

interaction curves for high-strength steel CHS members obtained by the finite element analyses have indicated 

significantly higher ultimate capacity with respect to the predictions of the design rules of the above 

specifications, especially the ones from the EN 1993 provisions.  
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