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There have been several global epidemics of chronic kidney disease of unknown etiology (CKDu). Some,

such as Itai-Itai disease in Japan and Balkan endemic nephropathy, have been explained, whereas the

etiology of others remains unclear. In countries such as Sri Lanka, El Salvador, Nicaragua, and India, CKDu

is a major public health problem and causes significant morbidity and mortality. Despite their

geographical separation, however, there are striking similarities between these endemic nephropathies.

Young male agricultural workers who perform strenuous labor in extreme conditions are the worst

affected. Patients remain asymptomatic until end-stage renal failure. Biomarkers of tubular injury are

raised, and kidney biopsy shows chronic interstitial nephritis with associated tubular atrophy. In many of

these places access to dialysis and transplantation is limited, leaving few treatment options. In this review

we briefly describe the major historic endemic nephropathies. We then summarize the epidemiology,

clinical features, histology and clinical course of CKDu in Mesoamerica, Sri Lanka, India, Egypt, and

Tunisia. We draw comparisons between the proposed etiologies and supporting research. Recognition of

the similarities may reinforce the international drive to establish causality and to effect prevention.

Kidney Int Rep (2016) -, -–-; http://dx.doi.org/10.1016/j.ekir.2016.11.003
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C
hronic kidney disease (CKD) is common, and is a
significant cause of morbidity and mortality glob-

ally.1 Low- and middle-income countries have seen an
alarming rise in CKD over the past 20 years.2 Indeed, the
prevalence in these countries has now overtaken that in
many high-income countries. Furthermore, patients in
these countries present with more severe CKD and at a
younger age.2 Although these trends can largely be
attributed to traditional risk factors such as diabetes and
hypertension,3 a considerable proportion of CKD re-
mains unexplained.1 This has been termed CKD of un-
known etiology (CKDu). In general, CKDu is a diagnosis
of exclusion, made when a patient fulfils the Kidney
Disease Improving Global Outcomes (KDIGO) CKD
criteria but without evidence of a recognized cause such
as diabetes, hypertension, or glomerulonephritis.4 It
should be noted that many population prevalence
studies sample patients only at 1 time point, and there-
fore do not prove chronicity (as outlined in the KDIGO
guidelines), which may lead to inaccurate prevalence
rates.
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There have been several global epidemics of unex-
plained kidney disease—Balkan endemic nephropathy
(BEN), Itai-Itai disease in Japan, Mesoamerican ne-
phropathy (MeN), and Sri Lankan CKDu (Table 1,
Figure 1). Further epidemics are present in India,
Egypt, and Tunisia, where robust research is currently
lacking. Etiology has been established for Itai-Itai dis-
ease and BEN, with the help of international research
collaboration. Unfortunately, despite ongoing collabo-
ration, the etiology of CKDu elsewhere remains un-
known.5 Furthermore, in many of these places, access
to dialysis and transplantation is limited, magnifying
the societal and economic burden of CKD and end-stage
renal failure (ESRF).1 Recognizing the enormity of the
problem, the World Health Organization (WHO) and
the US Centers for Disease Control and Prevention
(CDC) have taken an active interest in CKDu.6 In this
review, we shall briefly summarize Itai-Itai disease and
BEN, 2 forms of endemic nephropathy the etiologies of
which were clarified in 1968 and 1993, respectively,
following decades of research. Thereafter, we shall
focus on endemic CKD that remains unexplained.

