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Abstract: Leprosy, caused by infection with Mycobacterium leprae or the recently 32 

discovered Mycobacterium lepromatosis, was once endemic in humans in the 33 

British Isles. UK red squirrels (Sciurus vulgaris) have increasingly been observed 34 

with leprosy-like lesions on the head and limbs.  Using genomics, histopathology 35 

and serology we found M. lepromatosis in squirrels from England, Ireland and 36 

Scotland, and M. leprae in squirrels from Brownsea Island, England.  Infection 37 

was detected in overtly diseased and seemingly healthy animals.  Phylogenetic 38 

comparisons of British and Irish M. lepromatosis with two Mexican strains from 39 

humans showed they diverged from a common ancestor around 27,000 years ago 40 

whereas the M. leprae strain is closest to one that circulated in Medieval England.  41 

Red squirrels are thus a reservoir for leprosy in the British Isles.  42 

  43 

One Sentence Summary:  Diseased British and Irish red squirrels are infected with 44 

two different bacteria that cause leprosy in humans and represent a potential zoonotic 45 

threat. 46 

 47 
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Main text - 1827 words 48 

Main text, legends, etc. ~ 2355 words without references 49 

 50 

Main Text: Often considered a disease of the past, leprosy remains a public health problem 51 

in certain low and middle-income countries with ~220,000 new cases reported annually (1). 52 

Leprosy was rife in Europe in the Middle Ages but disappeared during the 15th-16th centuries 53 

probably because of social segregation, other infectious diseases such as plague or changes in 54 

host immunity (2–5). Today, all British clinical cases occur in individuals with a history of 55 

residence in a leprosy endemic country (6). The disease manifests in different forms, ranging 56 

from multibacillary, or lepromatous, to paucibacillary, or tuberculoid, depending on the 57 

immunogenetics of the host (4).  In all forms, skin lesions are accompanied by peripheral nerve 58 

damage, which causes sensory loss and may lead to deformities.  59 

It was generally accepted that leprosy resulted solely from inter-human transmission 60 

of M. leprae but in recent years compelling evidence emerged from the southern USA for 61 

zoonotic cases following exposure to infected nine-banded armadillos (Dasypus novemcinctus) 62 

(7–9).  Furthermore, M. leprae was considered to be the sole causative agent of leprosy until 63 

2008 when a new species, M. lepromatosis, was identified in patients with diffuse lepromatous 64 

leprosy (DLL) (10).  Such cases were primarily associated with Mexico and the Caribbean 65 

region (11).  Comparison of the genome sequences of M. lepromatosis and M. leprae revealed 66 

that despite separating millions of years ago, the two genomes are remarkably similar in their 67 

size, organization and (pseudo)gene content, but show only 88% sequence identity (11).  68 

The Eurasian red squirrel Sciurus vulgaris is a widespread Palearctic species found 69 

from Ireland in the West to Kamchatka in the East (12, 13).  However, in the United Kingdom 70 

(UK) the S. vulgaris population of ~140,000 is severely threatened by habitat loss, squirrel 71 

poxvirus infection and competition with >2.5 million grey squirrels, Sciurus carolinensis, 72 

introduced from North America (14, 15).  Due to their endangered status, red squirrels are now 73 
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protected (16).  Recent detection of mycobacterial infection in red squirrels was reported in 74 

Scotland, with lesions and histopathology characteristic of DLL and evidence for M. 75 

lepromatosis being the etiological agent (17).  Similarly affected squirrels were observed on 76 

the Isle of Wight and Brownsea Island in Southern England (18) and observations of squirrel 77 

leprosy in Scotland are increasing (Fig. 1).  Here, we investigated these cases using 70 red 78 

squirrel cadavers from the UK, with or without disease signs, 40 cadavers from Ireland, where 79 

no sightings of squirrels with leprosy signs have been reported, and four Scottish grey squirrel 80 

cadavers.   81 

A differential PCR screen was implemented to detect M. leprae and M. lepromatosis 82 

