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Abstract
Transient hardware faults during the execution of a program
can cause data corruptions. We present HAFT, a fault tolerance
technique using hardware extensions of commodity CPUs to
protect unmodified multithreaded applications against such cor-
ruptions. HAFT utilizes instruction-level redundancy for fault
detection and hardware transactional memory for fault recovery.
We evaluated HAFT with Phoenix and PARSEC benchmarks.
The observed normalized runtime is 2×, with 98.9% of the in-
jected data corruptions being detected and 91.2% being corrected.
To demonstrate the effectiveness of HAFT, we applied it to real-
world case studies including Memcached, Apache, and SQLite.

1. Introduction
Transient faults, or soft errors, in CPUs can cause arbitrary state
corruptions during computation. Several studies suggest that
transient errors are a pervasive cause of software systems fail-
ures [29, 48, 64]. These studies point to a wide range of reasons
for such transient faults in CPUs, including manufacturing prob-
lems, overheating, dynamic voltage scaling, hardware/software
incompatibility, or power supply faults.

These issues are amplified in the new processor architectures
that are continuously boosting performance with higher circuit
density using ever-shrinking transistor sizes, and are simultane-
ously achieving higher energy efficiency by operating at lower
voltages [16]. These trends negatively affect the reliability of
the underlying hardware [66]. Furthermore, the advancements in
the 7 nm chip technology with near-threshold computing (dim
silicon) will only worsen the reliability of CPUs [65].

The unreliability of CPUs becomes a particularly serious con-
cern for modern online services running in data centers. Given
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the sheer scale at which these services operate, the transient
faults occur at a surprisingly high rate and tend to reappear
more frequently after the first occurrence [29, 48, 64]. Anecdotal
evidence indicates that a single transient fault in the hardware
can lead to process state corruption [3, 20], data loss [9], and
in some unfortunate cases, errors can propagate throughout the
system causing outage of the entire service [1].

As a result, software systems running in modern data centers
are being increasingly adapted to tolerate transient faults. For
instance, Mesa [31], a data warehousing system at Google, uses
application-specific integrity checks to deal with data corruptions
during computation. In fact, many large-scale systems employ
ad-hoc mechanisms to detect data corruptions, such as source
code assertions, periodic background integrity checks, and mes-
sage checksums throughout the system [1, 22, 31, 35]. However,
these ad-hoc solutions can only protect from errors anticipated by
the programmer and may fail to detect arbitrary hardware faults.

Researchers have proposed a series of disciplined hardening
approaches to protect software systems against transient faults
[40, 60, 67, 79, 80]. In particular, these hardening approaches
add redundancy at the level of program instructions, threads,
or whole processes, and insert periodic comparisons of redun-
dant copies to detect transient faults. While these approaches
have been an active area of research for decades, almost all
of the existing solutions in this domain target sequential pro-
grams only, making them impractical for ubiquitously deployed
multithreaded software systems.

To support multithreaded programs, a few hardening sys-
tems have been recently proposed [11, 13, 24]. However, all
these systems still have at least one of the following limitations:
(i) they require manual efforts to modify the application, e.g., to
annotate the protected code regions, (ii) they target restrictive pro-
gramming models, e.g., assuming only event-based applications,
(iii) they rely on application-specific checks leveraging the high-
-level programming languages such as Apache Pig [50], (iv) they
require operating system support, deterministic multithreading
and/or spare cores for redundant execution, (v) they provide only
fail-stop semantics without providing recovery from faults.



In this paper, we propose a Hardware-Assisted Fault Toler-
ance (HAFT) technique that overcomes the aforementioned limi-
tations. HAFT applies to unmodified applications on the existing
operating systems running on commodity hardware. HAFT tar-
gets the general shared-memory multithreaded programming
model supporting the full range of synchronization primitives.
Moreover, HAFT neither enforces deterministic execution nor
requires spare cores, and thereby, it does not limit the available
application parallelism, which is crucial for imposing low perfor-
mance overheads. Finally, HAFT achieves high availability by
providing fault detection as well as recovery from faults.

HAFT is a compiler-based hardening approach that leverages
two techniques: Instruction-Level Redundancy (ILR) [60] for
fault detection and Hardware Transactional Memory (HTM) [78]
for fault recovery. To achieve fault tolerance, HAFT transforms
an application in the following way. First, the instructions of
the application are replicated and periodic integrity checks are
inserted. The replicated instructions create a separate data flow
along the original one, and both flows are efficiently scheduled
via instruction-level parallelism of modern CPUs. Next, the
whole execution of a program is covered with HTM-based trans-
actions to provide fault recovery. When a fault is detected by ILR,
the transaction is automatically rolled back and re-executed. The
HTM implementation we employ is best-effort, which renders
HAFT’s recovery guarantees best-effort as well. Nonetheless,
our evaluation shows that clever placement of transactions al-
lows HAFT to achieve high availability even in the presence of
frequent faults.

We implemented HAFT as an extension of the LLVM com-
piler framework to transform unmodified application code. In
our evaluation, we applied HAFT to the Phoenix and PARSEC
benchmark suites. The fault injection experiments show that
the average number of data corruptions decreases from 26.2%
to 1.1% and on average, 91.2% of the data corruptions can
be corrected. In terms of performance, applications hardened
with HAFT run on average 2× slower than native versions.
We also applied HAFT to a set of real-world applications
including Memcached, Apache, and SQLite. Furthermore, a
comparative evaluation revealed that HAFT imposes 30–40%
less performance overhead than the state-of-the-art solution for
multithreaded programs [11].

2. Background and Related Work
We discuss below existing approaches to fault tolerance and uses
of hardware transactional memory for fault recovery.

2.1 Fault Tolerance Approaches

State Machine Replication (SMR). To achieve high availabil-
ity, some software systems [10, 17, 34] use State Machine
Replication (SMR) [63]. These systems typically assume a crash
fault model. However, this model does not cover transient faults
which might lead to arbitrary state corruptions.

Byzantine Fault Tolerance (BFT) [19] tolerates not only
crashes, but also transient hardware faults (and even malicious

attacks). Unfortunately, BFT incurs prohibitive overheads be-
cause of the overly pessimistic fault model. To decrease the
performance overhead of BFT, researchers explored the use of
specialized trusted hardware [36, 71], relaxed network assump-
tions [54, 55], speculative execution of requests [39], and OS
support [38]. In contrast, HAFT imposes low overheads by
assuming a more restrictive fault model: it protects only against
hardware non-malicious faults.

To support multithreaded programs, all SMR solutions require
some form of deterministic execution. Crane [23] builds on deter-
ministic multithreading [45, 51], Eve [37] speculatively executes
requests and falls back to deterministic re-execution upon con-
flicts, and Rex [30] enforces deterministic replay of the primary’s
trace on secondary replicas. HAFT supports non-determinism
because it requires no replicas, achieving fault tolerance locally.

Due to its local fault tolerance, we consider HAFT to be
not a substitute for SMR, but rather a complementary approach.
Indeed, SMR is usually applied only to the “control path” of
distributed software systems, e.g., coordination services such as
Chubby [17] and ZooKeeper [34]. HAFT can, in particular, be
used to protect the data path, ensuring that the main computation
itself is not affected by transient faults.

Local hardening approaches. Due to lack of adoption of BFT
[69], researchers actively explored local hardening approaches
that protect against data corruptions. These approaches harden
programs by adding redundancy at the level of program instruc-
tions (see §3.2), threads, or processes.

Redundant Multithreading (RMT) [47, 72, 80] spawns an
additional, trailing thread for each original thread in a program
and redundantly executes it on a spare core. In the same spirit,
Process-Level Redundancy (PLR) [24, 67, 79] uses redundant
processes instead of threads, with processes-replicas having their
own private memory space and synchronizing on system calls.
Both of these approaches require spare cores for redundant ex-
ecution and are thus not suitable for multithreaded programs that
tend to occupy all available cores. Moreover, they only support
deterministic program executions.

