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Research Highlights 

 Antimicrobial resistant (AMR) E. coli from faeces of vet-visiting dogs were common. 

 Risk factors for carriage include antimicrobial use and consuming raw poultry meat. 

 Resistance genes identified are also common in isolates of human origin. 

 Dogs may be a reservoir of AMR bacteria, having public health implications. 

 

  



Abstract 

Resistance to antimicrobials, in particular that mediated by extended spectrum β-lactamases 

(ESBL) and AmpC β-lactamases are frequently reported in bacteria causing canine disease as 

well as in commensal bacteria, which could be a potential health risk for humans they come 

into contact with. This cross-sectional study aimed to estimate the prevalence and investigate 

the molecular characteristics of ESBL and plasmid encoded AmpC (pAmpC)-producing E. 

coli in the mainland UK vet-visiting canine population and, using responses from detailed 

questionnaires identify factors associated with their carriage. Faecal samples were cultured 

for antimicrobial resistant (AMR), ESBL and pAmpC-producing E. coli. A subset of ESBL 

and pAmpC-producing isolates were subjected to multi-locus sequence typing and DNA 

microarray analyses. Multivariable logistic regression analysis was used to construct models 

to identify risk factors associated with multidrug resistant (MDR, resistance to three or more 

antimicrobial classes), fluoroquinolone resistance, ESBL and AmpC-producing E. coli. AMR 

E.coli were isolated from 44.8% (n=260) of samples, with 1.9% and 7.1% of samples 

carrying ESBL and pAmpC-producing E. coli, respectively. MDR E. coli were identified in 

18.3% of samples. Recent use of antimicrobials and being fed raw poultry were both 

identified as risk factors in the outcomes investigated. A number of virulence and resistance 

genes were identified, including genes associated with extra-intestinal and enteropathogenic 

E. coli genotypes. Considering the close contact that people have with dogs, the high levels of 

AMR E. coli in canine faeces may be a potential reservoir of AMR bacteria or resistance 

determinants.  

1. Introduction 

Antimicrobial resistant (AMR) bacteria is a common and increasing problem in healthcare 

and community settings. Multidrug resistant bacteria, for example Escherichia coli, are 

commonly reported in dogs and other companion animals (Shaheen et al., 2010). In addition 



to E. coli being a common cause of gastrointestinal infections, the vast majority of humans, 

dogs and other mammals carry commensal E. coli within the gut. However, such commensal 

bacteria may also cause opportunistic disease if outside their normal niche, for example in the 

urinary tract (Johnson and Russo, 2002). Furthermore, the location of commensal E. coli 

means that they are exposed to the selective pressure of antimicrobials given orally. These 

commensal bacteria may then themselves act as a reservoir for such resistance determinants. 

As such, E. coli isolated from faecal samples can provide a good indication of the reservoir of 

resistance within the gut flora (van den Bogaard and Stobberingh, 2000).  

One resistance mechanism of particular concern is that mediated by extended spectrum β-

lactamases (ESBLs), which  hydrolyse third generation cephalosporins, such as ceftazidime, 

cefotaxime, cefpodoxime and ceftiofur (Livermore, 2008). E. coli harbouring such ESBL 

encoding genes have become increasingly prevalent in hospitals and in the community in 

people (Brolund et al., 2014) and dogs (Gandolfi-Decristophoris et al., 2013). Plasmid 

mediated AmpC (pAmpC) enzymes, which also have a broad spectrum of resistance to 

cephalosporins, but are resistant to β-lactamase inhibitors, have also been documented in 

dogs (Sidjabat et al., 2006).  

While AMR E. coli from canine clinical samples has been reported (Pedersen et al., 2007), 

the general human population is more likely to be exposed to the bacteria present in the 

faeces of dogs. For example, owners picking up after their dogs have defecated. It is therefore 

important to understand the prevalence of antimicrobial resistance among the E. coli resident 

in the gut of healthy dogs. Such studies have been carried out in both Europe (SVARM, 

2006) and Canada (Murphy et al., 2009) and have demonstrated that animals and humans 

often carry the same resistance determinants. A small number of studies have shown, using 

macro-restriction pulsed-field gel electrophoresis, that dogs, cats and humans in the same 

household can have identical bacteria (Johnson et al., 2008a), supporting the suggestion of 



transmission of enteric bacteria between humans and their pets. However, studies that 

investigate the risk factors for carriage of AMR bacteria are very limited and focus mainly on 

acquisition of antimicrobial resistance during hospitalisation (Gibson et al., 2011; Leite-

Martins et al., 2014). Identification of such risk factors could be key in developing effective 

strategies to reduce the development and spread of such resistance in the future. 

