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Abstract

During mammalian embryogenesis, hematopoietic stem and progenitor cells (HSPCs)
originate from mesoderm-derived endothelial cells in the aorta-gonad-mesonephros (AGM)
region and placenta. Later, HSPCs expand in fetal liver and migrate to bone marrow shortly
before birth. Understanding global transcriptional regulation governing HSPC emergence
from embryonic stem/induced pluripotent stem cells is necessary to devise clinical
applications, such as novel transplantation approaches. Here, to assess transcriptional
dynamics during development, we performed cap analysis of gene expression (CAGE) on 10
developmental murine HSPC populations isolated from the AGM region, placenta, fetal liver
and bone marrow and identified 15,681 transcripts across HSPC ontogeny. We performed
microarray analysis of AGM-derived HSPCs at 9.5 and 10.5 dpc and identified 40
differentially-expressed genes, 23 confirmed as significantly changed by real-time PCR. We
conclude that a transcriptional switch point occurs in HSPC ontogeny between 9.5 and 10.5
dpc in the AGM region.

Keywords: hematopoietic stem and progenitor cells, ontogeny, cap analysis of gene
expression
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Introduction

Hematopoietic stem cells (HSCs) either self-renew or differentiate into all blood cell
types. How HSCs maintain a balance between self-renewal and differentiation capacity
throughout their lifespan is a key area of investigation [1]. During mammalian
embryogenesis, HSCs emerge through a complex process involving ontogenesis at distinct
anatomical sites including the yolk sac, the aorta-gonad-mesonephros (AGM) region,
placenta (PL) and fetal liver (FL), culminating at birth in colonization of bone marrow (BM)
[2]. Understanding molecular mechanisms regulating these steps could have direct clinical
applications for HSC transplantation therapy. Decades of research investigating HSC
developmental stages and biology demonstrate that intrinsic signals and niche factors regulate
these transcriptional programs [3-5], but the genome-wide picture of the transcriptional
network governing HSC development and maturation remained far from complete.

In combination with sensitive, well-defined assays based on microarray technology,
RNA sequencing and serial analysis of gene expression (SAGE), researchers previously
defined transcriptional control mechanisms regulating transient hematopoietic stem and
progenitor cell (HSPC) populations [6,7]. However, difficulty in obtaining sufficient amounts
of nucleic acid material for subsequent analysis has limited research progress. In addition,
researchers found it challenging to compare lists of differentially-regulated genes due to use
of different cell populations or HSC classification criteria.

Cap analysis of gene expression (CAGE) sequencing is a method used to identify the
5’ends of capped RNAs based on cap-trapping and hence provides a means to detect likely
promoter regions [8]. Here, as part of the FANTOMS project [9-11], we utilized CAGE
sequencing to examine primary murine HSPCs derived from ten spatially-or temporally-
critical locations during HSPC development, including the para-aortic-splanchnopleural (p-
Sp) region at 8.5 dpc; AGM region at 9.5, 10.5 and 11.5 dpc; PL at 11.5 dpc; FL at 12.5,
14.5 and 19.5 dpc; and BM at 2 to 3-months-old and at 2-years-old. Genome-wide expression
profiles of HSPC samples generated from single-molecule CAGE sequencing [12] revealed
15,681 transcription start sites (TSSs). The ten groups were clustered as pre-HSPCs,
definitive HSPCs, fetal HSPCs and adult HSPCs, allowing further generation of signature
gene lists for each stage. The 15,681 TSSs mapped to 10,385 genes, highlighting an
abundance of alternate transcripts and indicating that major changes in the transcriptome
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occur in the AGM region from 9.5 to 10.5 dpc. Due to the requirement for a large number of
embryos for CAGE sequencing, we performed microarray and real-time PCR analysis in
order to confirm the CAGE sequencing data. In consistent with the CAGE sequencing,
microarray and real-time PCR confirmed that a transcriptional switch point exists in HSPC
ontogeny from 9.5 to 10.5 dpc at the AGM region. This work is part of the FANTOMS
project [9-11]. Data download, genomic tools and co-published manuscripts are summarized

at http://fantom.gsc.riken.jp/5/.

Materials and Methods
Animals

ICR and C57BL/6J mice were purchased from Nihon SLC (Hamamatsu, Japan) and
Kyudo (Tosu, Japan), respectively. Noon of the day of the plug was defined as 0.5 day post-
coitum (dpc). Embryos at various developmental stages were dissected in PBS under a
stereomicroscope and the number of somite pairs (SP) counted[13,14]. Animals were handled
according to Guidelines for Laboratory Animals of Kyushu University. This study was
approved by the Animal Care and Use Committee, Kyushu University (Approval ID: A21-
068-0).

Cell preparation

The caudal portion of embryos containing the p-Sp/AGM region was used to obtain a
single cell suspension. ICR embryos were used at 8.5 dpc, whereas C57BL/6J embryos were
used at 9.5, 10.5 and 11.5 dpc. Single cells were prepared from p-Sp/AGM at 8.5 dpc and the
AGM region at 9.5, 10.5 and 11.5 dpc by collagenase treatment (see Supplementary
Methods). PLs at 11.5 dpc without deciduas and umbilical vessels were passed through 21-
gauge needles and incubated with collagenase. To isolate mononuclear cells, density gradient
centrifugation using Lympholyte®-M Cell Separation Media (Cedarlane Laboratories,

Ontario, Canada) was performed according to the manufacturer’s instructions.

To obtain FL HSPCs, FL cells from 12.5, 14.5 and 19.5 dpc C57BL/6J embryos were
filtered through 40-pum nylon mesh (BD Biosciences) and washed once with PBS.

Mononuclear cells were isolated as stated above. Mature blood cells were removed by cell
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sorting after staining with biotin-conjugated anti-lineage markers (see Supplementary
Methods).