Scalable Error Isolation (SEI) [11, 22], a recently proposed
fault detection technique, is the only approach we are aware of
that does not require deterministic execution of multithreaded
programs. It assumes an event-driven programming model, exe-
cuting each event handler twice and appending a CRC signature
to all output messages. Thereby, SEI guarantees end-to-end
protection from data corruptions in a distributed environment.
Unfortunately, SEI requires manual effort to adapt existing code
bases. HAFT, in contrast, applies to unmodified programs and
targets the common shared-memory programming model. Fi-
nally, the authors of SEI assume a broader fault model than
HAFT, with no bound on the number of corrupted variables
per one event handler, and formally prove the correctness of SEI
under this model. HAFT provides weaker guarantees with the
benefit of better performance (§6.1).

Most of the approaches above only provide fault detection
and fail-stop behavior. Coupling them with fault recovery mech-



anisms [56, 59, 68, 70] is considered a non-trivial task. HAFT,
on the other side, seamlessly combines fault detection and fault
recovery.

Lock step CPUs. Traditionally, incorrect execution of programs
has been detected via lock step CPUs, where two CPUs execute
the same application in parallel and synchronize their outputs.
Lock step CPUs are still actively used for critical applications
in the embedded domain and on mainframes. By its very nature,
lock-stepping requires deterministic core behavior and cannot
be applied to modern CPUs that have become increasingly more
non-deterministic [12]. Moreover, lock step CPUs provide only
fault detection, requiring a separate mechanism for recovery.
Being a more light-weight technique, HAFT supports automatic
recovery and non-determinism both on the application as well
as on core level.

2.2 Leveraging HTM for Fault Recovery
Transactional memory was first proposed as a better alternative
for traditional lock-based synchronization in concurrent shared-
memory applications [33, 46]. However, it also provides strong
isolation guarantees and local rollback and can be exploited as
a recovery technique [26].

Intel TSX. In this paper, we focus on a recent HTM implementa-
tion called Intel Transactional Synchronization Extensions (TSX)
[78]. More specifically, we use the Intel Restricted Transactional
Memory (RTM) interface.

RTM introduces a set of new instructions to explicitly be-
gin, commit, and abort transactions. Applications can mark the
boundaries of transactions using XBEGIN and XEND, explicitly
abort them using XABORT, and check if a CPU core is currently
executing in a transaction using XTEST.

In Intel TSX [44, 73, 78], transactions utilize the L1 data
cache as a local buffer to track their read- and write-sets. An
optimized cache coherency protocol is used to detect collisions
between concurrent transactions. Read- and write-sets are imple-
mented at the (64-byte) cache line granularity. A cache line that
is part of the read-set can be evicted without necessarily causing
the transaction to abort, while evicting a cache line that is part
of the write-set always aborts the transaction.

Internally, XBEGIN commands the core to take a snapshot
of its register state and to start tracking the changes done by
the transaction in the read- and write-sets. If the core detects a
conflict with another transaction (or even with non-transactional
code), it aborts its transaction. Otherwise, upon execution of
XEND, the transaction commits by atomically flushing its write-
set to RAM. If the transaction was aborted (either implicitly or
explicitly via XABORT), its read- and write-sets are discarded, the
registers’ state is restored from the snapshot, and the execution
jumps to an abort handler specified as argument to XBEGIN.
The abort handler is usually implemented to retry a transaction
several times before resorting to a fallback path.

Applicability to fault tolerance. Given that Intel TSX is tar-
geted primarily for synchronization, it is not immediately ob-
vious whether it can be also used for fault tolerance. Although

(a) Native
1

2 z = add x, y
3

4

5

6

7 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

Figure 1: HAFT transforms original code (a) by replicating
original instructions with ILR for fault detection (b) and
covering the code in transactions with TX for fault recovery (c).
Shaded lines highlight instructions inserted by ILR and TX.

some research has recently shown promising results when us-
ing HTM for recovery [32, 76, 77], the question remains: can
commodity-hardware HTM implementations provide efficient
and comprehensive support for fault recovery?

In HAFT, the whole application must be wrapped in hard-
ware transactions to support fault recovery. Yet, several design
choices of Intel TSX are driven by the assumption that transac-
tions cover only a handful of small critical sections. This limits
TSX’s applicability for the whole-application fault recovery in
the following ways. Firstly, Intel TSX provides no guarantees
that a transaction will eventually commit even when applied to
sequential code [78]. Secondly, transaction size is limited by the
CPU cache size and by the interval between timer interrupts. For
example, TSX has the following rough thresholds after which
more than 10% of transactions abort: 16 KB for the write set,
1024 KB for the read set, and 1 million CPU cycles (approx.
0.3 ms) [44, 73]. Thirdly, all interrupts/signals (including page
faults) and so-called “unfriendly” instructions (x87 floating-point,
TLB or EFLAGS manipulation, system calls) force a core to
abort any active transactions.

Thus, to guarantee forward progress, HAFT needs a non-
transactional fallback path in case transactional execution does
not succeed. Consequently, if a fault happens during one of these
non-transactional fallbacks, it cannot be recovered. Moreover,
a HAFT transaction must be sufficiently small to finish before
a timer interrupt happens or the L1 cache overflows. Finally,
several factors such as CPU hyper-threading, memory false shar-
ing, and unfriendly instructions also negatively affect HAFT’s
recovery capabilities.

3. HAFT
HAFT is a compiler-based transformation that consists of two
components: ILR for fault detection and TX for fault recovery.
Figure 1 shows an example of HAFT transforming a simple
code snippet. ILR is applied first, replicating all instructions
except control-flow ones (Figure 1b). To achieve fault detection,
ILR inserts a check before returning the result; if two copies of
data diverge, then a fault is detected and an error is reported by
enforcing program termination. To achieve fault recovery, TX is
applied next, covering the code in transactions and substituting
crashes by transaction aborts (Figure 1c). In this case, if a fault



is detected at run-time, the current transaction is rolled back and
re-executed. HAFT attempts to re-execute aborted transactions
for a bounded number of times (three by default in our imple-
mentation), after which the code executes non-transactionally
until a new transaction begin is encountered. If a fault occurs
during such a non-transactional part of code, ILR has no other
choice but to terminate the program. Therefore, HAFT provides
best-effort fault recovery, falling back to fail-stop semantics in
rare cases when the limit of re-executions is exhausted.

3.1 System Model
Before we explain the basic design of HAFT, we present the
system model assumed in this work.

Fault model. HAFT protects against single event upsets (SEU),
i.e., a corruption of a single CPU register or a single miscom-
putation in a CPU execution unit that would otherwise lead to
Silent Data Corruptions (SDC) [16]. The SEU model covers
transient hardware faults due to particle strikes, aging, dynamic
voltage scaling, device variability, etc. We assume that at most
one SEU fault occurs during one hardware transaction. HAFT
can probabilistically protect against bursts of faults as long as
duplicated data flows result in differing corrupted state. Due
to the choice of ILR for fault detection, HAFT cannot tolerate
common-mode failures; however, single uncorrelated bit-flips
are considered to be the dominant cause of CPU faults [16].

Additionally, HAFT assumes that RAM and caches are al-
ready protected by ECC [60]. This assumption usually holds for
data center servers, e.g., our experimental machine has memory
ECC support and all cache levels are protected by ECC or parity.

The design of HAFT assumes correct execution of Intel TSX.
The TSX transactional state resides in the L1 cache and thus is
protected by ECC. However, if XBEGIN, XEND, or XABORT per-
form an erroneous operation (e.g., not all cache lines are flushed
to RAM or rolled back), the program state becomes inconsistent.

Memory model. HAFT relies on the Release Consistency (RC)
memory model [28], which requires that all shared memory
accesses are done via synchronization primitives. The RC model
guarantees correctness for data-race free programs and enables
the optimizations on shared memory accesses (§3.3) which would
not be feasible under stricter memory models such as sequential
consistency [42]. Indeed, a data race would lead to a discrepancy
in results under our optimized ILR that in turn would lead to
either a transaction abort (if executed inside an HTM transaction)
or a program crash (if executed in non-transactional part of
code). To allow for the shared memory accesses optimization,
we assume data-race free executions.