DNA (11). A total of 172 tissue samples from 13 animals with and 101 without leprosy features 83 

were analyzed (tables S1, S2, (19)). Six Scottish squirrels (two without clinical signs (17)), two 84 

from Ireland (no clinical signs), and one from the Isle of Wight, England, (18) contained M. 85 

lepromatosis, in several tissue samples from different anatomical sites, whereas all 25 red 86 

squirrels (17 without clinical signs) tested from Brownsea Island were infected with M. leprae 87 

(Fig. 1, table S3).  No cases of co-infection were observed (table S3).  From the combined 88 

results, we concluded that 21% (21/101; 95%CI 13-30%) of the squirrels without clinical signs 89 

and all of the animals with clinical signs (13/13) harbored leprosy bacilli.   90 

Serological tests were performed on nine diseased and 14 healthy red squirrels from 91 

Scotland and England, and the four grey squirrels.  The greys were all sero-negative whereas 92 

13/23 blood samples from red squirrels contained antibodies for the leprosy-specific antigen, 93 

phenolic glycolipid-1 (20) (table S4, (19)).  Serology is useful to confirm the disease and predict 94 

infection in live animals but cannot be used for species identification as both M. leprae and M. 95 

lepromatosis produce this cell wall antigen (11).  96 

Diseased Scottish squirrels, infected with M. lepromatosis, displayed a range of 97 

macroscopic lesions including alopecia, extensive swelling of the snout, lips, eyelids, the ear 98 

pinnae and limb extremities (Figs. 1, 2A, S1, tables S2, S5, (19)).  Histopathological 99 

examination of four such squirrels (Fig. 2B) revealed granulomatous dermatitis, sheets of 100 

epithelioid macrophages and large numbers of acid-fast bacilli (AFB).  There was neural 101 
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involvement with the presence of AFB in nerve endings; neuritis was patchy and more 102 

frequently perineural (Fig. 2C).  Inflammation was not focused exclusively around nerves and 103 

was mostly dermal.  There were no signs of vasculitis, but AFB were present intravascularly 104 

(Fig. 2C).  Similar lesions were observed in eight squirrels from Brownsea Island infected with 105 

M. leprae, although these animals also harbored numerous AFB in the spleen (Fig. 2C).  106 

Overall, the macroscopic signs and histopathology were characteristic of lepromatous leprosy 107 

(Figs. 2A, B, Figs. S2, S3).  From post-mortem inspection of diseased squirrels it was not 108 

possible to distinguish between infection with M. lepromatosis or M. leprae, as in human 109 

leprosy (11, 21, 22).  110 

To obtain deeper insight into the strains responsible and to perform phylogenetic 111 

analyses we used a variety of DNA enrichment techniques (table S6) prior to Illumina 112 

sequencing since neither M. leprae nor M. lepromatosis can be cultured (19).  Sufficient 113 

sequence coverage of M. lepromatosis genomes from seven squirrels was obtained (table S7). 114 

In parallel, we sequenced an additional genome of M. lepromatosis, Pl-02, from a PGL-1-115 

seropositive patient from Sinaloa, Mexico (tables S1, S4). The resultant sequence reads were 116 

mapped against the reference M. lepromatosis genome sequence from a patient from 117 

Monterrey, Mexico (11) to identify polymorphisms.  Consistent with previous M. leprae 118 

genome comparisons (9, 11, 23), there was an exceptionally high level of sequence 119 

conservation between M. lepromatosis strains (99.99% identity) despite their different 120 

geographic origins. The two Mexican patient isolates differed by only seven single nucleotide 121 

polymorphisms (SNPs) whereas the number of SNPs in the six British and Irish strains ranged 122 

from one to 17 on pairwise comparisons (table S8).  Overall, there are roughly 400 SNPs that 123 

distinguish M. lepromatosis strains from Mexico and the British Isles (table S8). Clustering of 124 

Mexican and British M. lepromatosis strains into two distinct lineages was supported by 125 

maximum parsimony (Fig. S4) and neighbor joining (Fig. S5) phylogenetic reconstructions.  126 