To obtain adult BM HSPCs, femurs, tibias and humeri of 2 to 3-month- and 2-year-old
C57BL/6J mice were dissected out. BM cells were harvested by flushing with PBS and
passed through 40-um nylon cell strainers (BD Biosciences). Mononuclear cells were
isolated and mature blood cells removed by magnetic-activated cell sorting. Cells were
incubated with biotin-conjugated antibody as described above. Cells were then incubated
with anti-Biotin MicroBeads (MiltenyiBiotec, BergischGladbach, Germany) and passed
through MACS® Separation Columns (MiltenyiBiotec).

Flow cytometry and cell sorting

Antibodies used for cell sorting are shown in Supplementary Methods. After gating for
propidium-iodide (PI)-negative (living) cells, mesodermal cells, pre-HSPCs and HSPCs were
isolated from hematopoietic organs using the following protocol. For the 8.5 dpc p-Sp
sample, among E-cadherin-negative non-endodermal cells, mesodermal cells expressing Flk-
1 (Vegf receptor 2) and c-Kit (stem cell factor receptor) were sorted out. For the 9.5 dpc
AGM region sample, cells double-positive for CD31 (PECAM-1) and CD34 (mucin-like
glycoprotein), which include both HSPCs and vascular endothelial cells, were selected.
Among CD31+/CD34+ cells, hematopoietic cells expressing c-Kit were sorted out as pre-
HSPCs. For the 10.5 dpc AGM region, cells double-positive for CD31 and CD34, which
include both HSPCs and vascular endothelial cells, were selected. Among CD31+/CD34+
cells, c-Kit+ hematopoietic cells were sorted. To remove macrophages among hematopoietic
cells, we used glycoprotein F4/80. In addition to the AGM region, PL reportedly generates
adult repopulating HSCs. Thus we collected a sample from PL expressing c-Kit, CD31 and
CD34 at 11.5 dpc [15]. For 12.5 dpc FL [16], we sorted HSPCs expressing Scal (stem cell
antigen 1), c-Kit and CD45. The common leukocyte marker, CD45 was used as an HSC
maturation marker. To remove differentiated cells in 14.5 dpc FL [16], we used Terll9
(erythroid cells), CD45 (leukocytes), CD19 (B-lymphocytes), CD4, CD8 (T-lymphocytes),
Gr-1 (granulocytes) and F4/80 (macrophages) markers for cell sorting, and all negative cells
were classified as lineage negative (Lin-). Among Lin—/Scal+ cells, c-Kit+/CD45+ cells
were sorted as HSPCs. To examine the effect of aging, BM HSPCs from 2 to 3-month-old or

2-year-old mice were collected by selecting CD34-/Scal+/c-Kit+ cell populations. Among
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Lin—/Scal+ cells in 2- to 3-month-old BM, c-Kit+ cells were sorted out, regardless of CD34

expression.

RNA extraction and CAGE analysis

Total RNA was isolated and treated with DNase | by using an RNeasy® Plus Micro Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instruction. CAGE analysis was
carried out as part of the Functional Annotation of the Mammalian Genome 5 (FANTOMDb)
project at the RIKEN Omics Science Center in Yokohama, Japan.

For real-time PCR, total RNA was isolated and treated with DNase | using an
RNAqueous®-4PCR kit (Ambion Inc., Austin, Texas), according to manufacturer’s
instruction. DNase I-treated RNA was quantitated by NanoDrop 2000/2000c (Thermo
Scientific, Delaware). cDNA was prepared using a High Capacity RNA-to-cDNA kit (Life
Technologies, Carlsbad, CA) according to the manufacturer’s instruction. Briefly, the cDNA
synthesis reaction included random octamers, dNTPs, an RNase inhibitor, MuLV reverse
transcriptase and DNase I-treated RNA. cDNA was synthesized at 37°C for 60 min followed
by denaturation at 95°C for 5 min and holding at 4°C until use.

CAGE bioinformatics analysis

TSSs were assigned to known genes by the FANTOMS5 consortium. If the CAGE peak
was within 500 bases of the 5’ end of a known transcript, it was annotated with the gene
name from which that transcript was derived. Enrichment of differentially expressed genes
with respect to transcription factor ChlP-seq datasets was calculated using the GSCA tool
[17], while functional and pathway enrichment was calculated using Database for Annotation,
Visualization and Integrated Discovery (DAVID) [18,19]. ChIP-sequencing data for multiple
transcription factors in HSCs and HPCs was collected from gene expression omnibus [10,20-
22]. Enrichment for known sequence motifs was performed using HOMER [23]. Genome-
wide chromatin modifications in murine HSC samples were downloaded from Mouse
ENCODE [19], and methylation data was downloaded from Hogart et. al [24]. The
SeqMINER tool was used to cluster epigenetic marks [18]. P-values were calculated using a
hyper-geometric test. Data analysis was done using a combination of R, perl and shell scripts.
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To provide a snapshot of global transcription (the transcriptome) in HSCs across different
times and locations, GEDI (Gene expression dynamics inspector) plots (maps) were
generated using GEDI23 software
(http://lwww.childrenshospital.org/research/ingber/GEDI/gedihome.htm).