Itai-Itai Disease

From 1910 to the 1960s, wastewater from a mine near
the Jinzu river basin in Toyama, Japan, polluted water
and rice paddies with heavy metals, including
1
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Table 1. Comparison of current and previously unexplained endemic chronic kidney disease (chronic kidney disease of unknown etiology
[CKDu])

Itai-Itai BEN MeN SL CKDu
Indian
CKDu

Date first described 1912 1956 2002 Early 1990s 2010

Endemic areas Jinzu river basin,
Toyama, Japan

Danube region: Serbia,
Bulgaria
Croatia
Romania
Bosnia

Nicaragua
El Salvador
Costa Rica
Low-altitude

Agricultural areas

“Dry Zone” of Sri Lanka
First noticed in NCP

Low altitude
Agricultural areas

Geographical foci of disease
Low socio-economic status

Uddanam coastal region,
Andhra Pradesh

Agricultural areas
Foci of disease Low socio-

economic status

Etiology confirmed? Yes: 1968
Cd exposure

Yes: 1993
Aristolochia sp.

Unexplained Unexplained Unexplained

Characteristic clinical
features

Postmenopausal women
Bone pain, waddling gait

Presents: 5th-6th decade
M:F ¼ 1:1

Tubular proteinuria
Impaired concentrating

capacity
Tubular acidosis

Presents: 4th-5th decade
M:F ¼ 5:1

Asymptomatic until ESRF
Recurrent “Chistata”: dysuria,

frequency, sterile urine

Presents: 4th-5th decade
M:F ¼ 1:1.3

Severe disease more common in
men

Asymptomatic until ESRF
Recurrent dysuria, loin/back pain,

sterile urine

Presents: 5th-6th decade
M:F ¼ 1:1

Asymptomatic until ESRF

Associated findings Osteomalacia
Proximal tubular

dysfunction
Tubular proteinuria

Urothelial carcinoma in
50%

Normotensive at presentation
Absent/mild proteinuria

Elevated tubular biomarkers
Hyperuricemia
Hypokalemia

Small kidneys on US

Normotensive at presentation
Absent/mild proteinuria

Elevated tubular biomarkers
Peripheral edema with late disease

Small kidneys on US

Normotensive at presentation
Absent or mild proteinuria

Renal
histology

Interstitial fibrosis
Tubular atrophy

Glomerular ischemia

Interstitial fibrosis
Tubular atrophy

Aristolactam (AL)-DNA
adducts in renal cortex

Interstitial fibrosis
Tubular atrophy

Glomerulosclerosis
(despite normal BP)

Chronic glomerular ischaemia
Little vasculopathy

Interstitial fibrosis
Tubular atrophy

Glomerulosclerosis
(55% hypertensive at biopsy)

Glomerular collapse
Moderate vasculopathy

Interstitial fibrosis
Tubular atrophy
Normal glomeruli

Frequently reported
risk factors

Water source: Jinzu river
basin

Consumed contaminated
crops

Consumption of wheat
contaminated by
Aristolochia sp.

Occupation: sugarcane
Heat stress

Agrochemical exposure
Heavy metal exposure
Genetic predisposition

Alcohol “Lija” consumption

Agricultural workers
Resident in dry zone $5 yrs

Heat stress
Agrochemical exposure
Heavy metal exposure
Genetic predisposition
Alcohol/betel/tobacco

Agricultural workers
Heat stress

Agrochemical exposure
Heavy metals

Genetic predisposition

Highlighted in bold are the features common across different endemic nephropathies. BEN, Balkan endemic nephropathy; BMI, body mass index; BP, blood pressure; Cd, cadmium;
CKDu, chronic kidney disease of unknown etiology; F, females; ESRF, end-stage renal failure; GFR, glomerular filtration rate; M, males; MeN, Mesoamerican nephropathy; NCP, North
Central Province (Sri Lanka Q6); SL, Sri Lankan; US, ultrasound.
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cadmium (Cd). As early as 1912, patients reported bone
pain, muscle weakness, and renal failure. In 1968, the
Japanese Ministry of Health and Welfare identified this
as “Itai-Itai” (“ouch-ouch”) disease from chronic Cd
exposure. Cd has an elimination half-life of 10 to
30 years and accumulates in the kidney.7 Bone pain
(hence the name), waddling gait, osteomalacia, and
irreversible proximal tubular dysfunction led to a se-
vere, disabling condition.8 Evidence revealed a dose-
�effect relationship between blood Cd level (an
effective estimate of whole body Cd burden) and
ESRF.9 Histology from the few reported kidney bi-
opsies revealed interstitial fibrosis, tubular atrophy,
and ischemic glomerular lesions.10 High concentrations
of Cd were found in soil, rice, and in pathology spec-
imens of individuals with Itai-Itai.11 A large 16-year
follow-up study identified a dose-related increase in
overall age-adjusted mortality, and mortality related to
cardiovascular and kidney disease.12