Based on the M. leprae mutation rate (19) and using the Bayesian inference software, BEAST 127 

(24), we estimated that the British Isles and Mexican strains diverged from their most recent 128 

common ancestor around 27,000 years ago whereas the Irish and UK strains diverged as 129 
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recently as 200 years ago (Fig. 3A). The latter estimate is consistent with the date of the first 130 

campaign to reintroduce the red squirrel into Ireland from England between 1820 – 1856, 131 

following its extinction in the 17th century (12, 25). This suggests that these animals may 132 

already have been infected with M. lepromatosis when they were reintroduced. 133 

Finding M. leprae in red squirrels in the UK was unexpected, since leprosy was 134 

eradicated from the British Isles several centuries ago, thus demonstrating that a pathogen can 135 

persist in the environment long after its clearance from the human reservoir.  Furthermore, this 136 

is only the second report of M. leprae in non-primate species. From Bayesian and maximum 137 

parsimony analysis (Fig. 3B, fig. S4A) we note that the two closest relatives to the strain of M. 138 

leprae found on Brownsea Island were both from medieval Europe.  Intriguingly, one of these 139 

(SK2) originated from the skeletal remains of a leprosy victim buried about 730 years ago in 140 

Winchester, a city situated a mere 70 km from Brownsea Island (Fig. 1).  Like SK2, the 141 

Brownsea Island strain of M. leprae belongs to sequence type 3I, which forms a distinct M. 142 

leprae branch (Fig. 3B) (3) and is now endemic in wild armadillos in the Southern USA (9).  143 

Thus, M. leprae with this particular sequence type is capable of infecting at least three different 144 

hosts: humans, red squirrels and armadillos.   145 

Since there were no obvious genomic polymorphisms restricted to the M. leprae 3I 146 

type that might account for this broad host range (tables S9, S10) we explored the possibility 147 

that these three species might share a major susceptibility gene and focused on TLR1.  This 148 

candidate gene, encoding the surface-exposed Toll-like receptor 1 (TLR1) displayed on 149 

various epithelial and immune cells, is known to be associated with susceptibility to leprosy 150 

(Fig. 4A).  A dysfunctional TLR1 allele encoding an I602S variant with an altered 151 

transmembrane domain is prevalent in Caucasians and is associated with a decreased risk for 152 

leprosy (5, 26). By contrast, the TLR1 N248S variant is associated with an increased risk of 153 

leprosy in humans. This mutation is located in the ninth repeat of the extracellular leucine-rich 154 

repeat (LRR) region of TLR1 (27).  Furthermore, in nine-banded armadillos an R627G change 155 

in TLR1 (close to the Toll/Interleukin receptor (TIR) domain, Fig. 4A), seemingly confers 156 

resistance to leprosy (28).  Using PCR the coding exon of TLR1 was amplified and sequenced 157 
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from 58 red (with or without lesions) and three grey squirrels (tables S11, S12, S14 (19)).  On 158 

comparison of the sequences and TLR1 alignments (table S13) no polymorphisms were 159 

observed at the same sites associated with leprosy in humans and armadillos.  However, in 160 

some red squirrels, two distinct polymorphic sites exist: a single SNP leading to a S494N 161 

mutation in the nineteenth repeat of the LRR region and a cluster of linked mutations that 162 

produce S657N, L660V and N662C variants in helix 1 of the TIR domain (Fig. 4B).  These 163 

mutations were found less frequently in squirrels infected with leprosy bacilli compared to 164 

healthy animals suggesting that they may confer protection (OR: 5.77, 95% CI: 1.42 - 23.41, 165 

p=0.01 for 494N and OR: 4.89, 95% CI: 0.98 - 24.53, p=0.05 for 657N-660V-662C). 166 