Synchronization model. Our current implementation supports
POSIX threads API and C/C++ atomic synchronization primi-
tives. In fact, HAFT works with any synchronization mechanism
that maps directly to LLVM atomic instructions [6]. Thus, even
lock-free programming patterns are supported as long as they
are explicitly implemented via atomics. Ad-hoc synchronization
mechanisms such as user-defined spin locks are not supported,
but they are error-prone and not recommended for use [75].

HAFT is not readily applicable to HTM-enabled applications.
Our current prototype does not expect TSX instructions in the
native program and therefore could break semantics assumed by
the programmer. However, in §6.1 we show that HAFT can be
efficiently expanded to applications that use lock elision as their
main synchronization primitive.

3.2 Basic Design
In the following, we describe the basics of ILR and TX. For
simplicity of presentation, we first consider sequential applica-
tions. We then show in §3.3 that HAFT’s basic design naturally
extends to multithreaded programs and we further enhance it
with optimizations to improve performance and reliability.

Instruction Level Redundancy (ILR). HAFT utilizes Instruc-
tion Level Redundancy (ILR) for fault detection [25, 40, 49, 60].
ILR operates on one copy of the memory state and checks the
results of computations before each update to memory. This way,
ILR does not increase the memory footprint and allows non-
determinism in applications, selective hardening of functions,
and interoperability with legacy libraries.

To add redundancy, ILR creates a second, shadow data flow
along the master flow, with shadow instructions working on their
own registers (see Figure 1b). Note that the shadow instructions
are executed in the same thread. Since there are no dependencies
between master and shadow instructions, they can execute in
parallel, benefiting from the instruction-level parallelism present
in all modern CPUs.

The basic version of ILR replicates all instructions except
control flow (branches, function calls, returns) and memory-
related (loads, stores, atomics) instructions. If a non-replicated
instruction returns a value, as in case of loads and function calls,
this value is immediately replicated for later use in the shadow
data flow using a register-to-register move.

To achieve fault detection, ILR inserts checks on every in-
struction that updates memory or control flow. Each check com-
pares a master and shadow data copies, reporting an error upon
detecting a discrepancy (Figure 1b, lines 4-5). ILR has a few
windows of vulnerability, i.e., it cannot detect faults occurring
in-between the checks and the checked instructions [60].

In the context of this work, the important advantages of ILR
are its fine-grained checking and in-thread redundancy. As we
utilize HTM for recovery, we are restricted to transactions of
small size operating on a single core. The small size of transac-
tions implies that the checks must be inserted as close as possible
to the potential sources of transient faults. The single-core re-
quirement implies that the fault detection mechanism must not
use additional cores. ILR fulfills both these requirements.

Transactification (TX). In addition to ILR for fault detection,
HAFT also employs transactification (TX) to achieve fault re-
covery. The TX pass of HAFT inserts transaction boundaries in
an application so that it always executes inside HTM transactions.
The challenge here is to determine correct transaction boundaries.
HTM is traditionally used to protect critical sections, with tiny
transactions scattered around the code. In that case, the program-



int c = 123; ;; Original C code
void foo() { while (c < 1000) c++; }

1 entry: ;; Basic block 1
2 tx-begin()
3 dup c.init = load c.adr
4 loop: ;; Basic block 2
5 tx-cond-split()
6 dup c = phi [c.init, entry], [c.new, loop]
7 dup c.new = add c, 1
8 dup cnd = cmp eq c.new, 1000
9 tx-counter-inc(7)

10 br cnd, end, loop
11 end: ;; Basic block 3
12 store c.new, c.adr
13 c.tmp = load c.adr2 ;; ILR check e
14 d = cmp neq c.tmp, c.new2
15 br d, xabort c
16 tx-end()

Figure 2: HAFT transactification example: original C code
(top) and LLVM IR generated for it (bottom). Lines 3 and 6-8
show original instructions replicated by ILR, lines 12-15 show
a check on store inserted by ILR. Shaded lines highlight calls
to HTM helper functions inserted by TX.

mer herself assigns transaction boundaries and ensures the opti-
mal transaction size. HAFT, however, is a fully automated tech-
nique that transparently covers the whole application with transac-
tions at compile-time. Thus, an algorithm to efficiently put trans-
action boundaries—a transactification algorithm—is required.

To best illustrate the mechanisms underlying the transactifi-
cation process, consider the simple example shown in Figure 2.1

It consists of a single function incrementing a global variable
within a loop.2 Here, ILR is first applied on original code: instruc-
tions on lines 3 and 6-8 are replicated, and a store instruction is
augmented with a check on lines 12-15; for simplicity, we omit
the check before a branch on line 10; refer to §3.3 for details.
Next, Tx is invoked to insert transaction boundaries.

A simple transactification algorithm would be to insert bound-
aries only at the level of separate functions (lines 2 and 16).
But in reality functions can be arbitrarily large and can in turn
call other functions, whereas hardware transactions are severely
restricted in size as discussed in §2.2. Therefore, transactions
are bound to abort under this naı̈ve approach, i.e., the rate of
successfully committed transactions would be prohibitively low.

Another extreme is to cover each basic block (single entry
single exit section of code) in a separate transaction. In this case,
since basic blocks usually contain just a handful of instructions,
all transactions should eventually commit. In our example, we
would have three transactions covering the three basic blocks
(lines 1–3, 4–10, and 11–16). However, the second basic block

1 We use a simplified LLVM IR notation; the phi instruction selects a value
depending on the predecessor of the current block.
2 Note that, for the sake of illustration, we have simplified the generated LLVM
code and discarded certain compiler optimizations.

corresponds to the body of the loop that executes several hun-
dreds of times, creating several hundreds of tiny transactions
at run-time. Unfortunately, producing that many transactions
introduces high performance penalty (see §5.3).

Therefore, to achieve high commit rate and low performance
overhead, TX takes a balanced approach and inserts hardware
transactions at the granularity of functions and loops. The algo-
rithm tries to maximize the size of transactions, while at the same
time keeping it less than a predefined threshold to avoid capacity
aborts and ensure that the majority of transactions can commit
successfully. To that end, given that the size of transactions is
not always known at compile-time because the number of loop
iterations is not always known statically, TX keeps track of the
number of instructions executed inside transactions at run-time
using per-thread instruction counters.

TX inserts transactions at compile-time by inspecting all func-
tions in the application and applying a transformation pass that
adds transaction demarcations at specific locations. It relies upon
the following helper functions that embed the low-level HTM
instructions necessary for transactional execution:3 (i) tx-begin()
starts a new hardware transaction and resets the thread-local
counter. If the transaction does not succeed after a number of
retries (default is three), the code executes non-transactionally.
(ii) tx-end() commits the current transaction. (iii) tx-cond-split()
if the thread-local counter exceeds a predefined threshold, com-
mits the current transaction, starts a new hardware transaction,
and resets the counter. (iv) tx-counter-inc() increments the thread-
-local counter by the number of instructions given as parameter.

For each function in an application, TX first inserts a transac-
tion begin at function entry (line 2) and a transaction end before
function return (line 16).

After that, loops are transformed. For each loop, TX inserts
a conditional statement at the entry point to commit the current
transaction and start a new one only when the instruction counter
exceeds a predefined threshold (line 5). This optimization yields
significant performance gains since the counter check is signif-
icantly cheaper than systematically starting a new transaction at
each iteration.

The instruction counter is incremented at each loop latch, i.e.,
at each point where the execution can jump back to the entry
point of the loop (line 9). The increment value is computed as
the longest path in the loop body leading to the latch, i.e., it
corresponds to a worst-case scenario and the counter represents
an upper bound of the transaction size. In the example, the
increment value of 7 corresponds to 3 original instructions in
the loop, 3 shadow instructions added by ILR, and one branch
instruction. Note that a fault in the instruction counter is benign:
the corrupted counter can force a transaction to prematurely
commit or to unexpectedly abort. In either case, the counter will
be reset as soon as a new transaction starts.