Cd-induced nephropathy still exists today. Exposure
is primarily through contaminated food, smoking, or
2
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occupational contact. The WHO set a “safe exposure
level” in 1981, based on the relationship between uri-
nary Cd excretion and renal dysfunction in occupa-
tionally exposed workers.13 Renal dysfunction was
thought to be unlikely at urinary Cd concentrations
of #10 mg Cd/g creatinine. Later work revealed this to
be a gross underestimate of risk.7 Cd-induced renal
disease was found in 10% of an environmentally
exposed Belgian population at urinary concentrations
of only 2 to 3 mg Cd/g creatinine.14 A study of 902
Swedish battery workers identified urinary b2 micro-
globulin (a measure of tubular dysfunction) as an
effective screening tool for early identification of Cd
nephrotoxicity.15 Prompt recognition and subsequent
avoidance can prevent progression to ESRF.15,16 No
chelating agent has been identified, so renal replace-
ment therapy remains the mainstay of treatment.

Balkan Endemic Nephropathy

BEN was first recognized in the 1950s in rural villages
along the Danube River. Those affected presented in
Kidney International Reports (2016) -, -–-
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Figure 1. World map indicating areas with high prevalence of currently unexplained chronic kidney disease (chronic kidney disease of un-
known etiology [CKDu] Q5). Central map taken from Wikipedia (http://www.wikipedia.org). Peripheral maps modified from Google maps (http://maps.
google.com/). NCP, North Central Province of Sri Lanka.
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their sixth decade with tubular proteinuria, impaired
concentrating capacity, and reduced glomerular filtra-
tion rate (GFR).17 Additional features included tubular
acidosis, glycosuria, and aseptic leucocyturia. Hyper-
tension was a late feature and edema rare. Kidney bi-
opsy revealed interstitial fibrosis with tubular atrophy,
and up to 50% of patients had a concomitant urothelial
carcinoma.18 Progression to ESRF was slow. Affected
villages were situated next to unaffected ones, and
familial clustering suggested possible genetic suscep-
tibility.19 Males and females were equally affected, but
children did not develop the disease.

In 1969, Lijec Vjesn first proposed that ingestion of
flour contaminated with seeds from Aristolochia clem-
atitis might be the cause of BEN.20 Approximately
25 years later, Vanherwegham et al. published a case
series of 9 Belgian women who developed “Chinese
herb nephropathy” after ingesting slimming remedies
containing aristolochic acid.21 Similar renal histology
and concurrent urothelial malignancy strongly sug-
gested that Aristolochia plants, found growing among
wheat in the endemic area, were responsible for BEN.
More recently, this was confirmed when aristolactam
(AL)�DNA adducts were demonstrated in the renal
cortex of individulals with BEN and their urothelial
tumors.22 Specific adenine:thymine to thymine:adenine
transversion of the p53 tumor suppressor gene was
Kidney International Reports (2016) -, -–-
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identified.22 Similar mutations and AL-DNA adducts
have been identified in Taiwan, which has the world’s
highest prevalence of urothelial malignancy and where
use of aristolochic acid containing herbal remedies is
widespread.23 Cases have also been reported in
Australia, North America, and Europe. Aristolochia
species continue to be used in herbal remedies world-
wide. There is no specific treatment, so therapy is
largely supportive, aiming to delay disease progression.