The aim of this study was to determine the faecal prevalence of AMR E. coli, including 

ESBL and pAmpC β-lactamase producing E. coli, in the mainland UK vet-visiting dog 

community. DNA micro array analysis was used on a subset of multi drug resistant (MDR, 

resistant to three or more antimicrobial classes), and ESBL producing isolates to investigate 

the presence of genes associated with antimicrobial resistance and virulence. In addition, risk 

factors associated with carriage of antimicrobial resistance were determined.  

2. Materials and Methods 

2.1. Study population 

Dogs visiting veterinary practices in mainland UK were recruited during consultation with 

their clinician. Practices were randomly selected from those listed in the 2006 RCVS 

directory of veterinary practices who indicated that they treated dogs. Hospitalised dogs were 

excluded. An estimated sample size of 555 dogs was based on the participation of 50 

practices, an expected carriage rate of AMR E. coli of 50%, 5% precision, 95% confidence 

intervals and a conservative between practice variance of 0.01. To allow for a degree of non-

compliance, each practice was asked to recruit 28 dogs. A further 37 practices were 

subsequently recruited due to the low numbers of dogs enrolled by some practices. Dogs 

were recruited to the study between April 2008 and July 2009. Consent was obtained, from 

the owners, by the clinician during their routine consultation before any samples were 

collected. Ethical approval was granted by the University of Liverpool Committee on 

Research Ethics (Reference RETH000118).  



2.2. Sample collection and questionnaire 

Owners were provided with a sterile collection tube and gloves to collect a fresh faecal 

sample from their dog. They were also asked to complete a six-page questionnaire with both 

tick box and free text questions. The questionnaire included questions relating to signalment, 

medical history of the dog over the previous three months (including use of antimicrobials), 

diet and recent use of antimicrobials by any other family member (including other pets). The 

faecal sample and completed questionnaire were returned by first class post. 

2.3. Sample processing 

An equal volume of the faecal sample was added to 5 ml of brain heart infusion broth with 

5% glycerol (BHIG) and mixed thoroughly to create a faecal homogenate. A portion of this 

was stored below -70 °C and the remainder used to isolate AMR E. coli, as previously 

described (Wedley et al., 2011).  Briefly, the faecal homogenate was plated directly onto 

MacConkey and eosin methylene blue agar (EMBA) and antimicrobial discs (MAST group 

Ltd) applied to the surface: ampicillin (10 µg); amoxicillin clavulanic acid (30 µg); 

chloramphenicol (30 µg); ciprofloxacin (1 µg); nalidixic acid (30 µg); tetracycline (30 µg); 

and trimethoprim (2.5 µg). Following overnight incubation at 37°C, colonies 

morphologically consistent with E. coli within the zone of inhibition around the antimicrobial 

discs were selected. One isolate, if present, from within the zone of each of the seven 

antimicrobial discs was selected. For screening of samples for ESBL producing E. coli, two 

EMBA plates, one containing cefotaxime (1 μg/ml) and the other ceftazidime (1 μg/ml), were 

streaked with the faecal homogenate. If present, at least one isolate morphologically 

consistent with E. coli was selected from each plate. If no growth consistent with E. coli 

occurred, further EMBA plates were streaked with faecal homogenate following overnight 

enrichment in buffered peptone water. In addition, for non-selective isolation of E. coli, an 

EMBA plate containing no antimicrobials was streaked with the faecal homogenate. Three 



isolates morphologically consistent with E. coli were selected for antimicrobial susceptibility 

testing. Therefore, it was possible to select a total of 19 isolates from each sample. The 

identity of E. coli isolates was confirmed by biochemical testing and a PCR assay to detect 

the uidA gene (McDaniels et al., 1996). 

2.4. Antimicrobial susceptibility testing 

Antimicrobial disc susceptibility testing following British Society for Antimicrobial 

Chemotherapy (BSAC) guidelines (Andrews, 2007) was performed on all isolates using the 

same antimicrobial discs as used for the isolation of E. coli above. Additionally, for potential 

ESBL or AmpC producing E. coli, an extended panel of antimicrobial discs were used: 

aztreonam (30µg), ceftazidime (30µg), ceftriaxone (30µg), cefoxitin (30µg), cefuroxime 

(30µg), cefalexin (30µg), tazobactam (10µg), piperacillin (75µg) and trimethoprim-

sulfamethoxazole (25µg). The reference strain E. coli ATCC 25922 was used as a fully 

sensitive control in all testing. Following overnight incubation at 37°C, the zone diameters in 

mm were recorded. For each sample, only one isolate per unique resistance phenotype was 

included in any subsequent testing.  

2.5. Phenotypic confirmation of ESBL production  

The paired disc diffusion test (MAST Group Ltd) was performed on isolates suspected of 

ESBL production, selected from the EMBA plates containing ceftazidime or cefotaxime.  

Following overnight incubation, the zone diameters in mm were recorded. Production of an 

ESBL by an isolate was confirmed if the zone diameter was expanded by at least 5mm in the 

presence of clavulanic acid. When an isolate showed resistance to a cephalosporin, with a 

difference in zone diameter less than 5mm this suggested the production of an AmpC β-

lactamase, both an ESBL and an AmpC β-lactamase, or an inhibitor resistant ESBL. 