Microarray analysis

Microarray analysis of three independent samples each of AGM-derived HSPCs at 9.5
and 10.5 dpc was performed and compared. Total RNA was isolated from sorted
hematopoietic cells using an RNAqueous® Total RNA Isolation Kit (Thermo Fisher
Scientific Inc. MA). Total RNA was linearly amplified in two rounds of T7 in vitro
transcription to generate antisense amplified RNA (aRNA) using a MessageAmp™ II aRNA
Amplification Kit (Thermo Fisher Scientific Inc., MA), and an lllumina® TotalPrep RNA
Amplification Kit (Thermo Fisher Scientific Inc., MA) according to the manufacturer’s
instructions. During the second round of amplification, aRNA was labelled with biotin16-
UTP. aRNA was purified and verified by spectrophotometry. Subsequently, the Illumina
Gene Expression system (lllumina, Inc., CA) was used for direct hybridization of labelled
aRNA to gene-specific 50-mer oligonucleotide probes attached to microbeads according to
the manufacturer’s instruction. After hybridization and washing, BeadChips were
immobilized with Cy3-streptavidin (GE Healthcare; Buckinghamshire, UK) and scanned

using an lllumina BeadArray Reader.

To analyse microarray data and filter criteria, raw signal intensities of six samples were
normalized using the quantile algorithm with ‘lumi’ [25] and the ‘preprocessCore’ library
package [26] on Bioconductor software [27]. Probes called by the ‘Detection p-value < 0.05’
flag in at least one sample were selected. Then, Linear Models for Microarray Analysis
(limma) package [28] of Bioconductor software was applied. Differentially expressed genes
were shown on a heat map generated by MeV software [29]. Hierarchical clustering (HCL)
analysis was used to sort genes. Color coding indicated distance from the median of each row.
DAVID was used to investigate gene ontology (GO) categories enriched for function of
differentially expressed genes. Genes encoding factors functioning in transcription, either up-
regulated or down-regulated, were selected and validated by real-time PCR. Primer sets used
are shown in Supplementary Table S1.
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Real-Time PCR analysis

Gene expression levels were measured by real-time PCR using Fast SYBR® Green
Master Mix (Life Technologies, Carlsbad, CA) and StepOnePlus™ real-time PCR (Life
Technologies, Carlsbad, CA). Forward and reverse primers were designed using
PrimerExpress® version 3 (Applied Biosystems) and are listed in Supplementary Table S1.
Primer specificity was assessed in silico using BLAST (Supplementary Table S1). Primer
efficiency was calculated from the slope of the calibration curve using five-fold serial
dilution of cDNA prepared from whole embryos or whole fetal organ-derived cDNA in real-
time PCR. Amplification conditions were an initial denaturation at 95°C for 20 sec, followed
by 40 cycles of denaturation at 95°C for 3 sec and annealing and extension at 60°C for 30 sec.
To ensure specific amplification, melting curve analysis was evaluated in all analyses and in
a negative control lacking cDNA template. Melting curve analysis consisted of denaturation
at 95°C for 15 sec and annealing at 60°C for 1 min/cycle, and annealing temperature was
increased 0.3°C/cycle until 95°C.All analyses were performed in triplicate wells; mRNA
levels were normalized to Actb mRNA, and the relative quantity (RQ) of expression was
calculated by delta delta Ct method and compared with a reference sample. Differences were
statistically evaluated using Student’s t-test. P-values less than 0.05 indicated a statistically

significant difference.

Results

Collection of HSPC samples from murine tissues at different developmental stages

To characterize changes in the HSPC transcriptome during hematopoietic development,
we collected 10 samples from diverse murine organs at selected developmental time points
(Fig. 1A). Relevant to marker analysis, E-cadherin— FIk-1+ cells represent mesodermal cells
[30], and c-Kit marks intra-aortic clusters of the AGM region [13] [31]. Hematopoietic
multipotent progenitors in the p-Sp region at 8.0 dpc [32] and Flk-1+ c-Kit+ cells have been
observed at p-Sp/ AGM region at 9.5 dpc [33]. Therefore, we collected E-cadherin—/Flk-1+/c-
Kit+ mesodermal cells, the ancestors of hematopoietic cells, from the caudal region (p-Sp) of
8.5 dpc embryos. Cells capable of reconstituting neonatal recipients, known as “pre-HSPCs”,
have been detected in the p-Sp/AGM region at 9.5dpc [34,35], while cells present at 10.5-

11.5 dpc acquire the capacity to reconstitute adult recipients and are known “long term-
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repopulating HSCs” [36-38]. We obtained both pre-HSPC and HSPC samples from the AGM
region by selecting cells expressing the HSPC marker c-Kit and the endothelial markers
CD31 and CD34 [39,40].

Among the 10 HSPC populations identified, we observed that HSPCs form a very small
proportion of cells from a given niche (Fig. 1B). For the 8.5 dpc p-Sp sample, E-

cadherin—/FIk-1+/c-Kit+ cells represented 2.5+0.18% of the population; for the 9.5 dpc AGM
region, CD31+/CD34+/c-Kit+ cells represented 0.68%+0.32%; and for 10.5 and 11.5 dpc
AGM samples, CD31+/CD34+/c-Kit+/F4/80— cells represented 0.12+0.08% and
0.09%0.14%, respectively. For 11.5 dpc PL, CD31+/CD34+/c-Kit+/F4/80— cells represented
0.79%0.67%; for 12.5 dpc FL, Sca-1+/c-Kit+/CD45+ cells represented 0.75+0.12%; and for
145 and 19.5 dpc FL, Lin—/Sca-1+/c-Kit+/CD45+ cells represented 6.57+0.95% and
3.95+1.0%, respectively. Finally, for 2 to 3-month-old and 2-year-old BM, Lin—/Sca-1+/c-

Kit+ cells represented 0.044+0.009% and 0.14+0.09%, respectively. Surface markers used to

sort each sample are shown in Fig. 2A.