Mesoamerican Nephropathy
Epidemiology

Mesoamerican nephropathy (MeN) has emerged as a
leading cause of morbidity and mortality in low-
altitude coastal areas of Nicaragua and El Salvador,
with additional foci in Costa Rica and Guatemala.24

WHO data for 2012 showed a CKD mortality rate of
54 deaths/100,000 population in Nicaragua and 36/
100,000 in El Salvador, compared to 10/100,000 in the
United States.25 CKD mortality increased w3-fold in
Nicaragua between 1990 and 2009 and w7-fold in El
Salvador.26 A community survey in El Salvador found
that 18% of adults had CKD, of whom more than half
had no traditional risk factors.27 Prevalence varies
conspicuously with occupation; those affected are
predominantly young male agricultural workers.27

Sugarcane seed cutters have the highest prevalence,
3
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although other “hot occupations” such as those of port
workers, miners, and cotton and construction workers
are also affected.28 Increased urinary biomarkers of
tubular dysfunction (neutrophil gelatinase-associated
lipocalin (NGAL) and N-acetyl-b-D-glucosaminidase
[NAG]) in Nicaraguan adolescents from high-risk areas
suggest that kidney injury may start in childhood.
However, population reference values are unknown, so
these results should be interpreted with caution.29

Clinical Features

Individuals affected complain of dysuria, frequency,
urgency, and chills, collectively termed “chistata.”
They have leucocyturia, although urine culture results
are rarely positive.30 These episodes are often mis-
diagnosed as urinary tract infections and treated with
(potentially nephrotoxic) aminoglycosides.31 Serum
creatinine rises indolently, and persons affected usually
present at ESRF. Histopathology is outlined in Table 1.

In a cross-sectional study of 284 Nicaraguan
workers, estimated GFR (eGFR) and urinary biomarkers
of kidney injury were measured prior to and during
zafra, the 5-month period of sugarcane harvest.30 The
authors compared different roles in the industry—cane
cutter, seed cutter, irrigator, driver, seeder, agro-
chemical applicator, and factory worker. Cane and seed
cutters had significantly lower late-zafra eGFR compared
to individuals of other occupations, and their mean fall
in eGFR during zafra was 5 to 7 ml/min/1.73 m2

greater. Urinary NGAL increased significantly during
zafra among cane cutters. Moreover, late-zafra NGAL
and NAG levels were negatively associated with eGFR.
Workers who reported chistata had significantly lower
eGFR and higher NGAL concentrations. Proteinuria
Figure 2. Multifactorial etiology of unexplained chronic kidney disease (ch
renal failure.

4
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remained low in all affected individuals. A recent lon-
gitudinal study by Wesseling et al. supports these
findings.32

Etiological Hypotheses

Heat Stress. The etiology of MeN is likely multifac-
torial (Figure 2). The 2nd International Workshop on
the Epidemic of MeN in 2015 emphasized the growing
evidence for a causal role of strenuous work in intense
heat with inadequate rehydration.5 A recent review has
also articulated the role that global warming might play
in the upsurge of CKDu in affected regions.33 Intense
heat and strenuous work are common to those most at
risk for MeN. However, CKDu is not observed in
similar agricultural communities of developing coun-
tries in other tropical regions. Moreover, heat-
associated acute kidney injury (AKI) is uncommon in
developed countries but, when present, tends to
accompany multi-organ injury.

Roncal-Jimenez et al. postulated that dehydration-
induced increases in urinary osmolality activate the
aldose reductase pathway, converting glucose to fruc-
tose. In proximal tubules, fructose is metabolized by
fructokinase to urate, oxidants, and inflammatory me-
diators, causing tubular injury.34 Workers chew sug-
arcane and rehydrate with fructose-rich drinks,
exacerbating the problem. In support of this theory,
recurrent heat-induced dehydration led to cortical
urate accumulation, reduced GFR, proximal tubular
injury, and fibrosis in mice.34 Strenuous exercise in hot
climates causes lactic acid production and subclinical
rhabdomyolysis, exacerbating hyperuricemia.35 Under
such acidic conditions, urinary urate can exceed its
solubility and form microcrystals.36 Indeed, urate
ronic kidney disease of unknown etiology [CKDu]). ESRF, end-stage