Using this loop transformation, several loop iterations can
be executed at run-time before the threshold is reached and

3 The code of these functions consists of just a few instructions that are
subsequently inlined by the optimizer for performance reasons.



(a) Unoptimized
;; Load (atomic)

1 d = cmp neq adr, adr2
2 br d, xabort
3 val = load adr
4 val2 = move val
;; Store (atomic)

5 d = cmp neq val, val2
6 br d, xabort
7 d = cmp neq adr, adr2
8 br d, xabort
9 store val, adr

(b) Optimized
;; Load (race-free)
val = load adr
val2 = load adr2

;; Store (race-free)
store val, adr
tmp = load adr2
d = cmp neq tmp, val2
br d, xabort

Figure 3: Memory accesses in ILR. Unoptimized (a) is used
for atomic accesses while optimized (b) is safe for race-free
programs. Shaded lines highlight instructions of the original
master flow.

a new transaction begins. Thereby, this technique minimizes
the number of required hardware transactions. Note that these
transformations are applied recursively to nested loops.

Finally, TX inserts transaction boundaries around function
calls. In the general case, TX does not know which function is
called and for how long it executes, therefore it pessimistically
ends the current transaction before the call and begins a new one
after it.

3.3 Advanced Features and Optimizations
To reduce the performance overhead of HAFT and increase its
reliability, we apply a number of optimizations on ILR and TX.

Shared memory accesses. In basic ILR, each load and store
requires expensive checks (Figure 3a). This can yield significant
overheads since, in an average application, approximately 10%
of instructions are stores and 30% are loads [14, 15]. In other
words, around 40% of the original instructions need checks under
the naı̈ve ILR interpretation.

To reduce the number of checks, previous research has as-
sumed a very relaxed memory model with two consecutive loads
on the same address always returning the same value [60]. This
assumption holds for sequential applications but is violated in
multithreaded environments. In contrast, our refined ILR distin-
guishes between different types of memory accesses and applies
optimizations only when they are safe.

The key enabler for our optimizations is the RC memory
model (see §3.1). Our design assumes data-race free programs,
where all accesses to shared memory are protected via locks or
done explicitly using atomics. As such, we can separate memory
accesses into atomic and regular ones. Atomic operations are not
replicated and require (expensive) checks, while regular memory
accesses optimize away most checks by relying on (cheaper)
memory loads.

This optimization is illustrated in Figure 3b. By replicating reg-
ular loads, we can eliminate the checks of load addresses. Indeed,
the data-race freedom assumption guarantees that both master
and shadow loads read the same value in the error-free case. A

(a) Naı̈ve
1 d = cmp neq cnd, cnd2
2 br d, xabort
3 br cnd, trueblk, falseblk
4

5

(b) Safe
br cnd, strueblk, sfalseblk
strueblk: ;; Shadow blocks
br cnd2, trueblk, xabort
sfalseblk:
br !cnd2, falseblk, xabort

Figure 4: Control flow protection in ILR. The naı̈ve approach
(a) does not protect the condition while the safe one (b) does.

fault happening during one of the loads will result in a wrong
value being read and will propagate further until it is detected at
some later point. Since almost all loads are considered regular,
this optimization alone leads to up to 40% reduction in overhead
(see §5.3). On the contrary, for the rare cases of atomic loads, we
cannot perform any optimizations and fall back to an expensive
address check and a shadow move for each load (Figure 3a, top).

The case of stores is more sophisticated. As atomic stores are
considered irreversible externalization events, all checks must be
performed before the store (Figure 3a, bottom). The effects of
regular stores are, however, thread-local or protected by locks,
which enables us to place the check after the store and simplify it
with the help of an extra load (Figure 3b, bottom). Performance-
wise, the load and check operations are coalesced in an effective
cmp x86-instruction, and the additional load does not introduce
any latency since it utilizes the store-buffer forwarding feature
available on modern CPUs.

Control flow protection. ILR protects against the important
class of transient faults that affect the status register (EFLAGS
in x86) and result in taking incorrect branches. These faults are
especially threatening in control flow intensive applications. For
example, 20% of data corruptions in one of the benchmarks
(linearreg in Figure 9, right) are due to such faults.

Since there is no way to replicate the status register, the ba-
sic version of ILR checks branch conditions before a branch
instruction (Figure 4a). However, if the condition variable cnd
becomes faulty in-between the check and the actual branch, the
program flow can diverge undetectably and lead to further data
corruptions.

Our refined ILR removes an explicit check on the condition
and substitutes it with shadow basic blocks that evaluate the
shadow condition and signal an error if a mismatch is detected
(Figure 4b). The strueblk shadow basic block is taken if the
master condition cnd evaluates to true, and therefore the shadow
condition cnd2 must also evaluate to true; otherwise an error
is signaled. The same reasoning applies to the sfalseblk block,
which operates on an inverse shadow condition. The destinations
of the original branch are rewired to the shadow blocks and a
transient fault in the status register cannot remain undetected.

Note that ILR does not protect against arbitrary control-flow
errors, in particular transient faults that set the program counter
(PC) register to some invalid value. Saggese et al. [61] show that
a random value in the PC virtually never leads to data corruptions,
i.e., there is no need to protect the PC.



Fault propagation check. The design of HAFT assumes that a
fault happening in a transaction is quickly detected and handled.
There is, however, one corner case when the fault can propagate
to a subsequent transaction: the compiler can move stores as part
of the loop hoisting optimization, as the example in Figure 2
shows. Here the global variable c is incremented in a loop. For
performance reasons, the compiler has moved the load of the
initial value before the loop (line 3) and the store of the final
value after the loop (line 12).

In this scenario, a fault corrupting c in one transaction may
propagate to the next transaction if the fault happens during loop
execution. This problematic case arises from the fact that ILR
inserts a check on c only at the final store (lines 12–15).

To limit the propagation of faults inside such loops, we de-
veloped the following optimization, called a fault propagation
check. ILR analyzes each loop induction variable and, if it is
not covered by in-loop checks, adds an explicit check at the loop
entry. TX recognizes these additional checks and moves them
inside the conditional transaction split, such that the checks are
performed directly before committing the previous transaction.
In this case, if a fault corrupts a variable, it will be detected by
the newly added checks and the transaction will abort without
the fault propagating further.

Local function calls. As described in §3.2, TX inserts uncondi-
tional transaction begins and ends at each function entry, function
call, and function return. This is a very conservative stance which
does not rely on any knowledge of the relationship between
different program functions. We notice, however, that most pro-
gram functions are local, i.e., they are always called from other
HAFTed program functions. At the same time, there are some
functions that are called from third-party libraries, e.g., main.

TX exploits this distinction between local and externally
called functions by performing the following optimization. If a
function is marked as local, calls to this function are surrounded
merely by a counter increment and a follow-up conditional
transaction split. Similarly, a local function uses a conditional
transaction split at its entry and a counter increment upon return.
With this caller-callee interaction in place, TX eliminates two
unnecessary transactions at each function call. In our current
implementation, the developer is required to provide a black-list
of externally called functions for this optimization.

Lock elision. HAFT also supports an original approach for lock
elision, which consists in substituting (eliding) locks with hard-
ware transactions to gain better performance [57]. The key ob-
servation is that at run-time locks are often unnecessary because
many critical sections do not overlap in time and could execute
safely without locks. In this case, speculative execution of a crit-
ical section in a transaction is faster than lock-based execution.

The lock elision optimization in HAFT relies on the fact that
hardware transactions can be used for fault recovery and lock
elision at the same time. We implement this optimization in the
following way. Whenever HAFT detects a call to a lock function
(acquire or release), it does not surround it with a transaction
end and begin, but instead it calls a corresponding wrapper. The

wrapper checks if a thread already executes in a transaction. If so,
the critical section is executed under the protection of the active
transaction without acquiring the lock. Otherwise, HAFT falls
back to the original conservative locking scheme. We found this
optimization to be particularly helpful in case of Memcached,
and we investigate its gains in §6.1.