CAGE profiling of murine HSPCs identifies stage-specific transcripts

To study genome-wide transcriptional dynamics during HSPC development, we
performed single molecule CAGE [12] sequencing of the 10 samples identified. The rarity of
HSPCs during early development represents a challenge requiring collection of large
numbers of mouse embryos. Thus, we opted not to generate replicates for each population.
By generating approximately 250,000 reads per sample, we identified a total of 15,681
distinct TSSs, which were detected (>=10 tags per million) in at least one of 10 samples, with
an average of 8,037 TSSs per sample. We then employed GEDI plots [41] to provide a
global gene expression overview of each sample. GEDI plot analysis revealed a distinct
transcriptome signature in each of the 10 samples (Fig. 2A). More than 3,000 TSSs showed at
least a two-fold difference in expression among p-Sp-8.5 dpc-derived mesoderm, AGM-9.5
dpc-derived pre-HSPCs, and AGM-10.5 dpc-derived HSPC samples, whereas approximately
1,000 TSSs were differentially expressed in HSPCs derived from AGM-11.5 dpc, PL-11.5
dpc, FL-12.5 dpc, FL-14.5 dpc, FL-19.5 dpc, 2 to 3-month-old BM, and 2-year-old BM (Fig.
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2B). These observations suggest that major transcriptional changes likely occur in the AGM

region between 9.5 and 10.5dpc.

Of TSSs, 15,681 were within 500 bases of a known transcript and were thus annotated
with the corresponding gene symbol (representing 10,385 separate genes). The remaining
1,681 TSSs were unannotated and may represent novel HSPC-specific transcripts. The ratio
of TSSs to genes was greater for transcription factors (TFs), with 1,518 TSSs mapping to 880
transcription factors (ratio 1.7 compared to 1.5 for all genes), suggesting that alternate

transcription of TFs contributes to the regulatory complexity of the mammalian genome [42].

To validate this data using an independent source, we collected ChIP sequencing data for
five chromatin modifications (H3K27me3, H3K4me3, H3K4mel, H3K79me2 and
H3K27Ac) and for CTCF (CCCTC-binding factor) binding in murine HSCs derived from
bone marrow [43]. Over the 15,681 TSSs flanking known transcripts, H3K4me3 and
H3K79me2 (predictors of transcription initiation) were enriched near CAGE peaks, while
H3K4mel, an enhancer signature, and H3K27me3, a signature of inactive promoters, were
depleted, supporting the idea that our analysis detects active transcription initiation events
(Fig. 2C). All TSSs also overlapped with binding of CTCF binding, which reportedly

preferentially binds near promoters [44].

Finally, to confirm the identity of each sample we checked expression profiles of genes
encoding HSPC surface markers (FIk-1, c-Kit, CD31, CD34 and Sca-1) and lineage markers
(E-cadherin, F4/80, Gr-1, CD4, CD8, Terll9and CD19) used for cell sorting
(Supplementary Fig. S1A). As expected, we detected high CD34 levels in all samples. Flk-1
was detected only in AGM samples and was down-regulated in PL, FL and BM-derived
populations. Similarly, Pecaml (also known as CD31) was expressed at low levels in non-
AGM samples. Conversely c-Kit, Sca-1 and Ptprc (also known as CD45) were more highly
expressed in PL, FL and BM-derived populations relative to AGM. We also detected low
levels of Prom1 (also known as CD133), a marker of some early HSPC populations [45], in

mesodermal and pre-HSPC samples.

A transcriptional switch point in HSPC ontogeny occurs in AGM between 9.5and 10.5 dpc

Hierarchical clustering of the 10 HSPC populations assigned them to four clusters:1) pre-
HSPCs (p-Sp/8.5 dpc and AGM/9.5 dpc), 2) early HSPCs (AGM/10.5 dpc, AGM/11.5 dpc,
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PL/11.5 dpc and FL/12.5 dpc), 3) fetal definitive HSPCs (FL/14.5 dpc and FL/19.5 dpc), and
4) adult definitive HSPCs (BM in 2 to 3-month-old mice and BM in 2-year-old mice) (Fig.
3A). Principal component analysis of the 10 samples was in agreement with partitioning of
populations into four corresponding groups (Fig. 3B). In short, this analysis suggests that
HSPCs are committed in group 1, become mature and prepared to move to FL in group 2,
proliferate, differentiate into mature hematopoietic cells and prepare to move to BM in group

3, and settle in BM and become quiescent in group 4.

To understand differences between groups we identified sets of differentially expressed
genes and annotated them using functional and pathway enrichment analysis (Fig. 3C).
Although 9.5 and 10.5 dpc HSPCs exhibit similar surface markers, they were clustered into
pre-HSPCs and early HSPCs, respectively, based on global gene expression patterns.
Consistent with this clustering, the transition from endothelial to HSPC phenotype occurs
after 9.5 dpc [13]. Therefore, genes related to vascular development are more highly
expressed in group 1 (pre-HSPCs) than in group 2 (early HSPCs) (Fig. 3C). In addition, intra-
aortic clusters containing embryonic HSPCs in the AGM region at 9.0-10.5 dpc are likely
released into circulation in order to home to FL at 10.5-11.5 dpc based on B1-integrin
expression [46,47]. We observed up-regulation of genes functioning in trans-endothelial
migration in early rather than pre-HSPCs (Fig. 3C; see*“2 versus 1_up”), implying that early
HSPCs are prepared to home. Hematopoietic genes were up-regulated in HSPCs in groups
2,3,4, suggesting that group 1 pre-HSPCs are not yet committed to an adult HSPC program.
Accordingly, Pecaml and Cdh5 (also known as VE-cadherin) were down-regulated in groups
2, 3, and 4 relative to group 1, whereas Itga2b (also known as CD41) was up-regulated in
those groups, as expected. Two key regulators, Ccndl (cyclin D1) and Twistl, were down-
regulated in groups 2,3 and 4 relative to group 1. Twistl down-regulation suggests that it
may act as a master regulator of HSPC generation, while Ccnd1down-regulation suggests that
proliferative status of group 1 pre-HSPCs changes as development proceeds (Supplementary
Fig. S1B).