2.6. Characterisation of ESBL and blaAmpC genes 



PCR was used to detect the presence of blaTEM, blaSHV, blaCTX-M and plasmid encoded 

blaAmpC genes as previously described (Batchelor et al., 2005; Boyd et al., 2004; Essack et al., 

2001; Perez-Perez and Hanson, 2002). For blaCTX-M positive isolates, assignment of the 

specific blaCTX-M gene group was carried out (Batchelor et al., 2005; Boyd et al., 2004), 

followed by sequencing of the PCR amplicon. For blaCMY positive isolates, the gene was 

amplified (Liebana et al., 2004), with an additional set of internal primers (CITMf and 

CITMr) used for sequencing (Perez-Perez and Hanson, 2002). All sequences were compared 

to those submitted to GenBank (http://www.ncbi.nlm.nih.gov/genbank/) to determine the 

specific blaCTX-M or blaCMY gene. In all PCRs, a positive control, known to harbour the target 

gene in previous PCR assays, was included.  

2.7. DNA microarray analysis of E. coli 

Isolates for DNA microarray analysis were chosen due to their phenotypic resistance to 

multiple classes of antimicrobials and included all isolates positive for carriage of a blaCTX-M 

gene and a selection of those carrying blaTEM and/or plasmid encoded blaAmpC genes. These 

E. coli isolates were subjected to DNA microarray based chip analysis using Alere E. coli and 

Alere AMR–ve  chips according to the manufacturer’s instructions (Alere Technologies, 

Jena, Germany). Alere E. coli array detects the presence of virulence associated E. coli genes. 

Alere AMR-ve detects the presence of genes responsible for resistance to a selection of 

antimicrobials in Gram negative bacteria. 

2.8. Multi-Locus Sequence Typing analysis of E. coli 

Multi-locus sequence typing (MLST) of the isolates selected for DNA microarray analysis 

was carried out as previously described (Wirth et al., 2006), http://mlst.ucc.ie/mlst/dbs/Ecoli.  

2.9. Statistical analysis 

Four different outcomes (fluoroquinolone resistance, MDR, ESBL-producing E. coli and 

pAmpC-producing E. coli) were tested for associations with explanatory variables 

http://www.ncbi.nlm.nih.gov/genbank/
http://mlst.ucc.ie/mlst/dbs/Ecoli


(questionnaire responses) using univariable logistic regression. In all models, clustering at the 

practice level was taken into account by including the practice as a mixed effect in the models 

constructed. A likelihood ratio test (LRT) comparing the models with and without each of the 

explanatory variables was performed. Associations were considered statistically significant if 

P<0.05. For variables with small numbers, categories were grouped together. Also, the 

reference category was changed if this was considered appropriate. For example, for length of 

prescription of antimicrobials, “none prescribed” was made the reference category. For 

variables with zero cells, a Fisher’s exact test was carried out to determine if there was a 

significant association between the outcome and the response variable. If significant, a false 

positive was added to the dataset for the purposes of construction of a multivariable model. A 

multivariable model was constructed including all those variables with a P-value less than 

0.3. Backwards elimination was used where removal of each variable from the full model as 

assessed by the likelihood ratio test and the variable with the highest P-value was removed. 

This process was repeated until only those variables whose removal resulted in a LRT P-

value of less than 0.05 remained. Each variable that had been removed was then sequentially 

added back in and a LRT performed to test whether the variable should remain in the final 

model. Where the final model included more than two variables, tests for interactions 

between the variables were carried out and interactions with P-value of less than 0.05 were 

retained in the final model. Multivariable analysis excluded any dogs that did not have 

complete responses for any of the variables included in the model. Statistical analyses were 

performed using the R base, lme4, and lmtest packages.  

To determine the intraclass correlation coefficient (the measure of clustering of an outcome 

within practices), the latent variable approach was used (Goldstein et al., 2002) with equation 

1 below. 



 
         

                 

                  
  

 

 (Equation 1) 

3. Results 

3.1. Study population 

In total, 580 faecal samples, 574 with questionnaires, were returned but only 445 

questionnaires were completed fully. The median age of dogs recruited was 5 years (range 6 

weeks to 17 years) and 64 different pure breeds were represented. Cross-breeds (n=123, 

21.4%), followed by Labrador retrievers (n=90, 15.7%) were most common. 