4. Implementation
We implemented HAFT as a LLVM-based compiler framework
[43] that takes unmodified source code of an application and
produces a HAFTed executable (§4.1). Additionally, we imple-
mented a software-based fault injection framework compatible
with Intel TSX (§4.2).

4.1 HAFT Compiler Framework

Tool chain. We developed HAFT based on LLVM 3.7.0. In
particular, we implemented HAFT as two independent LLVM
passes: ILR to add fault detection capabilities (∼830 LOC) and
TX to add fault recovery (∼540 LOC). Both passes abstract
away the underlying details of the architecture; the architecture-
specific functionality is extracted in separate LLVM IR files that
are queried during compilation.

Overall, the build process proceeds as follows. First, all
source files are compiled separately and linked to produce a
single LLVM bitcode file [43]. Thereafter, all regular LLVM
compiler optimizations are performed on the bitcode representa-
tion. We then take the optimized bitcode and pass it through the
two implemented compiler passes, namely, ILR followed by TX.
Finally, the target machine code is generated. Note that we nei-
ther impose restrictions on the traditional compiler optimizations,
nor do we require changes to the build parameters.
ILR pass. For the implementation of the ILR compiler pass,
we had to modify the LLVM CodeGen module. In particular,
since ILR introduces redundant shadow registers and shadow
instructions, the LLVM compiler is free to optimize away these
shadow copies. To prevent LLVM from doing it, we decouple
the master and shadow data flows by introducing CodeGen-level
move pseudo-instructions and corresponding LLVM intrinsics.
These instructions and intrinsics are opaque to all LLVM opti-
mization passes and are replaced by real x86 register moves only
at the very last stage of code generation.

Furthermore, the LLVM optimizer can also remove shadow
loop induction variables in cases when the initial (constant)
value for the variable is known. We prevent this optimization by
moving the initial value to a global volatile variable and reading
it before the loop body. This trick has negligible performance
impact since the initial value is loaded only once before the loop.

For the shared memory access optimization of ILR described
in §3.3, we insert a volatile shadow load to prevent the compiler
from optimizing it away or moving it around other memory-
related operations.
TX pass. The TX pass follows closely the description in §3.2.
We introduce thread-local instruction counters and four helper
functions, as well as wrappers for the acquire and release func-



FI result Description System
Hang Program became unresponsive

CrashedOS-detected OS terminated program
ILR-detected ILR detected, TX did not recover
HAFT-corrected ILR detected, TX recovered CorrectMasked Fault did not affect output
SDC Silent data corruption in output Corrupted

Table 1: Classification of fault injection results.

tions from the lock elision optimization in §3.3, in a separate
LLVM IR file. The TX pass queries this file during compilation.
This way, we can abstract the TX pass from the underlying
hardware and pthreads implementation.

The threshold for transaction sizes (§3.2) and a black-list of
non-local functions (§3.3) are specified using additional LLVM
compiler flags.
Collaboration of ILR and TX. The fault propagation check de-
scribed in §3.3 requires a tight collaboration between otherwise
independent ILR and TX. To achieve this, ILR adds checks with
associated LLVM metadata in the loop. TX recognizes these
checks and moves them in a conditional transaction split right
before the previous transaction’s commit. The fault propagation
check currently works only on innermost loops. Only induction
variables from the loop header that are not checked in the loop
body are covered by this check.

Both ILR and TX introduce some basic peephole optimiza-
tions, e.g., ILR removes checks that immediately follow a
creation of a shadow copy and TX removes pairs of transaction
starts followed immediately by transaction ends.
Libraries support. HAFT can transform only the source code
available during compilation. This becomes a problem for ap-
plications that rely heavily on external libraries such as libc or
libstd++. In such case, these unprotected libraries constitute a
significant part of runtime execution and faults happening in
their code go undetected. To increase fault coverage for C/C++
applications, we applied HAFT to a part of the libc library and
link it to the final executable. We use the musl library [8] with
assembly support disabled as reference implementation. We
opted not to include dynamic memory allocation, I/O, OS, and
pthreads-related functions for our prototype. Firstly, they account
for a small fraction of runtime (less than 5%) for most programs,
and secondly, they use system calls and unfriendly instructions
prohibited in hardware transactions. Notice that most previous
systems [25, 59, 60] did not apply their hardening techniques to
external libraries, which impedes a direct comparison.
Limitations. Our HAFT prototype does not transform inline
assembly code nor assembly functions: LLVM treats assem-
bly as black-box function calls with no additional knowledge
of their behavior. Furthermore, our prototype does not protect
the C++ exception handling mechanism which requires a tight
collaboration of LLVM IR and libstd++.

4.2 HAFT Fault Injection Framework

Fault injection tool. For conducting fault injection experiments
of HAFT, we need a software-based fault injection tool that

Crashed Corrupted

λ masked

λ sdcλ crashed
ρ manual-reboot ρ manual-recovery

Correct HAFT-correctable
λ HAFT-correctable

ρ HAFT-recovery

Figure 5: HAFT probabilistic model. System transits from
correct state to other states at predefined fault rates λ and returns
back to correct state at predefined recovery rates ρ.

works with Intel TSX. As other tools [11, 62, 74] do not have
such support, we developed our own binary-level fault injector
(∼320 LOC).

Our fault injector is based on the Intel SDE emulator [4],
which allows us to attach the GDB debugger to an emulated
program. We leveraged this feature to design a simple GDB
script-based fault injection tool. Intel SDE emulates all TSX
instructions and thus enables us to perform fault injections on
machines that do not have hardware support for TSX. It has
an additional benefit that attaching GDB during a hardware
transaction does not lead to a transaction abort.

The fault injection experiments proceed in two steps. In the
first preparatory step, a reference execution trace of a tested pro-
gram is generated using Intel SDE’s debugtrace tool. This trace
contains all the instructions executed by the program and all the
registers updated by these instructions. Additionally, the program
is run without any fault injections to produce a reference output.

From the obtained execution trace, at each fault injection,
we choose a random occurrence of a random instruction that
updates at least one register. We use weighted random numbers
to inject faults uniformly across the whole execution of a pro-
gram. After the specific occurrence of an instruction is chosen,
one of its output registers is randomly selected to inject a fault
into. The injection of a fault is simulated by XORing the value
of this register with a random integer. Such faults imitate both
sporadic corruptions of CPU registers and miscomputations in
CPU execution units. The fault occurs right after the selected
instruction. Faults are injected in general-purpose registers, as
well as in the status and x86-64-specific registers.

In the second step, we start the program under Intel SDE
with GDB attached and inject a single fault. To inject a fault,
we construct a GDB script to set a conditional breakpoint in
the program based on the specified instruction address and its
occurrence number. Whenever the breakpoint is triggered by any
thread, the script injects a fault and resumes execution. After the
program terminates, the output is examined to study the effect
of the fault injection (see Table 1). The second step is repeated
until a sufficient number of runs (fault injections) is reached.

Fault injection probabilistic model. Our fault injection tool
injects only one fault per run and requires smallest inputs to
finish one experiment in a reasonable amount of time. Hence,
we also built a probabilistic fault injection framework to investi-
gate reliability of HAFTed programs working for a longer time
and under different fault rates. We use a probabilistic model



checker tool called PRISM [41] to construct a continuous-time
Markov chain model of HAFT (∼130 LOC) and verify its
properties probabilistically. Figure 5 represents the model for the
native, ILR, and HAFT architectures. The architectures differ
in the transition rates, which are selected from our fault injection
experiments (see §5.5).

The system starts with a correct state. A transient fault can
transfer the system to a correct, corrupted, crashed, or HAFT-
correctable state. If a system is not in a correct state, then it is
unavailable and needs recovery. A crashed system can be recov-
ered by rebooting, and a corrupted system by manual recovery.
The system in a HAFT-correctable state is recovered by restart-
ing a transaction; this state exists only in the HAFT architecture.