Identification of transcription factors regulating HSPC ontogeny

To identify stage-specific TFs governing HSPC development and maturation, we
randomly selected 43 TFs differentially expressed (based on at least a two-fold expression
change) among the 10 samples (Fig. 4A). Of these, 9 (Sox18, Hmga2, Sox17, Sox7, Peg3,
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Heyl, Sox11, Snail and Fhl2) were down-regulated during HSPC maturation (Fig. 4A, blue
box). Expression of Sox17, Sox18 and Sox7 in AGM/9.5 dpc-derived pre-HSPCs suggests
that these cells represent either endothelial/hematopoietic cell progenitors or cells in a
transition state [13,48]. About a third (11 of 43) of the TFs (Hes6, Nr2c2, Tobl, Arhgapl7,
Irfl, Runxl, Cebpa, Nripl, Maz, Mtal and Aes) (Fig. 4A, red boxes) was differentially
expressed between AGM-9.5 dpc and AGM-10.5 dpc.

We reasoned that dynamically expressed gene loci should be enriched for cis-regulatory
motifs recognized by these TFs. Most enriched cis-regulatory motifs for known factors
obtained using HOMER software [23] (Fig. 4B) were over-represented relative to random
background sequences with the same GC content across all samples. They included motifs
recognized by key HSPC TFs including ETS, bHLH proteins, JUN, MYB, PU.1 and STAT
proteins. The Gfilb motif was enriched in 11.5 dpc PL but with p-value <le-3, which was
lower than the strict cutoff (p = 1e-5). Three motifs, the ISRE (IFN-stimulated response
element) [49] and sequences recognized by Cebp and Runx1, showed progressively greater
enrichment during HSPC ontogeny (Fig. 4B). The ISRE motif is found in promoters of genes
induced by interferon, which activates dormant HSCs [50]. Moreover, Ifnar2, a target of INF

alpha, was up-regulated in both FL and BM samples (Supplementary Fig. S1B).

Microarray analysis and gene selection and validation

To identify transcription factors that differentially expressed in AGM-derived HSPCs at
9.5 and 10.5 dpc tissues, we selected a total of 370 differentially expressed genes after
statistical analysis with limma (Supplementary Table S2). A heat map of these genes is
shown (Fig. 5A). We then conducted enrichment analysis of gene function (Enrichment score
> 1.3) of 370 genes. Among them (Supplementary Table S2), 257 genes matched with gene
identifier of the DAVID, and seven annotation clusters were enriched (Fig. 5B). We selected
40 genes for real-time PCR analysis, and that those genes are shown in Table 1. These 40
genes were normalized intensities based on three independent samples and consisted of 20
up- and 20 down-regulated genes whose sequence information was obtained through the
NCBI website and for which primer sets could be designed for real-time PCR. Then real-time
PCR analysis was conducted to analyse gene expression in AGM-derived HSPC at 9.5 and
10.5 dpc. Among 20 up-regulated genes, 11 were significantly up-regulated (P< 0.05) at 10.5
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dpc relative to 9.5 dpc (Fig. 5C). Among 20 down-regulated genes, 12 were significantly
down-regulated (p < 0.05) at 10.5dpc relative to 9.5 dpc (Fig. 5D).

Discussion

Genome-wide datasets have been generated to address how transcriptional networks
govern numerous biological processes. Though microarray-based expression profiling is
widely used for this purpose, the standard array does not provide information relevant to
transcript levels. We therefore used CAGE to construct a global picture of the transcriptional
landscape regulating HSPC development, including transcript levels. The CAGE shows that a
transcriptional switch point occurs between 9.5 and 10.5 dpc in the AGM region.

Due to the rarity of HSPC samples, we could not generate replicates in CAGE. Based on
this outcome, in analysing rare samples, CAGE sequencing could be used for screening
purposes to predict stage-specific transcripts, while microarray analysis could be useful for
statistical evaluation regardless of TSSs.

Others have reported bias in the non-specific guanine at the 5” end of the CAGE tag [51].
However, such bias is unlikely to underlie the large number of novel unannotated TSSs in
HSPCs. First, FANTOMS CAGE tags are longer, which can multimap and more stringent
mapping procedure. In addition, the heliscope CAGE protocol does not use PCR, so tags are
not amplified. In FANTOMS5, the heliscope CAGE protocol generates a much longer CAGE
tag (~32 bases or longer) rather than 18-21 bases in FANTOMS3, allowing unequivocal
unique mapping of most tags. Also, in FANTOMS5 a more advanced probabilistic aligner
known as Delve is used and only reports uniquely-mapping tags.

We collected 10 developmental murine HSPC populations isolated from the AGM
region, PL, FL and BM. Principal component analysis of TSSs defined 4 HSPC groups
among 10 samples (Fig. 3). Previously, Daley’s group reported microarray analysis of gene
expression during HSC ontogeny [52]. They collected embryonic and adult HSC samples
from different stages and sites, in addition to ES cell-derived HSCs. Both of our studies
demonstrate that HSPC specification occurs from 10.5 to 12.5 dpc, regardless of cellular
location. Their study used CD150 as an HSC marker in FL and BM; thus clustering
differences between our groups are likely due to cell surface phenotypes used for cell
collection. In addition, they evaluated a 9.5 dpc yolk sac sample, whereas we assessed both
8.5 dpc mesoderm and 9.5 dpc AGM samples. Both of our studies suggest that that dynamic
gene expression changes occur in HSPCs from 9.5 to 10.5 or 11.5 dpc, as the transition from
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endothelial to hematopoietic HSPC phenotypes occurs [13,37], implying that HSPC
commitment is programmed by this time point. Based on this data, it is likely that a major
transcriptional switch occurs from 9.5 to 10.5 dpc.