3.2. Prevalence of antimicrobial resistance 

At least one E. coli was isolated from 561 (96.7%) of the 580 faecal samples, with AMR E. 

coli isolated from 260 (44.8%) faecal samples. A total of 436 unique E. coli isolates (up to 

nine per sample) were recovered based on their antimicrobial susceptibility profile. Table 1 

shows the simple sample prevalence of faecal carriage of AMR E. coli and the prevalence 

adjusted for clustering. The most common resistance phenotypes observed were to ampicillin 

(37.2%), tetracycline (30.0%) and trimethoprim (23.8%). E. coli resistant to 

amoxicillin/clavulanic acid, chloramphenicol, ciprofloxacin and nalidixic acid was observed 

in less than 10% of dogs. MDR E. coli was isolated from 18.3% of dogs. The intraclass 

correlation coefficient (ICC) of presence of ESBL and pAmpC genes (53.5% and 19.9% 

respectively) among E. coli  is much higher than for resistance to the other antimicrobials 

(between 0 and 10%), suggesting some degree of clustering at the practice level for these 

outcomes.  

ESBL producing E. coli were isolated from 1.9% of samples and a pAmpC β-lactamase 

producing E. coli from 7.1% of samples. Fifty-two isolates from fifty dogs (8.6% of samples) 

were identified as either ESBL or pAmpC producers by phenotypic testing and PCR.  In these 

isolates, resistance to ampicillin, cephalexin and cefoxitin (8 isolates) was most common. All 



but four isolate were susceptible to aztreonam. MDR was observed in 13 of the 52 isolates 

(25%). 

3.3. Characterisation of ESBL and AmpC β-lactamase genes 

Of the 58 isolates obtained from the cephalosporin containing plates, 21 carried a blaTEM 

gene. However, six of these were not resistant to third generation cephalosporins in disc 

diffusion testing and are therefore most likely to be blaTEM-1. Ten carried a blaCTX-M gene 

(Table 2), most of which belonged to CTX-M group 1 (five blaCTX-M-1, two blaCTX-M-15 and 

one blaCTX-M-3). One isolate carried blaCTX-M-14/18 (CTX-M group 9) and one blaCTX-M-20 (CTX-

M group 2). A plasmid encoded blaAmpC gene was found in 42 isolates, which were all shown 

to be blaCMY-2.  No isolates carried a blaSHV gene.  

3.4. Microarray analysis of E. coli 

A subset of 30 isolates underwent microarray analysis. These included all ten isolates 

harbouring a blaCTX-M gene and a selection of isolates harbouring one or both of blaTEM or 

blaAmpC. The results observed with AMR array chip showed good agreement with in vitro 

testing of antimicrobial susceptibility (Figure 1). Of the 30 isolates tested, 23 harboured 

genes encoding resistance to tetracycline (tet(A) and tet(B) and 20 harboured genes encoding 

resistance to trimethoprim (dfrA1, dfrA7, dfr12, dfrA17 and dfrA5). Genes encoding 

resistance to aminoglycosides were also identified in 25 isolates (aadA1, aadA2, aadA4, 

aac3Iva, aac6lb, strA and strB), whilst 24 isolates harboured genes encoding resistance to 

sulphonamides (sul1 and sul2). Seven isolates harboured genes encoding resistance to 

chloramphenicol (catA1, catB3 and floR). Erythromycin resistance genes (ere(A) and erm(B)) 

were identified in a single isolate. A number of resistance genes appeared to be clustered 

within isolates. For example, there was a positive correlation between trimethoprim 

resistance genes dfrA19 and dfrA17 and the aminoglycosidase gene aadA4. Correlation was 

also evident between the aminoglycosidase genes strA and strB and the sulphonamide 



resistance gene sul2. Supplementary figure F1 provides further detail of the clustering present 

between resistance genes in the isolates investigated.  

 Twenty-three different genes associated with virulence were detected.  Ten or isolates were 

found to be positive for iss (22 isolates) associated with increased resistance to serum, 

followed by iroN (14 isolates) associated with iron uptake, lpfA (11 isolates) encoding long 

polar fimbriae and mchF (10 isolates) encoding a subunit of an ABC transporter protein. The 

full list of virulence genes identified is provided in supplementary table S1. A number of 

genes associated with the locus of enterocyte effacement (LEE) were detected in eight 

isolates, though none appeared to possess all genes encoded by the pathogenicity island.  

3.5. Multi-Locus Sequence Typing 

The 31 isolates studied by microarray also underwent multi-locus sequence typing, although 

seven could not be typed due to poor sequence quality, or because no amplicon could be 

obtained. In total, 19 different sequence types (STs) were identified (Figure 1). Sixteen 

occurred only once and three (ST1684, ST1710 and ST1832) were novel sequence types. The 

most commonly identified STs were ST963 (three isolates), ST88 (two isolates) and ST1670 

(two isolates). With the exception of the three ST963 isolates, which all carried blaCMY gene, 

no association with ST and specific blaCTX-M or blaCMY genes was evident.  The two isolates 

that carried blaCTX-M-15 were found to be ST410 and ST448.    