5. Evaluation
Our evaluation answers the following questions:
• What are the performance overheads of HAFT? (§5.2)
• How effective are the optimizations in improving the perfor-

mance and reliability of HAFT? (§5.3)
• What is the effect of hyper-threading on HAFT? (§5.4)
• What is the level of fault tolerance achieved by HAFT, and

how efficient is it under different fault rates on long-running
programs? (§5.5)
• What is the code coverage provided by HAFT, i.e., what

fraction of the run-time execution is protected? (§5.6)

5.1 Experimental Setup

Applications. We evaluated HAFT with applications from two
multithreaded benchmark suites: Phoenix 2.0 [58] and PARSEC
3.0 [15]. We report results for all 7 applications in the Phoenix
benchmark and 8 out of 13 applications in the PARSEC bench-
marks. The remaining five applications are not supported for
the following reasons: bodytrack and raytrace make use of C++
exceptions, which are currently not supported by our implemen-
tation; freqmine is an application based on OpenMP, which did
not compile under our version of LLVM; fluidanimate produces
nondeterministic output and thus makes it impossible to check
the correctness of the results; and finally, the native version of
facesim crashes with a runtime error when compiled with LLVM.

All applications were compiled with the HAFT compiler
based on LLVM 3.7.0 with -O3, -mrtm (to support Intel TSX),
and -fno-builtin (to transparently link against our own ver-
sion of libc) flags and linked using the LLVM gold plugin.

Modified applications. Two applications from the Phoenix
benchmark, wordcount and kmeans, have a high level of cache
conflicts, which results in frequent transaction aborts. Therefore,
we modified 47 LOCs in the former and 5 LOCs in the latter to
mitigate this problem. We report results for both modified and
unmodified versions. We refer to the modified (“no sharing”)
versions as wordcount-ns and kmeans-ns.

Datasets. For the performance evaluation, we used the largest
available datasets provided by Phoenix and PARSEC benchmark
suites. However, fault injection experiments were carried out

using the smallest available input because they are extremely
time consuming.

Testbed. We carried out the performance evaluation experiments
on a machine with two 14-cores Intel Xeon processors operating
at 2.0 GHz with hyper-threading enabled (Intel Haswell microar-
chitecture) with 128 GB of RAM, a 3.5 TB SATA-based SDD,
and running Linux kernel 3.16.0. Each core has private 32 KB
L1 and 256 KB L2 caches, and 14 cores share a 35 MB L3
cache. Due to hyper-threading, two logical threads sharing the
same core also share the L1 and L2 caches. For fault injections,
we used a cluster of 25 machines to parallelize the experiments.

Methodology. For all measurements, we confined our experi-
ments to one processor, thus the maximum number of threads
is restricted to 14 for all benchmarks. Note that we pinned ap-
plication threads to separate physical cores in all experiments to
avoid the effects of hyper-threading. In addition, we conducted
an experiment to estimate how hyper-threading affects abort
rates of HAFT (see §5.4).

For performance experiments, we ran programs with 1–14
threads. For fault injections, we fixed the number of threads
to two. For each Phoenix benchmark, we performed a warm-
up run to load input files into the main memory to stress-test
the CPU overheads of HAFT (otherwise Phoenix benchmarks
would be dominated by I/O). For PARSEC benchmarks, we
reused the provided framework.

Measurements. For all performance measurements, we report
the average over 10 runs. Fault injection experiments were
conducted by injecting 2,500 faults for each program.

5.2 Performance Overheads
We first present the performance overheads of HAFT over the
native execution. Figure 6 shows the overheads for a varying
number of threads ranging from 1 to 14 threads.

The average overhead across all applications is 2× (see bar
mean). The best case for HAFT is matrixmul due to the very
low instruction-level parallelism (ILP) of 0.2 instructions/cycle
for the native execution; thereby, HAFT effectively utilizes these
spare ILP resources, with a runtime overhead of just 5%. The
worst case for HAFT is vips, which incurs a slowdown of 4×,
where two factors negatively affect HAFT’s performance. First,
the native version already has high ILP of 2.6 instructions/cycle
such that there are no spare cycles left for HAFT. Second, vips
has many calls to tiny functions such that the TX local function
calls optimization leads to a high performance penalty. If we
disable this optimization, the performance overhead drops to
2.5× (vips-nc in Figure 6; see also next section).

HAFT benefits from the suboptimal scalability of native
versions of programs. For example, the native version of ferret
scales linearly, so the overhead of HAFT stays at the same level
with the increasing number of threads. In contrast, the native
version of dedup scales poorly with more than 2 threads and the
overhead of HAFT is amortized in this case.

Table 2 (first three columns) highlights the contribution of
HAFT components: ILR and TX. ILR alone incurs performance
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Figure 6: Performance overhead over native execution with the increasing number of threads (on a machine with 14 cores).
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Figure 7: Performance overhead over native execution with different optimizations (with 14 threads).

Benchmark Overheads (§5.2) HT Cov. %
ILR TX HAFT (§5.4) (§5.6)

histogram 1.46 1.02 1.55 1.0 95.7
kmeans 1.60 1.28 1.86 2.6 95.8
kmeans-ns 1.63 1.28 1.93 5.4 —
linearreg 2.03 1.12 2.16 1.2 97.2
matrixmul 1.04 1.01 1.04 377 88.9
pca 1.35 1.14 1.78 2.4 95.1
stringmatch 1.50 1.46 2.26 1.8 98.7
wordcount 1.35 1.39 1.92 1.5 95.1
wordcount-ns 1.45 1.31 1.93 8.9 —

blackscholes 1.17 1.06 1.30 2.9 93.9
canneal 1.16 1.13 1.36 1.3 67.6
dedup 0.99 1.02 1.13 1.1 75.1
ferret 1.32 1.25 1.99 12.6 96.9
streamcluster 1.46 1.18 1.59 1.9 92.7
swaptions 1.98 1.57 2.64 11.4 89.6
vips 2.16 2.29 4.21 1.5 85.1
vips-nc 2.19 1.46 2.68 1.3 —
x264 2.32 1.33 2.86 4.9 85.5

mean 1.52 1.27 1.89 24.5 90.2

Table 2: First three columns: Normalized runtime w.r.t. native
of HAFT and its components (§5.2). Fourth column: Increase
in abort rate when moving from the non-hyper-threaded to
the hyper-threaded configuration (§5.4). Fifth column: Code
coverage of HAFT in % (§5.6). All experiments with 14 threads.

overhead of 52% on average; this low overhead indicates that
ILR efficiently uses spare ILP to hide additional instructions and
checks inserted at compile-time. TX incurs 27% overhead on
average. Interestingly, the overhead of TX is higher than that of
ILR in the case of vips; as explained in the previous paragraph,
this is due to the high number of calls to tiny functions. As soon
as we remove this bottleneck, the overhead of TX decreases by
60% (vips-nc).

5.3 Effectiveness of Optimizations

Impact of optimizations. The impact of different optimiza-
tions (§3.3) on performance is shown in Figure 7. We compare
HAFTed benchmarks without any optimizations and then apply
the following optimizations successively: ILR shared memory
accesses, ILR control flow protection, TX local function calls,
and fault propagation check. Note that the fault propagation
check is targeted to increase reliability at the price of some
performance degradation.

This set of optimizations leads to an average performance
improvement of 20% and in some cases achieves 70%. Interest-
ingly, the addition of control flow checks, which are introduced
to increase reliability, has a positive impact on performance:
this happens because the check of a condition is substituted by
a sequence of jumps, thus decreasing the number of executed
instructions and benefiting from branch prediction.

Another somewhat surprising result is the TX local function
calls optimization: performance of most benchmarks improves
significantly, whereas it degrades for vips. In the case of vips, the
overhead of updating and checking the dynamic counter turns
out to be higher than simply starting a new transaction on each
function call. We decided to also show the results of vips with
this optimization disabled (vips-nc) in other experiments.

Impact of transaction size. We show the impact of different
transaction sizes (maximum number of instructions in one trans-
action) on the performance overhead and the number of aborts in
Figure 8 respectively. Note that the number of threads is fixed to
14 in these experiments. Performance overhead decreases with
greater transaction sizes, from 2.2× to 1.8× on average, due to
the lower number of transactions. At the same time, the number
of aborts grows with increasing transaction sizes. Aborts happen
due to the following two reasons: first, longer transactions over-
flow the L1 cache more often, and second, longer transactions
lead to higher probability of conflicts between threads.
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Figure 8: Performance overhead over native execution (top) and percentage of aborts (bottom) vs. transaction size (with 14 threads).