Kidney International Reports (2016) -, -–-
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crystalluria was identified in sugarcane workers, which
may explain chistata.36 It should be noted, however,
that although hyperuricemia is common in MeN,
marked uricosuria is not universally demonstrated.37

Agrochemicals. Agrochemicals are used extensively
throughout Nicaragua and El Salvador, and workers
are often highly exposed.38 These may damage kidneys
made vulnerable by heat-stress during zafra. Animal
studies have identified dose-dependent and exposure
duration-dependent kidney damage with specific pes-
ticides including 2-4-dichlorophenoxyacetic acid (2,4-
D), carbofuran, and dicrotophos.39–41 Data on the
nephrotoxic effects of pesticides in humans are limited.
A review of Nicaraguan pesticide use revealed no as-
sociation between the 36 pesticides tested and CKD.42

However, there was a strong association between AKI
and exposure to 2,4-D or glyphosate, the 2 most widely
used herbicides in Nicaragua.42 Glyphosate was the
most frequently used herbicide in the United States 10
years ago and, until recently, was used widely in Sri
Lanka and El Salvador.43 It is recognized to cause
kidney injury.44 A large U.S. prospective clinical study
showed no association between glyphosate exposure
and ESRF45; however, an association between cumula-
tive, general agrochemical exposure and increased
ESRF was identified.45,46 This relationship was espe-
cially marked in those who reported multiple doctor
visits or hospitalizations due to agrochemical
poisoning, suggesting that recurrent high-level expo-
sure may lead to irreversible kidney damage.45

Heavy Metals. Heavy metals such as Cd, uranium,
arsenic, and lead are known nephrotoxins.16,47,48 They
contaminate water and soil in MeN-affected regions,
although only at concentrations considered to be
nontoxic.16,30 Large volumes of contaminated water,
consumed to replace exceptional fluid losses during
zafra, may lead to a high total filtered load and poten-
tially result in heavy metal nephrotoxicity. Conversely,
the association between water consumption and renal
insufficiency may simply highlight that individuals
experiencing repeated episodes of dehydration then
consume more water, or it may reflect a urinary
concentrating defect secondary to tubular injury.24 Lija,
a locally produced, unregulated rum, is another potential
source of heavy metal and agrochemical exposure. Re-
ports suggest that Lija is prepared in industrial con-
tainers previously containing pesticides. One small
study identified a dose-dependent relationship between
Lija consumption and reduced eGFR.24

Communicable Diseases. Leptospirosis is common and
often subclinical in agricultural workers.30

Leptospirosis-induced AKI is nonoliguric with
tubular dysfunction followed by reduced GFR.49 Renal
Kidney International Reports (2016) -, -–-
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histology reveals an acute interstitial nephritis with
tubular necrosis.50 Theoretically, recurrent infection
could contribute to CKDu. but it is unlikely to be
independently responsible. Recurrent leptospirosis has
been shown to cause CKD in other mammals, although
not yet in humans.51

Sri Lankan CKDu
Epidemiology

Contemporaneous to the MeN epidemic, a dramatic rise
in CKDu, occurred in the North Central Province of Sri
Lanka (NCP). First recognized in the early 1990s, recent
estimates are that almost 20,000 persons have died of
CKDu.52 A WHO community-based screening study
revealed a prevalence of 13% in males and 17% in
females.6 More severe disease was more common in men
who had been resident in low-altitude farming com-
munities in the dry zone for 5 years (Table 1).6 This
may explain why previous studies, based on hospital
attendance, identified a greater prevalence of CKDu in
males,53 in keeping with MeN. Moreover, the CKDu
problem is not confined to NCP: It is now the seventh
leading cause of death nationally.54 Strikingly, many
published studies aim to prove or disprove a single
etiological factor, rather than address the complex
interplay of insults likely to underlie etiology. The
recent introduction of a CKDu patient registry should
aid epidemiological research in the future.55

Clinical Features

Patients typically present in their fifth decade with
ESRF. The mean age of diagnosis has fallen since the
introduction of community screening.56 Early CKDu is
largely asymptomatic, although patients describe
recurrent dysuria with back pain and sterile urine.
Anemia, hypertension, and edema are late features.