3.6. Risk factors associated with carriage of AMR E .coli 

Univariable analysis identified a variety of explanatory variables to be significantly 

associated with one or more of the four outcomes tested. Any explanatory variables with a p-

value of less than 0.3 were included in the initial multivariable model (Supplementary tables 

1 to 4). With the exception of being fed raw poultry, which was significantly associated with 

ESBL carriage (P<0.001), fluoroquinolone resistance (P<0.001) and MDR (P=0.006), no 

variables were associated with more than one of the outcomes. 



Following sequential removal of variables from the maximal model, Table 3 shows the 

variables remaining in the models of the four outcomes. Raw poultry consumption remained 

significantly associated with ESBL carriage (OR 48.04), fluoroquinolone resistance (OR 

2.18) and MDR (OR 4.11). There was evidence of an interaction between raw poultry 

consumption and being a working dog in the fluoroquinolone resistance model with working 

dogs that also consumed raw poultry being 104 times more likely to carry an E. coli that was 

resistant to fluoroquinolones, however confidence intervals were wide. Breed size was 

identified as a risk factor for ESBL carriage and MDR. For ESBL mediated resistance with 

large dogs eight times more likely to carry ESBL producing E. coli compared to 

small/medium dogs. In the MDR model, large dogs were 2.5 times more likely to carry MDR 

E. coli than medium sized dogs with no significant difference between small and medium 

dogs. Other variables that remained in the final models included antimicrobial prescription, 

presence of or contact with other animals, age and the purpose of the veterinary consultation, 

though none were associated with more than one of the four models.  

4. Discussion  

This study investigated the prevalence faecal carriage of AMR E. coli by vet visiting dogs in 

the UK. Plasmid mediated AmpC β-lactamase-producing E. coli carriage was higher (7.1%) 

than the prevalence of ESBL producing E. coli (1.9%). However, only one gene variant 

associated with the AmpC β-lactamase phenotype (blaCMY-2) was identified, which has been 

identified in E. coli from canine clinical samples in Italy and Canada (Carattoli et al., 2005; 

Sanchez et al., 2002), and healthy dogs from many countries including the USA and the UK 

(Murphy et al., 2009; Wedley et al., 2011). The high frequency of this gene in canine isolates 

may be due to spread of a few specific plasmids (Hopkins et al., 2006), or the integration of 

the blaCMY-2 gene into many plasmids facilitating widespread dissemination (Carattoli et al., 

2002). There was a greater clustering of pAmpC carriage (19.9%, the degree of clustering) 



within practice compared to other outcomes (with the exception of ESBL carriage, 53.53%), 

which supports the suggestion that prescribing practices (Hughes et al., 2012), or other 

practice specific factors, may have a direct effect of carriage of AMR bacteria.  

This study found carriage of AMR E. coli to be common among the vet-visiting dogs (44.8%) 

with resistance to ampicillin, tetracycline and trimethoprim most prevalent, reflecting 

previous studies (Costa et al., 2008; SVARM, 2006), which may be attributed to the 

numerous determinants responsible for resistance and that they are readily transmissible, but 

also the frequent use of these and related drugs in dogs .  

Resistance to other antimicrobials in this study appeared to be higher than previously 

reported (Carattoli et al., 2005; Costa et al., 2008; Murphy et al., 2009; Wedley et al., 2011). 

This may be due to the type of population; for example these were vet-visiting dogs, some of 

which reported recent antimicrobial use, while other studies recruited community dogs and/or 

excluded animals with any history of antimicrobial use. MDR isolates were found in 18.4% 

of dogs; however, it is difficult to compare this with other studies since the definition of 

MDR differs between studies. 

Microarray analysis of antimicrobial resistance genes showed that many isolates harboured 

genes encoding resistance to a wide range of antimicrobials, including sulphonamides (sul2), 

aminoglycosides (aadA1, strA) and chloramphenicol (catA1). These AMR genes are also 

commonly identified in isolates of human origin (Card et al., 2015; Frye et al., 2006; 

Kirchner et al., 2014). Furthermore, the predominant genes and mechanisms of resistance for 

each of the antimicrobials concur with other studies of resistance genes in canine isolates 

(Costa et al., 2008; Lanz et al., 2003). This provides further evidence that antimicrobial 

resistance in bacteria isolated from dogs is often mediated by the same genes as those of 

human origin. Whilst microarray analysis was only carried out on a subset of the isolates, 

there was strong evidence co-carriage of different resistance genes. Plasmids are known to 



carry numerous resistance genes and so the presence of correlation of gene carriage is to not 

unexpected.  

A wide variety of genes associated with virulence were also detected, but by far the most 

commonly identified were those associated with extra-intestinal pathogenic E. coli (ExPEC) 

including iss and iroN (Johnson et al., 2008c; Russo et al., 2002). However, the microarray 

chip did not include the specific genes that have been suggested as being markers of ExPEC 

(at least two of the five virulence markers: papA and papC, sfa/foc, afa/dra, iutA, 

and kpsMT II), (Johnson et al., 2001). Dogs have been suggested as a potential reservoir for 

the ExPEC pathotype (Johnson et al., 2008b). It is also interesting to note that some isolates 

harboured virulence genes associated with the locus of enterocyte effacement (LEE) found in 

enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) (Kaper et al., 2004). 