Benchmark Abort Abort causes, %
rate (%) Capacity Conflict Other

histogram 1.10 0.48 30.16 69.36
kmeans 4.51 0.01 99.90 0.09
kmeans-ns 2.40 0.03 95.68 4.29
linearreg 0.58 0.00 0.13 99.87
matrixmul 1.05 66.21 0.06 33.73
pca 4.82 0.72 82.97 16.31
stringmatch 0.15 2.53 0.32 97.15
wordcount 14.60 1.27 94.90 3.83
wordcount-ns 2.42 16.24 20.80 62.96

blackscholes 0.08 2.20 0.50 97.30
canneal 0.28 1.34 2.70 95.96
dedup 9.84 16.29 1.50 82.21
ferret 2.75 80.40 0.62 18.98
streamcluster 23.40 0.11 99.89 0.00
swaptions 3.78 90.87 0.01 9.12
vips 1.78 40.40 41.75 17.85
vips-nc 0.33 2.36 97.64 0.00
x264 2.86 64.22 6.72 29.06

Table 3: Transaction abort rate and causes (with 14 threads). The
worst-case transaction size of 5,000 is fixed for each benchmark.

Peculiarly, increasing transaction sizes (and thus higher abort
rates) does not result in any clear pattern of performance over-
heads. Indeed, with increasing transaction sizes, two factors
compete: (1) longer transactions amortize the cost of TX instru-
mentation, and (2) the number of aborts increases because trans-
actions start to overflow or conflict. The first factor decreases
performance overhead while the second factor increases it.

This is evident from Figure 8. In the case of streamcluster,
the number of aborts goes up to 23.4%, but longer (and fewer)
transactions counterbalance this factor, and thus the performance
overhead stays roughly the same. Compare it with histogram,
where the number of aborts is low and the amortization factor
dominates, thus decreasing the overhead. Finally, in the case of
x264, the number of aborts drastically increases with transaction
sizes greater than 1000, resulting in a change of the performance
pattern.

The huge negative impact of cache sharing is clearly seen
when comparing kmeans and kmeans-ns (removed true sharing),
as well as wordcount and wordcount-ns (removed false sharing).
In a demonstrative case of wordcount, rewriting the application
with no cache sharing results in a 7× decrease of transaction
aborts.

Table 3 shows the breakdowns of abort rates and their causes
for each benchmark, measured with the worst-case transaction
size of 5,000. The low abort rates (less than 1%) are largely dom-
inated by the residual spontaneous (“other”) aborts. Higher abort
rates are caused either mostly by capacity overflows or by con-
flicts among simultaneous transactions. For example, all aborts
in kmeans are due to high conflict rates, whereas matrixmul
experiences many capacity overflows due to its cache-unfriendly
behavior.

For all other plots, we set for each benchmark the transaction
size to the greatest value such that the percentage of aborts is
sufficiently low, in order to achieve the best trade-off between
performance and reliability. For example, we set transaction size
to 1000 for kmeans and pca, and to 5000 for stringmatch and
blackscholes.

5.4 Effect of Hyper-threading
To estimate the effect of hyper-threading on HAFT, we conduct
the experiment with 14 threads (similar to Figure 6, last bar).
However, in this experiment we pin 14 logical threads to 7 phys-
ical cores. Thus, each pair of threads shares CPU execution units
and L1 and L2 caches.

Table 2 (fourth column) highlights the increase in abort rates
compared to the baseline configuration of 14 logical threads
on 14 physical cores. Many benchmarks still have low abort
rates (histogram, linearreg, canneal, etc.), but some exhibit dra-
matic increase in transaction aborts (matrixmul, ferret, swaptions,
etc.). In the former case, transactions are sufficiently small to
peacefully co-exist in the shared L1 cache. In the latter case,
transactions compete for the limited capacity of the cache and
abort each other.

The case of matrixmul is peculiar, with an abort rate increasing
by 377× from negligible 0.07% aborts in non-hyper-threaded
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Figure 9: Reliability of HAFT (left) and impact of different optimizations on two benchmarks (right) with 2 threads.

Fault probabilities Native ILR HAFT
Masked (%) 61.3 24.2 24.2
SDC (%) 26.2 0.8 1.1
Crashed (%) 12.5 75.0 7.7
HAFT-correctable (%) — — 67.0

Table 4: Parameters for the HAFT model.
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Figure 10: HAFT fault injection modeling. Plots show fractions
of time when system is available (left) or corrupted (right) in
a time span of one hour w.r.t. the fault rate.

scenario to 24% with hyper-threading. Our analysis indicates
that aborts happen due to frequent overflows of a cache on read
accesses – matrixmul is cache-unfriendly, and the sharing of L1-
and L2-caches by two threads only exacerbates this problem.

5.5 Fault Injections

Fault injection experiments. The results of our fault injection
experiments are shown in Figure 9. The faults were injected
uniformly at random across the whole execution trace of each
benchmark, including the parts not protected by HAFT (§4.1).
Note that we were not able to perform fault injections into vips
as injecting one fault under Intel SDE took more than an hour
even under the smallest inputs.

We also performed the experiment where the faults were
injected only in the protected parts of the benchmarks, with very
similar outcomes. This is expected: Our statistics indicates that
the faults landing in unprotected parts constitute less than 1% of
all injected faults in almost all cases except for wordcount and
x264. Therefore, we do not show the results of this experiment.

Even in native execution, most of the faults (61.3%) are
masked and programs remain correct after a fault is injected.
However, around 26% of faults lead to data corruptions (see
bar mean). When applying ILR, almost all faults (99.2%) are
detected, but programs exit prematurely 75% of the time, lead-
ing to low availability (this can be explained by the fact that

ILR sometimes detects also those faults that would be masked
in native execution). Finally with HAFT, program reliability
increases to approximately 91.2%. (Program reliability with
HAFT reaches 92% on average if the faults are injected only in
the protected parts of benchmarks.)

Figure 9 (right) shows the impact of different optimizations
on the reliability of HAFT. As conducting these experiments
is highly time-consuming, we chose only one benchmark from
Phoenix (linearreg) and one from PARSEC (canneal). Note that
the non-optimized versions (N) have a non-negligible number
of data corruptions. In the case of canneal optimizations only
slightly decrease the number of data corruptions, while for lin-
earreg the shared memory optimization (S) and the addition of
control flow protection (C) lead to SDC-free executions, but also
slightly increase the proportion of crashes. The local calls opti-
mization (L), which is only intended for performance improve-
ment, has no effect on reliability. Finally, the fault propagation
check (F) improves the availability of linearreg dramatically,
reducing the number of crashes from 50% to less than 5%.

Fault injection modeling. To measure the reliability of HAFT,
we use the model from §4.2 and parameters from Table 4. Fault
probabilities are extracted from the fault injection experiments.
We choose the following recovery rates: 6 hours for manual recov-
ery, 10 seconds for machine reboot, and 2.5 µs for transactional
recovery in HAFT. The rate of manual recovery is based on the
Amazon report where it took 6 hours between the first noticed cor-
ruption and the renewal of processing of requests [1]. The rate of
machine reboot is based on the time needed for a complete reboot
of our server. The rate of HAFT recovery is based on the maxi-
mum transaction size of 5,000 instructions, which corresponds to
the maximum latency of recovery of 2.5 µs on a 2.0 GHz CPU.