In 2012 Jayatilake et al. proposed a unifying defi-
nition for Sri Lankan CKDu: namely, an albumin-to-
creatinine ratio $30 mg/g, a normal glycosylated he-
moglobin (HbA1c <6.5%) not on treatment for dia-
betes Q, blood pressure <160/90 mm Hg (or <140/90
mm Hg on antihypertensive medication use), and no
history of kidney disease or snake bite.6 Defined
diagnostic criteria are essential for meaningful research.
Unfortunately, this definition is likely to be under-
representative, as proteinuria is mild or absent in early
disease.57

Urinary tubular markers such as a1-microglobulin
and NGAL are elevated in early CKDu, and steadily rise
with disease progression.57,58 Similarly, urinary kidney
injury molecule�1 (KIM-1) may represent an early
marker of disease.59 These tests represent more sensi-
tive screening tools, although their cost prevents
widespread use. A potential alternative may be calcu-
lation of the ratio of urinary albumin to total protein,
5
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which has been shown to be 99% specific for biopsy-
proven primary tubulointerstitial disease.60 These
tests should be considered in future study designs. The
pathological findings of Sri Lankan CKDu are outlined
in Table 1.

Etiological Hypotheses

Genetic Predisposition. There are discrete regions of
high prevalence in a mosaic pattern that could repre-
sent a genetic predisposition. Certainly, family history
has repeatedly been shown to have a strong association
with CKDu.61 Recent whole-exome sequencing revealed
a possible rare variant in the KCNA10 gene, which
encodes for a voltage-gated potassium channel found in
proximal tubular cells, that could predispose to
disease.62

Contaminated Water. Drinking from shallow wells
increases CKDu risk.63,64 Conversely, local residents
who consume spring water have a low prevalence.63

Well water levels fluctuate with those of nearby ca-
nals, suggesting that the ground water table is
recharged from irrigation and reservoir systems with
significant potential for contamination. Mice fed with
extracts of cyanobacteria (bluegreen algae) from
endemic area reservoirs developed acute tubular ne-
crosis, but not interstitial nephritis.65 Field work >6
hours per day, sun exposure, consumption of <3 L
water per day, and history of malaria have been iden-
tified as Sri Lankan CKDu risk factors. Drinking pre-
treated water had significant protective effects.66

Agrochemicals. In the 1960s, the “green revolution”
saw the introduction of high-yield seeds, chemical
fertilizers, and pesticides. Further progress in the 1990s
saw the introduction of the mini-tractor and agricul-
tural mechanization.67 Agrochemicals are overused in
Sri Lanka, and poor safety compliance leads to marked
exposure.68,69 The relationship between pesticide
exposure and CKDu risk has been shown repeatedly.6,70

Jayasumana et al implicated glyphosate, suggesting
that glyphosate�metal complexes could be respon-
sible.71 Theoretically, the hard water in endemic areas
could convert glyphosate to solid complexes of mag-
nesium, calcium, and arsenic that are highly insoluble
and poorly absorbed.72 However, the researchers
showed urinary glyphosate and heavy metal excretion
to be higher in both individuals with CKDu and
healthy controls in endemic areas, compared to controls
in nonendemic areas.73 Interestingly, CKDu is not
observed in the northern province of Sri Lanka, despite
harsher environmental conditions than NCP. It has
been suggested that this may be linked to a ban on
agrochemicals in this area during the conflict (1980–
2009) because of the potential for use in improvised
explosive devices.67
6
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Heavy Metals. In 2008, Bandara et al. reported high
Cd concentrations in reservoirs serving CKDu house-
holds (as well as in soil, rhizomes, rice, and milk).74

They were unable to reproduce these findings in
2010,75 and others later contested their results.6,76

Significant seasonal variation in toxin concentration is
likely. Unfortunately, the authors did not publish the
dates of sample collection.