To confirm this transcriptional switch, we performed microarray analysis using triplicate
samples. Clustering analysis identifying changes in cytoskeletal genes suggests a transition
from endothelial to hematopoietic HSPCs, an outcome consistent with prediction of CAGE
sequencing and phenotypic changes observed in HSPCs [13]. Based on ratios, p-values and
adjusted p-values, we chose 40 differentially expressed genes to validate by real-time PCR.
Among them, 23 were significantly altered (either up-regulated or down-regulated),
demonstrating of the utility of the dataset. The function of some of these genes remains
unclear in hematopoiesis.

Overall, the dataset presented here should foster identification of novel genes involved in
HSPC development and further our understanding of HSPC biology. Our work could also
suggest novel approaches to culture and manipulate HSPCs in vitro or ex vivo in future

studies.
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FIG. 1. Isolation of hematopoietic stem and progenitor cells from mouse embryos and adults.
(A) A total 10 tissues (indicated in red) derived from 9 indicated developmental time points
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served as HSPC sources for CAGE analysis. They include:1) caudal regions (p-Sp, dotted
line) of 8.5 dpc embryos (mesoderm); 2) 9.5 dpc p-Sp/AGM tissue for pre-HSPCs; 3) AGM
tissue at 10.5 dpc and 4) 11.5 dpc; 5) 11.5 dpc placenta (PL); 6) 12.5 dpc fetal liver (FL); 7)
14.5 dpc FL; 8) 19.5 dpc FL; 9) BM from 2 to 3-month (mo)-old mice; and 10) BM from 2-
year (yr)-old mice. (B) Flow cytometric analysis of hematopoietic tissues based on surface
expression of hematopoietic cell markers. Single cell suspensions of indicated embryonic and
adult tissues were prepared and analysed by flow cytometry. Isotype control is not shown. To
obtain mesodermal cells at 8.5 dpc, E-cadherin-negative cells were gated first. Then among
them, Flk-1+ and c-Kit+ cells were analysed. To obtain pre-HSPCs from p-Sp/AGM tissue at
9.5 dpc and HSPCs from AGM tissue at 10.5 dpc and from placenta at 11.5 dpc, CD31+ and
CD34+ cells were gated first. Then c-Kit+/F4-80— cells were analysed on CD31+/CD34+
cells. To obtain HSPCs from PL at 11.5 dpc, CD31+ and CD34+ cells were gated first. Then
among them, c-Kit+ cells were analysed. To obtain HSPCs from FL at 12.5 dpc, Sca-1+/c-
Kit+ cells were gated first and then CD45+ cells were analysed among them. To obtain
HSPCs from FL at 14.5 and 16.5 dpc, Lin— and Sca-1+ cells were gated first. Then c-
Kit+/CD45+ cells were analysed among them. To obtain HSPCs from BM at 2 to 3-month-
and 2 year-old mice, Lin— and Sca-1+ cells were gated first. Then among them, c-
Kit+/CD34— cells were analysed.
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FIG. 2. CAGE analysis over HSPC development. (A) Table showing indicated groups
depicted in Fig. 1A, with respect to surface phenotypes, number of cells isolated, number of
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mapped reads, TSSs identified and total number of genes mapped to for each CAGE sample,
as well as GEDI plots of the global transcriptional landscape. Each pixel within a GEDI plot
represents a mini-cluster of genes with similar expression pattern across all analysed samples.
Pixel color indicates gene expression level for each cluster (blue to red indicates low to high
levels, respectively). CAGE libraries were generated and sequenced to an average depth of
approximately 250 thousand reads for each sample. Analysis detected use of 15,681 distinct
TSSs in 10 samples with an average of ten thousand TSSs in each. (B) Number of
differentially expressed TSSs between two consecutive stages of HSPC development. Given
at least a two-fold difference transcript expression, >3,000 TSSs were differentially expressed
between p-Sp-8.5 dpc-derived mesoderm, AGM-9.5 dpc-derived pre-HSPCs and AGM-10.5
dpc-derived HSPCs, whereas ~1,000 TSSs were differentially expressed when comparing
AGM-11.5 dpc-, PL-11.5 dpc-, FL-12.5 dpc-, FL-14.5 dpc-, FL-19.5 dpc-, BM-2-to 3-mo,
and BM-2 yr-derived HSPCs. (C) 15,681 TSSs from all samples were validated using
previously published ChlIP-sequence data of chromatin modification relevant to HSPCs
derived from bone marrow [53]. High levels of H3K4me3 and H3K27ac and lack of
H3K4mel confirmed TSSs as promoter regions. The figure was generated using SegMINER

software.
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FIG. 3. Identification of gene signatures indicative of HSPC development. (A) Hierarchical

clustering of 10 CAGE samples. (B) Principal Component Analysis of 10 CAGE samples
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showing indicated groups. (C) Summary of genes differentially expressed among the four

stages, with respective gene ontology (GO) as well as pathway enrichment analysis.
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FIG. 4. Changes in global transcription over the course of HSPC ontogeny. (A) Heat map
showing dynamically expressed transcription factors (TFs) with their TSS location over



Page 27 of 61

_(T]_enitor cell ontogeny (doi:_10.1089/scd.2016.0194) . )
ing and proof correction. The final published version may differ from this proof.