Dogs often eat faeces of livestock, which are carriers of EHEC, furthermore a previous study 

found coprophagy to be a risk factor for antimicrobial resistance in canine faecal samples 

(Leite-Martins et al., 2014).  

Many of the STs identified have previously been identified in both clinical and non-clinical 

samples from humans, dogs and other animals from within the UK, other parts of Europe and 

as far as Canada and Australia (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli/GetTableInfo_html). 

For example, ST10 has been reported in the UK, Africa, Europe, South America and the USA 

in samples from humans, dogs and livestock. Recently,  a new human clone has been reported 

(Schaufler et al., 2016), which has also been identified in veterinary clinical isolates in the 

UK (Timofte et al., 2016), with an isolate of the same ST (ST410) resistant to 

fluoroquinolones and carrying blaCTX-M-15 found in this study.  Typing of more isolates with a 

diverse range of resistance phenotypes may enable better links between ST, virulence and 

resistance to be investigated further. There was a high degree of diversity among ESBL and 

AmpC β-lactamase-producing isolates in this study, demonstrating that such E. coli show 

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli/GetTableInfo_html


highly variable antimicrobial resistance, virulence and sequence types, but overall was 

similar to that observed in human isolates.   

This study determined some risk factors associated with carriage of AMR E. coli in the UK 

dog population. The finding that administration of antimicrobials within the last 3 months 

was associated with AMR E. coli carriage in two of the final models is not surprising given 

the selection pressure this would exert upon commensal bacteria. Previous studies found that 

the administration of fluoroquinolones and β-lactams were associated with an increased risk 

of carriage of AMR E. coli in dogs (Gibson et al., 2011; Leite-Martins et al., 2014). Further 

work in this area may provide greater understanding of the effects of short and long term 

antimicrobial use on the gut flora, selection and carriage of resistant bacteria in dogs.  

Eating raw poultry was also identified as a risk factor in the final model of two of the three 

outcomes tested. This was also identified in a study investigating AMR E. coli in faecal 

samples from Labrador retrievers (Schmidt et al., 2015). Chickens have been identified as a 

potential reservoir for resistant bacteria and determinants (Costa et al., 2009) and it is 

possible that ingestion of raw poultry results in transfer of these. This is also supported by 

five of the ten isolates positive for blaCTX-M carrying blaCTX-M-1, which has been identified as 

the most common gene variant present in isolates of poultry origin (Efsa, 2011). Furthermore, 

a study in the Netherlands observed a high prevalence of ESBL carriage in raw food 

(Overdevest et al., 2011), demonstrating an increased risk of carriage of AMR bacteria when 

dogs consume raw meat.  

Limitations in this study may include the method of recruitment and selection bias, for 

example, during busy periods owners may not have been approached and case selection was 

based on a non-random convenience population. This cross sectional study gives the 

prevalence of carriage of AMR E. coli at a single time point, and it may be possible that this 

is transient in nature. A study in the Netherlands (Baede et al., 2015), repeatedly sampled 38 



dogs over six months and  found that many of the dogs demonstrated a high degree of 

variation between faecal shedding of AmpC and ESBL producing E. coli. Repeated sampling 

may represent a more accurate method to determine faecal shedding by dogs. Breed size also 

remained significantly associated with ESBL producing and MDR E. coli. However, the 

breed size of 161 dogs was not specified either because the owners did not specify the breed 

of their dog, or the dog was a cross breed and the size could not be determined.  

In conclusion, many of the dogs sampled harboured AMR E. coli. The potential for dogs to 

act as reservoirs for AMR bacteria and determinants has implications for public health. The 

welfare of the individual dogs could also be affected if this restricts future treatment options. 

In addition, knowledge of potential risk factors associated with the carriage of antimicrobial 

E. coli by dogs in the community will allow better risk management.  Educating owners on 

the risks of raw food diets comprising poultry meat and regulation of the process in addition 

to ensuring the prudent use of antimicrobial by veterinary surgeons would be a good place to 

begin. 
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8. Figure Legends 

 

Figure 1. Heat-map analysis the presence of antimicrobial resistance genes among 

ESBL and AmpC β-lactamase producing E. coli from canine faecal samples by DNA 

micro array. Black indicates that the isolate was positive for the gene. 

 

A - Quinolone resistance, B - Sulphonamides, C - Tetracyclines, D - Aminoglycosides, E - 

Chloramphenicol, F - Trimethoprim, G - β-lactams, H - Erythromycin, I - Streptogrammin, 

ST – Multi-locus sequence type. 

 

Supplementary figure F1. Correlation matrix of antimicrobial resistance genes 

identified in E. coli isolated from vet visiting canine faecal samples. 