Nanayakkara et al. showed urinary Cd excretion to
be lower in CKDu patients (and their unaffected rela-
tives) compared to controls.58 This was consistent with
the findings of Bandara et al. (2008 Q), who suggested
that an inability to express the urinary chelating pro-
tein metallothionine led to both reduced urinary Cd
concentration and increased tubular damage.58 More
recent collaboration between the Sri Lankan Ministry
of Health and WHO has again implicated Cd. However,
they found increased urinary Cd in CKDu patients
compared to healthy controls from both endemic and
nonendemic areas, demonstrating a dose�effect rela-
tionship between urinary Cd and CKD stage.6 The
absence of controls with CKD of known etiology makes
the applicability of this finding uncertain. Conflicting
results can be explained, in part, by heterogeneity of
study design, control selection, and diverse means of
assaying Cd. Inclusion criteria and CKDu definition
(where defined) also vary.

One study has suggested that Sri Lankan agro-
chemicals and fertilizers can be contaminated by
arsenic.77 A recent systematic review supported an
association between arsenic exposure and proteinuria,
but reported mixed evidence for any association with
CKD.78 Arsenic contamination of well water was re-
ported to be high; however, this finding has not been
reproduced, and urinary arsenic levels do not vary
across regions.6 Jayasumana et al. suggested that a high
calcium concentration in endemic area ground water
may exacerbate arsenic toxicity.71

Chandrajith et al. suggested that hard water could
enhance the cytotoxic properties of fluoride.79 Unde-
niably, fluoride levels in drinking water from endemic
regions are above WHO safe levels for tropical coun-
tries80,81; however, adjoining farms have not seen sig-
nificant CKDu.82 Other theories include the formation
of fluoro-aluminium complexes when boiling fluoride-
rich water in aluminum kettles (often constructed
from discarded car engines). Normal serum aluminum
concentrations in CKDu patients suggest little
association.6

Communicable Disease. Ochratoxin A, a mycotoxin
known to cause interstitial fibrosis, has been identified
in many foods in NCP, but at levels below European
safety limits. Higher urinary Ochratoxin A levels
found in CKDu patients and their unaffected relatives
Kidney International Reports (2016) -, -–-
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compared with Japanese controls are of uncertain sig-
nificance.83 Traditional (ayuverdic) medications have
also been implicated. Acute interstitial nephritis has
been reported after ingestion of the herbal medicine
Dioscorea quinqueloba.84 However, use of traditional
medication is not limited to endemic areas.85 Interest-
ingly, Aristolochia spp were found in 66 ayuverdic
prescriptions investigated by the WHO.55 Moreover, as
described in MeN, leptospirosis is endemic in Sri Lanka
and has been linked to CKDu.86 Hantavirus is another
important zoonotic disease that is spread through the
inhalation of aerosolized rodent excrement. It presents
with clinical features similar to those of leptospirosis,
flu-like illness and fever, and is known to cause AKI.
Although it has been implicated in the etiology of
CKDu, hematuria is almost always present in
hantavirus-induced AKI, and progression to CKD has
not been proved.86

Indian CKDu

In 2010, the first Indian CKD registry report was
published with data from 52,273 adults.87 Although the
most common cause of CKD was diabetes (31%), a
significant proportion (16%) had CKDu. Geographical
disease foci were recognized, with prevalence reaching
w40% in coastal regions of Andhra Pradesh.51