Stem Cells and Development

A Transcriptional switch point during hemat(é?oietic stem and proj
to undergo copyedi

This article has been peer-reviewed and accepted for pu%l ication, but hasy

27

HSPC development indicating differential TF expression in the AGM between 8.5and 9.5
dpc. Blue box indicates genes down-regulated during HSPC maturation; red boxes indicate
up-regulated genes, including Hes6, Nr2c2, Tobl, Arhgapl7, Irfl, Runxl, Cebpa, Nripl,
Maz, Mtal and Aes. (B) Over-represented sequence motifs (black boxes) in each sample.
Specifically, ISRE, CEBP and Runxl show dynamic behaviour that reflects a particular
pattern during HSPC ontogeny.
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FIG. 5. Microarray analysis of AGM-derived HSPCs at 9.5 dpc and 10.5 dpc. Three
independent samples of the AGM-derived HSPCs at 9.5 dpc and 10.5 dpc were compared.
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(A) Heat map of 370 differentially expressed genes. (B) Function enriched (Enrichment
Score > 1.3), as indicated by DAVID analysis. Functions of the 257 of 370 genes were
annotated into seven clusters: cytoskeleton, intracellular organelle lumen, diacylglycerol
binding, lysosome, GTPase regulator activity, mitochondrial lumen and phagocytosis related
genes. Based on three independent analyses, genes encoding factors related to transcription
(either up-regulated or down-regulated) were selected and validated by real-time PCR. A
total of 20 each of up-regulated and down-regulated genes from the microarray were selected
and validated by real-time PCR. (C) Among up-regulated genes, 11 of 20 showed significant
changes (p < 0.05) at 10.5 dpc relative to 9.5 dpc in independent samples. (D) Among down-
regulated genes, 12 of 20 showed significant changes (p < 0.05) in the same period in
independent samples. Unfilled and grey filled bars represent gene expression levels in AGM-
derived HSPCs at 9.5 dpc and 10.5 dpc, respectively. Actb served as internal control.
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Tablel: Differentially-expressed candidate genes.

Forty genes were selected for microarray validation. Shown are normalized intensities in both 9.5 dpc and 10.5 dpc AGM-derived HSCs (n = 3), ratios (non-
log fold-change), p-values and adjusted p-values. Up- and down-regulated genes (20 each) sorted by ratio are shown. Mpo and Mest genes, each ranked by
three probes, were counted as one gene.
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AGM-derived HSCs at 9.5 dpc AGM-derived HSCs at 10.5 dpc .

Probe ID Symbol Ratio p-value Adjusted

Sample#fl | Sample#2 | Sample#3 | Sample#1 | Sample#2 | Sample#3 p-value
2970324 Hdc 830.25 935.83 231.57 9519.32 9364.16 7794.57 15.68899 0.00014 0.07378
4880386 Muci3 291.20 293.79 650.28 3445.93 2988.55 2794.07 8.02708 0.00005 0.06115
5720609 Lyz 355.62 371.78 610.36 1701.37 2622.91 2588.35 5.23103 0.00007 0.06715
150458 Trp53rk 458.18 409.77 277.21 1917.66 2082.78 1026.80 4.28718 0.00041 0.08299
6200719 Acss1 410.76 446.32 252.09 1630.10 1529.18 1126.99 3.93188 0.00018 0.07378
4540564 Dok2 261.14 265.47 342.33 1220.66 1229.69 881.23 3.81983 0.00003 0.06115
130634 Ddit4 568.31 588.80 1092.67 3363.15 2332.50 2439.05 3.74040 0.00042 0.08299
6580021 Mpo 3535.14 3506.52 3883.81 9975.33 12586.18 | 17879.26 3.59923 0.00010 0.07378
2940681 Gata2 3451.52 3246.33 4606.56 16151.05 8857.75 13501.76 3.34486 0.00035 0.08299
4060593 Vangl2 450.57 481.80 579.40 1761.05 1908.88 1337.61 3.29427 0.00005 0.06115
1450333 Clec7a 246.66 231.57 251.49 753.09 821.82 648.83 3.03497 0.00002 0.06115
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450372 Bok 2243.17 1962.47 2329.19 842.41 945.04 1235.39 0.45776 0.00060 0.08413
6330445 Mogat2 698.27 716.26 772.59 307.48 344.58 344.01 0.45521 0.00008 0.07262
3190408 Mest 2336.51 2268.08 2692.25 814.69 1242.20 1239.92 0.44471 0.00091 0.09005
3440343 Cap1 952.25 998.10 550.70 310.26 330.02 393.64 0.42545 0.00225 0.11264
6350044 Slc2a1 7385.06 7320.20 4586.46 2559.53 2795.69 2645.31 0.42422 0.00083 0.08659
3290747 Bex2 3216.97 3492.91 2793.40 1537.72 1210.87 1237.43 0.41871 0.00016 0.07378
3990484 3110;3:”20 1740.60 1768.32 1503.83 638.90 752.33 686.64 0.41 0.00007 0.06715
6450520 7530:28C15 4395.28 4543.87 5979.14 2324.44 2188.63 1465.30 0.40 0.00077 0.08610
6770356 Mest 7257.15 6954.87 7505.60 2006.52 2951.52 3837.83 0.39148 0.00100 0.09078
6290133 Endod1 1245.66 1289.43 950.12 398.92 462.24 488.60 0.38938 0.00015 0.07378
1690019 Mest 6712.69 6420.07 6332.16 1794.83 2574.71 3281.06 0.38159 0.00063 0.08413
2480059 Anxa5 1860.18 1826.27 1097.72 649.96 544.17 558.57 0.37557 0.00065 0.08413
2690435 Peg3 9670.34 9364.16 5634.74 2278.11 2916.39 3233.71 0.34789 0.00069 0.08413

19 Tmeme65 2148.18 2243.17 1723.06 640.14 658.88 770.88 0.33958 0.00004 0.06115
610092 Grmé 1041.87 1021.59 538.14 234.23 245.66 386.25 0.33855 0.00213 0.10902
4060521 Xist 2281.13 2399.39 1088.77 471.60 543.83 684.85 0.30890 0.00157 0.10062
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Supplemental Data

Supplemental Methods
Embryo staging

Somite pairs (SPs) were counted as a means to stage embryos, as follows [1,2]: 8.5 dpc (5-8 SP), 9.5 dpc (18-22 SP), 10.5 dpc (32-34 SP), and
11.5 dpc (42-46 SP).