 It is unclear whether leprosy is contributing to the demise of the red squirrel population 167 

or how these animals became infected with M. lepromatosis or M. leprae.  Since M. 168 

lepromatosis has only recently been discovered as a human pathogen (10), and there are few 169 

detailed case reports (10, 11, 21, 29), further investigation is required to establish its relative 170 

prevalence in wildlife compared to humans.  M. leprae was long considered to be an obligate 171 

human pathogen that was introduced to the Americas by European settlers, prior to 172 

anthroponotic infection of armadillos, since there are no human skeletal remains with signs of 173 

leprosy from the pre-Columbian era (9).  The discovery that the strain of M. leprae in red 174 

squirrels on Brownsea Island today is essentially the same as one that circulated in medieval 175 

England and Denmark, and highly related to the extant North American armadillo strain, raises 176 

the possibility of a second anthroponotic introduction in Europe.  If this were the case, it must 177 

have occurred several centuries ago as leprosy became increasingly scarce in the British Isles 178 

after the 17th century (3).  It is also conceivable that humans may have been infected through 179 

contact with red squirrels bearing M. leprae as these animals were prized for their fur and meat 180 

in former times (30). Our findings demonstrate that further surveys of animal reservoirs of 181 

leprosy bacilli are warranted, since zoonotic infection from such reservoirs may contribute to 182 

the inexplicably stubborn plateau in the incidence of the human leprosy epidemic despite 183 

effective and widespread treatment with multidrug therapy (1).   184 

 185 
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 309 

Fig. 1. Squirrel sampling sites in the British Isles.  Pie charts indicate the location of sites 310 

where squirrels were sighted or found and color-coded as indicated in the box, numbers within 311 

circles indicate different animals tested where N >1.  Boxed circles refer to squirrels of 312 

unknown location: I, Ireland; S, Scotland. A, Isle of Arran; B, Brownsea Island; W, Isle of 313 

Wight. The figure was drawn in R (v3.2.23 © 2015 The R Foundation for Statistical 314 

Computing) with the package maps (v3.1.0) using the mapdata (v2.2-6) “worldHiresMapEnv” 315 

and the package plotrix (v3.6-2) for pie charts.   316 
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 317 

Fig. 2. Gross histopathological features of red squirrels with leprosy.  (A) Both 318 

macroscopic and histological features of squirrels infected with either M. lepromatosis or M. 319 

leprae are similar. (B) Histological examination of tissue sections from infected squirrels using 320 

the Ridley-Jopling (RJ) classification following Ziehl Neelsen staining (Mag. x400). LL: 321 

lepromatous leprosy, BL: borderline lepromatous leprosy. (C) Summary of main macroscopic 322 

and microscopic findings from squirrels infected with M. leprae (n=8) or M. lepromatosis 323 

(n=4).  324 

 325 
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Fig. 3. Phylogeny of leprosy bacilli.  (A) Bayesian phylogenetic tree representation of nine 326 

M. lepromatosis genome sequences obtained from squirrels (bold) or humans, upper and 327 

lower parts, respectively, calculated by BEAST 1.8.2 (24) using the mutation rate of M. 328 

leprae and inferred from 432 genome-wide variable positions.  Squirrel sample prefixes: Ir, 329 

Ireland; Iow, Isle of Wight; with all others from Scotland.  Both human strains were from 330 

Mexico. (B) Bayesian phylogenetic tree representation of M. leprae inferred from 498 331 

genome-wide variable positions, calculated as in (A). Squirrel samples (bold): Brw denotes 332 

Brownsea Island cluster with red labeling indicating ancient strains for which radio-carbon 333 

dating information was available (3).  For both trees, divergence time intervals are shown on 334 

each node in years before present, with the 95% HPD range in brackets. Posterior 335 

probabilities for each node are shown in grey.   336 

 337 

Fig. 4. Organization, structure and polymorphisms in TLR1 associated with leprosy in 338 

humans, armadillos and red squirrels.. (A) Schematic representation of TLR1 and its 339 

domains (drawn to scale). SP = Signal peptide, LRR = Leucine-rich repeats, LRR_CT = 340 

Leucine-rich repeat C-terminal, TM = transmembrane domain, TIR = Toll/interleukin-1 341 

receptor. (B) Structural model of the red squirrel TLR1. Protein is colored in a rainbow 342 

spectrum from N-terminus (blue) to C-terminus (red). 343 
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