Affected individuals are young and of low socio-
economic status. Men and women are affected
equally. In keeping with Sri Lankan CKDu and MeN,
patients remain asymptomatic until late in the disease,
have absent or mild hypertension, and have little or no
proteinuria. Farming communities are severely
affected, and local residents believe that manual labor
performed in severe heat is responsible, alongside lib-
eral pesticide use.88 When biopsied, histology reveals
interstitial fibrosis, tubular atrophy, and a variable
lymphocytic peritubulitis.89 Unfortunately, creatinine
estimation is not standardized across India, CKD diag-
nostic criteria vary, and the biopsy rate is unknown,
making large-scale research challenging.90

Interestingly, an association between CYP1A1
polymorphisms and Indian CKDu suggests a possible
genetic predisposition.91 Further work has linked
polymorphisms of xenobiotic metabolizing enzymes
with increased pesticide accumulation and reduced
eGFR.92 Although some studies suggest that water
contamination by Cd-containing manures and lead-
containing pesticides may be responsible,93 this is not
a universal finding.94

Egyptian CKDu

CKD is also emerging as a serious health problem in
Egypt. Although national statistics are not available,
ESRF prevalence increased from 250 to 367 per million
Kidney International Reports (2016) -, -–-

REV 5.4.0 DTD � EKIR75_proof � 29 No
population in Egypt’s El Minya Governorate between
2002 and 2007.95 A cross-sectional study of dialysis
patients revealed that 13% had diabetic nephropathy,
21% hypertension, and 27% CKDu.96 Drinking from
tube wells, family history of renal disease, inhabiting a
rural area, and pesticide exposure were all associated
with increased CKDu risk. The authors suggest that
CKDu develops when genetically predisposed in-
dividuals are exposed to an environmental trigger.97

Tunisian CKDu

In Tunisia, a chronic interstitial nephritis of unknown
etiology with striking similarities to CKDu was first
described in 2003.98 After an insidious course, patients
present in their fourth or fifth decade with ESRF.99

Food contamination with ochratoxin A is wide-
spread,100 and serum ochratoxin levels are higher in
CKDu patients than in controls.101 Despite this, not all
who are heavily exposed develop CKD, suggesting a
genetic predisposition.100

Recommendations and Conclusions

CKDu is a serious global health problem. The past
5 years have seen increased awareness and worldwide
collaboration, which are pivotal in the attempt to
control the epidemic. The current body of evidence
supports the theory of heat stress, arduous exercise,
and inadequate hydration, in a genetically predisposed
population or those exposed to a further insult such as
agrochemicals. If this is accurate, global warming will
inevitably lead to even greater disease burden in these,
and other, vulnerable populations. There remains a
need for concise diagnostic criteria, not only in MeN
and Sri Lankan CKDu, but also in other endemic ne-
phropathies. Similarly, validation of and funding for
more sensitive biomarkers of disease would allow early
detection and an opportunity to try to slow disease
progression. Wider use of renal biopsy would provide
useful diagnostic information. Further evaluation of the
cardiovascular impact of CKDu would enable more
effective primary prevention. Fundamentally, many of
the proposed etiological factors are potentially pre-
ventable with appropriate education, health and safety
regulations, and public health intervention. Improved
working conditions and the provision of adequate, safe
drinking water are essential. A recent intervention in
El Salvador revealed that the provision of accessible
water, mobile shaded rest areas, and scheduled rest
periods not only reduced heat stress symptoms, but
increased worker productivity.102 Moreover, the
WHO and the Food and Agriculture Organization of
the United Nations (FAO) have made strong recom-
mendations including quality control for imported
fertilizers, compulsory provision of personal protective
7
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equipment for agrochemical sale and use, tighter
regulation on sales of agrochemicals thought to be
nephrotoxic, improved health education, and financial
assistance for both individuals with CKDu and re-
searchers. Despite significant resistance, the sale of
glyphosate was recently banned in both Sri Lanka and
El Salvador.103
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