 

A - Quinolone resistance, B - Sulphonamides, C - Tetracyclines, D - Aminoglycosides, E - 

Chloramphenicol, F - Trimethoprim, G - β-lactams, H - Erythromycin, I - Streptogrammin, 

ST – Multi-locus sequence type. 

  



 

Table 1. Prevalence of antimicrobial resistant E. coli isolated from 581 canine faecal 

samples. 

 Sample 

prevalence %  

(95% confidence 

interval) n=580 

Adjusted 

prevalence* % 

(95% confidence 

interval 

ICC 

Any resistance 44.8% (40.8-48.9) 44.7% (40.1-49.4) 3.07 

Multidrug resistance 18.3% (15.1-21.4) 17.6% (14.1-21.4) 5.02 

Ampicillin 37.2% (33.3-41.2) 36.9% (32.2-41.9) 5.57 

Amoxicillin/clavulanic 

acid 

7.1% (5.0-9.2) 6.6% (4.3-10.0) 5.21 

Chloramphenicol 9.1% (6.8-11.5) 8.0% (5.5-11.6) 10.62 

Ciprofloxacin 5.0% (3.2-6.8) 5% (3.5-7.1) 0 

Nalidixic acid 7.9% (5.7-10.1) 7.9% (6.0-10.4) 0 

Tetracycline 30% (26.3.-33.7) 28.9% (24.3-33.9) 7.54 

Trimethoprim 23.8% (20.3-27.3) 23.2 (19.5-27.5) 4.03 

ESBL mediated 

resistance 

1.9% (0.8-3.0) 0.5% (0.1-3.3) 53.53 

AmpC mediated 

resistance 

7.1% (5.0-9.2) 5.1% (3.0-8.8) 19.93 

*Estimates adjusted for clustering within practice 

  



Table 2. Genes detected and AMR phenotype in 52 ESBL or AmpC producing E.coli 

isolates from canine faecal samples. 

Genes detected Row Labels Count of 

Full profile 

blaCMY2 Amp, 1st Gen 1 

blaCMY2 Amp, 1st Gen, 2nd Gen 1 

blaCMY2 Amp, Amc, 1st Gen 2 

blaCMY2 Amp, Amc, 1st Gen, 2nd Gen 1

7 

blaCMY2 Amp, Amc, 1st Gen, 2nd Gen, 3rd Gen 3 

blaCMY2 Amp, Amc, Tet, 1st Gen, 2nd Gen 3 

blaCMY2 Amp, Atm, Sxt, 1st Gen, 2nd Gen, 3rd Gen 1 

blaCTX-M-1 Amp, Tet, 1st Gen, 2nd Gen, 3rd Gen 1 

blaCTX-M-1 Amp, Tmp, Sxt, 1st Gen, 2nd Gen 1 

blaTEM, blaCMY2 Amp, Amc, 1st Gen, 2nd Gen 3 

blaTEM, blaCMY2 Amp, Amc, 1st Gen, 2nd Gen, 3rd Gen 1 

blaTEM, blaCMY2 Amp, Amc, Atm, Cip, Nal, Tmp, Sxt, Tet, Chl, 

1st Gen, 2nd Gen, 3rd Gen 

1 

blaTEM, blaCMY2 Amp, Amc, Atm, Tmp, Sxt, Tet, 1st Gen, 2nd 

Gen, 3rd Gen 

1 

blaTEM, blaCMY2 Amp, Amc, Cip, Nal, Tmp, Sxt, Tet, 1st Gen, 

2nd Gen 

2 

blaTEM, blaCMY2 Amp, Amc, Cip, Nal, Tmp, Sxt, Tet, Chl, 1st 

Gen, 2nd Gen 

1 

blaTEM, blaCMY2 Amp, Amc, Cip, Nal, Tmp, Tet, 1st Gen, 2nd 

Gen 

1 

blaTEM, blaCMY2 Amp, Amc, Tet, 1st Gen, 2nd Gen 2 

blaTEM, blaCMY2 Amp, Amc, Tmp, Sxt, 1st Gen, 2nd Gen 1 

blaTEM, blaCMY2 Amp, Tmp, Sxt, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-1 Amp, Nal, Tmp, Sxt, Tet, Chl, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-1 Amp, Tmp, Sxt, Tet, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-1 Amp, Tmp, Sxt, Tet, Chl, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-14/18 Amp, Tmp, Sxt, Tet, Chl, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-15 Amp, Atm, Cip, Nal, Tmp, Sxt, Tet, 1st Gen2nd 

Gen3rd Gen 

1 

blaTEM, blaCTX-M-15 Amp, Cip, Nal, Tmp, Sxt, Tet, 1st Gen2nd Gen 1 

blaTEM, blaCTX-M-3 Amp, Tmp, Sxt, Tet, 1st Gen2nd Gen 1 

blaTEM, blaCTX-M-20 Amp, Tmp, Sxt, Tet, 1st Gen2nd Gen 1 

*1st Gen cephalexin, 2nd Gen cefuroxime/ cefoxitin, 3rd Gen ceftazidime/ ceftriaxone, Chl 

chloramphenicol, Mon aztreonam, Pen ampicillin/ amoxicillin/clavulanic acid, Q 

ciprofloxacin/ nalidixic acid, Tet tetracycline, Tm trimethoprim/ co-trimoxazole.  