Figure 10 (left) shows the fraction of time when the sys-
tem is available in a time span of one hour with regard to the
fault rate. The fault rate varies from once every hour to once
every second (0.00028 to 1 fault/second). HAFT significantly
increases program availability compared to ILR and native. For
example, under a fault rate of 1.0, HAFT’s availability is around
50%, i.e., 30 minutes out of one hour. In contrast, availability of
native and ILR versions is 0% and 10% (6 minutes) respectively.
In addition, Figure 10 (right) indicates that ILR and HAFT
drastically reduce the number of data corruptions. Native spends
more than 80% of the time in a corrupted state, while both ILR
and HAFT stay in this state for less than 20%.
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Figure 11: Memcached throughput. Left two graphs: workloads A and D. Right graph: comparison of HAFT and SEI using a mcblaster
client, a key range of 1,000, and values of size 128 B (same experimental setup as in [11]).

5.6 Code Coverage
Lastly, we analyzed what fraction of the run-time execution is
protected with HAFT. Remember that our prototype of HAFT
does not protect external libraries except for partial support of
libc (see §4.1). To this end, we measured the fraction of dynamic
execution spent inside transactional execution (Table 2, fifth
column). The fraction is calculated as the number of cycles
executed in transactions to the number of all cycles executed,
as reported by the perf tool. Each program was built with all
HAFT optimizations enabled and with the number of threads
fixed to 14; the number of retries was set to three. The mean
code coverage across all benchmarks is 90.2% indicating a high
level of protection for almost all applications. Two exceptions
are canneal and dedup: the former extensively uses containers
from libstd++ while the latter spends many cycles in unprotected
parts of libc for thread management and dynamic allocation.

6. Case Studies
We successfully applied HAFT on five real-world applications
without any source code modifications. Due to space limita-
tions, we present detailed results only for Memcached (§6.1) and
present summarized results for the others (§6.2). All applications
were run in a local deployment on a single Haswell machine: we
deployed each server application on one 14-core processor and
its client applications on the other processor.

6.1 Memcached Key-Value Store
We evaluated Memcached [27] v1.4.24 using workloads from the
YCSB benchmark [21] with 1 million key-value queries, each
key being 16 B and each value 32 B. Figure 11 (left two graphs)
shows the throughput of Memcached increasing with the number
of threads, with two extreme YCSB workloads corresponding to
the best and worst case for HAFT: A (50% reads, 50% writes,
Zipf distribution) and D (95% reads, 5% writes, latest distribu-
tion). We evaluated Memcached with all available variants for
synchronization using pthreads locks and atomic operations. For
both native and HAFT, we tested two versions, one with locks
only (native-lock and HAFT-lock) and one with atomics enabled
(native-atomics and HAFT-atomics). Note that HAFT-lock has
the optimization of lock elision (see §3.3). We also show the
version with this optimization disabled (HAFT-lock-noelision).

The lock elision optimization allows HAFT-lock to perform
30% better than HAFT-lock-noelision and on par with native-

lock, i.e., the overhead of HAFT is completely amortized by this
optimization. Indeed, when configured to use locks, Memcached
spends most of the time acquiring and releasing the locks. Since
HAFT already uses transactions for recovery, removing the
overhead of these locks comes for free. Moreover, HAFT-lock
performs similar to HAFT-atomics, indicating that an applica-
tion can achieve the same performance improvement with lock
elision as when using atomics.

Our experiments also show that the latency of HAFT is 30%
worse than in native on average and the percentage of committed
transactions remains above 95% in all runs. Finally, the fault
injection experiments indicate that HAFT decreases the percent-
age of data corruptions from 2% to 0.09% (two SDCs). Both
lingering data corruptions happened in the very beginning of
two functions responsible for shaping a reply message (namely,
add bin header and add iov). In both cases, the “length”
function argument was corrupted exactly before its shadow copy
was created; as a result, the reply string was incorrectly truncated.

Comparison with SEI. We also compared HAFT against SEI
[11], another state-of-the-art approach, using Memcached.4 We
deployed SEI locally on our Haswell machine and reproduced
the experiments from the SEI paper with the mcblaster client, a
key range of 1,000, and values of size 128 B. Since SEI performs
modifications to Memcached, we apply HAFT on the modified
version.

Figure 11 (right graph) shows that HAFT performs on par
with the native version (similar to graphs on the left) and out-
performs SEI by 30–40%. The lower performance of SEI is
explained by the local deployment; in the experiments with
remote clients in the original paper [11], SEI’s overhead was
amortized by the network. Also note that the lock elision opti-
mization of HAFT provides no benefit in this experiment. This
is due to an older version of Memcached (namely, version 1.4.15)
that supports only coarse-grained locks and thus is not amenable
to our simple lock-elision heuristics.

We conclude with an indirect comparison of fault coverage,
based on the numbers reported in [11].5 As shown earlier, HAFT
leaves 0.09% of data corruptions, whereas SEI with a similar
configuration cannot detect 0.15% of corruptions.

4 Note that Memcached is the only multithreaded application evaluated in [11].
5 These numbers should be treated with care because of the differences in
Memcached versions, fault models and fault injection frameworks used.
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6.2 Additional Case-Studies

LogCabin (RAFT). LogCabin [7] is an implementation of a
consistent storage mechanism built on the RAFT [52] consensus
protocol. For the evaluation, we used the benchmark shipped
together with LogCabin that repeatedly writes 1,000 values into
a memory-mapped file.
Apache web server. Apache is a popular web server [2]. For
multithreading, we use a “worker multi-processing module” with
a single running process and a varying number of worker threads.
We used the Apache ab benchmark tool that queries a static
1 MB Web page for the evaluation.
LevelDB key-value store. LevelDB is a fast embedded key-
value storage library developed by Google [5]. We evaluated
LevelDB on an in-memory database using the same YCSB
workloads used for Memcached (workloads A & D).
SQLite database. SQLite is an SQL database engine imple-
mented as an embeddable software library [53]. We evaluated
SQLite on an in-memory database using again YCSB workloads
A and D.

The scalability plots are shown in Figure 12. LogCabin and
LevelDB are well-behaved applications, performing 25–35%
worse than native versions. Apache exhibits an overhead of just
10%; this good result is due to Apache’s extensive use of external
libraries that are not transformed by HAFT. SQLite shows the
poorest results, with HAFT performing 3–4× worse than the
native version. We attribute this poor performance mainly to the
extensive use of function pointers that are conservatively treated
as external functions by HAFT.

We performed fault injection experiments on LevelDB and
SQLite. Though their native versions are already tolerant to data
corruptions, the faults lead to a high number of crashes, 42% and
28% respectively. HAFT decreases these numbers to only 10%
and 3.7%, providing significantly higher availability.

7. Conclusion and Future Work
Many software systems require very high level of reliability.
Alas, adding fault tolerance capabilities to existing applications
inevitably degrades their performance. Fortunately, modern com-
modity hardware with its increased instruction level parallelism
and new extensions such as hardware transactional memory en-

ables cheap and efficient fault tolerance solutions. In this paper,
we presented HAFT, a novel approach to software hardening
that provides low-cost fault detection via instruction-level redun-
dancy and fast fault recovery via HTM. Our evaluation shows
that HAFT significantly increases reliability and availability at
the cost of 2× performance overhead.

Future Work. In the current design of the transactification
algorithm, a single threshold value is chosen for the entire ex-
ecution of a program (§3.2). In reality, different code paths of
the same program exhibit different behavior with respect to hard-
ware transactions. In this case, some form of static/dynamic
adjustment of the threshold could prove beneficial.

Our current implementation of HAFT does not protect all
program code. While adding protection to the most of the func-
tionality that standard libraries provide seems straightforward,
supporting inline assembly and the C++ exception mechanism
would require substantial engineering effort. Another problem is
unfriendly instructions which inevitably lead to TSX transaction
aborts. We believe this can be fixed in the future implementa-
tions of TSX. Fortunately, once these issues are resolved, all
programs written in LLVM-backed programming languages
could be transparently hardened.

Hardware transactional memory can be found in architectures
other than x86-64. For example, IBM POWER8 [18] provides
not only regular TSX-like transactions, but also rollback-only
transactions which buffer stores without detecting data con-
flicts. Moreover, transactions in POWER8 can be suspended
and resumed to avoid aborting on interrupts. We are currently
investigating how these properties can benefit HAFT.

Software availability. HAFT’s source code is publicly available
under https://github.com/tudinfse/haft.
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