  



Table 3. Multivariable model of variables associated with carriage of an ESBL (TEM or 

CTX-M), AmpC, Multi-drug resistant or fluoroquinolone resistant E. coli. Practice 

(n=73) was included as a random effect. 

 

  

AmpC 

mediated 

resistance  (565 

observations) 

ESBL mediated 

resistance 

(560 

observations) 

MDR  

(571 

observations) 

Fluoroquinolon

e resistance  

(538 

observations) 

Variable Response 
OR (95% 

CI) 

P-

Valu

e 

OR (95% 

CI) 

P-

Valu

e 

OR (95% 

CI) 

P-

Val

ue 

OR (95% 

CI) 

P-

Valu

e 

Prescribed 

any 

antibiotic in 

previous 

three 

months 

No Ref 
<0.0

01 

  

 

Yes 

5.99 

(2.92-

13.11) 

 

Other 

animals in 

the 

household 

No Ref 
0.03

9 

  

 

Yes 

0.46 

(0.20-

0.96) 

 

Fed raw 

poultry 

No 

 

Ref 
<0.0

01 
Ref 

0.0

04 

Ref <0.0

01 

Yes 
48.04 (8.83-

334.29) 
 

4.11 (1.59-

10.39) 
 

2.18 (0.32-

9.26) 

 

Neutered 

No 

 

Ref 
0.03

3 
 

 

Yes 
8.76 (1.17-

201.74) 
 

Breed size 

Small 

 

Ref (Small 

& Medium) 

0.01

6 

1.16 (0.48-

2.70) 

0.0

03 

 

Medium Ref  

Large 
8.32 (1.34-

162.71) 
 

2.48 (1.36-

4.76) 
 

Not 

specified 

0.93 (0.03-

25.95) 
 

1.04 (0.51-

2.12) 
 

Visited for 

Vaccination 

or worming 

No 

 

Ref 
0.03

3 
 

 

Yes 
0.37 (0.006-

0.87) 
 

In contact 

with other 

dogs during 

walks 

No 

 

Ref 
0.04

7 

  

Yes 
0.21 (0.045-

0.98) 
 

Visited with 

specific 

complaint 

No 

  

Ref 
0.0

20 

 

Yes 
1.73 (1.09-

2.79) 
 

Working 

dog 

No 
 

  

Ref 0.04

4 

Yes 
1.28 (0.29-

4.03) 

 

Age (years) <1    6.40 (1.06- 0.01



  

AmpC 

mediated 

resistance  (565 

observations) 

ESBL mediated 

resistance 

(560 

observations) 

MDR  

(571 

observations) 

Fluoroquinolon

e resistance  

(538 

observations) 

Variable Response 
OR (95% 

CI) 

P-

Valu

e 

OR (95% 

CI) 

P-

Valu

e 

OR (95% 

CI) 

P-

Val

ue 

OR (95% 

CI) 

P-

Valu

e 

55.5) 5 

1 to 2 Ref  

3 or more 
6.46 (1.55-

47.7) 

 

Sex 

Male 
 

  

Ref 0.01

6 

Female 
2.39 (1.17-

5.13) 

 

Medication 

prescribed 

during most 

recent visit 

No 
 

  

Ref 0.03

6 

Yes 
2.08 (1.05-4.16) 

Fed titbits 

Never/ 

rarely 

 

  

Ref 0.01

4 

Sometimes/ 

often 

2.17 (1.05-

4.99) 

 

Raw 

poultry:Wor

king dog* 

No raw 

poultry, not 

a working 

dog 

 

  

Ref 0.00

5 

Fed raw 

poultry and 

is a 

working 

dog 

37.49 

(2.74-

866.10) 

 

Practice Variance  

(standard deviation) 

ICC 

0.755 (0.869) 

18.66% 
0 (0) 

0.17(0.416) 

4.99% 

0(0) 

Deviance 221.41 66.67 491.47 252.04 

Degrees of freedom of 

model residuals 
561 552 564 

528 

P-value (Chi-squared) 1.000 1.00 0.987 1 

 

*Explanation of interaction term. No raw poultry not a working dog Odds ratio = 1.No raw 

poultry working dog Odds ratio = 1.28. Fed raw poultry not a working dog odds ratio = 2.18, 

Fed raw poultry and working dog Odds ratio = 1.28*2.18*37.49 = 104.61. 

 

  



 