Cell preparation

Single cell suspensions were prepared as described with small modifications [2-6]. Tissues representing p-Sp/AGM at 8.5 dpc and the AGM at
9.5, 10.5 and 11.5 dpc were incubated with 1 mg/mL collagenase (Washington Biochem Co., Freehold, New Jersey) in alpha-MEM
supplemented with 10% fetal bovine serum for 30 minutes at 37°C, filtered through 40-um nylon cell strainers (BD Biosciences, San Diego,
CA), and washed once in PBS. For 11.5 dpc placenta, placentas without deciduas and umbilical vessels were passed through 21-gauge needles

and incubated with 1 mg/mL.

To obtain fetal liver HSPCs at 12.5, 14.5 and 19.5 dpc, mature blood cells were removed. First, mononuclear cells were stained with the
following biotin-conjugated antibodies that bind to lineage surface markers of mature blood cells: biotin anti-mouse Terl19 for mature
erythrocytes, biotin anti-mouse Ly-6G/Ly-6¢ (Gr-1) for granulocytes, biotin anti-mouse F4/80 for macrophages, biotin anti-mouse CD45R/B220
for B lymphocytes, and biotin anti-mouse CD4 and biotin anti-mouse CD8 for T lymphocytes. All antibodies were from BioLegend, San Diego,

CA. After washing once in PBS, cells were stained with Streptavidin eFluor® 450 (eBioscience, San Diego, CA).
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Antibodies for flow cytometry and cell sorting

Antibodies used for cell sorting were: PE-conjugated anti-mouse E-cadherin (R&D Systems, Minneapolis, MN), Alexa Fluor 647 anti-mouse
FIk-1 (VEGFR2), APC- and PE-Cy7-conjugated anti-mouse CD117 (c-Kit), Alexa Fluor 488 anti-mouse CD31, PE-conjugated anti-mouse
CD34 (eBioscience), PE-Cy7-conjugated anti-mouse F4/80, PE-conjugated anti-mouse Ly-6A/E (Sca-1), PE-Cy7-conjugated anti-mouse CDA45,
and FITC-conjugated anti-mouse CD34 (eBioscience). Unless otherwise noted, antibodies were from BioLegend. Flow cytometric analysis and
cell sorting were carried out using a FACSAria SORP cell sorter (BDIS, San Jose, CA). Data files were analyzed using FlowJo software (Tree
Star, Inc., San Carlos, CA).
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Supplementary Table
Supplementary Table S1. Primers used for real-time PCR.
Insilico Amplicon
Gene ' specifici_ty Length
Svmbol Primer sequence (5°>3°) Trangcrlpt (bp)
ymbo
variant
(accession no.)

Mucl3 Forward: GGAGAAATGGGCAGAGACAAAG NM_010739.1 100
Reverse: TTCGGCAAGCTTCGGTCTT

Dok2 Forward: CCCACCCTCCTCCTACACTTT NM_010071.2 100
Reverse: GACATCTGTGGAAACCCTTTGTC

Vangl2 Forward: CGGTGACCAATGGGCTTAAG NM_033509.3 100
Reverse: GAGAGTTTGAAGAAGGGCACCTT

Clec7a Forward: TTGTGCTGAGTCCACTGAATTGTT NM_020008.1 101
Reverse:
CAGAGGCCAAAGATACTTTAATAAGC

Fcrls Forward: TGTGGCGGAGCTTCACTGT NM_030707.3 100
Reverse: AAAAGGTGCCGAGGTGTTAGC

Mpo Forward: AACCCAGGCGTGTTCAGTAAA NM_010824.1 100
Reverse: TCTTCGACACGGTGGTGATG

Zfp341 Forward: AGCCAGCCCTTGCTTCAGAT NM_199304.1 100
Reverse: GTGCTATACGAAGTCCTGTTGCA

Tmem65 Forward: GCACCGCTTCGAGTCCAT NM_175212.4 103
Reverse: AGGTATCGCATTGTGGAAGAATACA

Lyz Forward: CTGCCCCTTTCATCTTGCTT NM_013590.2 101
Reverse: CCTCCTGAATGCCTCATGACA

3110004L20Rik Forward: TCGCTAAGTTCTCCTTACTGGTT NM_001033167.1 101
Reverse: GTGGAAAACAGCAGCACAGG

Mogat2 Forward: GTCTGCCCTGGCACCTACTC NM_177448.3 102
Reverse: AGTGACCCCTGCCCTCCTTA

Hdc Forward: CAGGGTCTTCGTGATCCACAA NM_008230.4 100

Reverse: CACCGTCTCAGCCCCTTCTA
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Acssl Forward: GGTGGAGCTGAAGAAAATAGTGGAT | NM_080575.1 100
Reverse: CCCCATGGGAACCTTGGT

Fcgrt Forward: CCTCAAGACCCTGGAGAAGA NM_010189 96
Reverse: CCGTGGGCACTGAGGAATTA

Lstl Forward: ATCTGCTTGTGCCGGTTCAG XM_359281.1 100
Reverse: CTGGCAGCTGCTGGAGAGA

Emp3 Forward: GCTTTTTGTGGCCACTTTGG NM_010129.1 100
Reverse: TGTTTGAGTGGTGGTGTTCCA

5830436K05Rik Forward: ACATTCGAAGGAACCTGGCT XM 488874 99
Reverse: AATCCTGCAGCACAAACAGC

Arhgdib Forward: TTCTCCCACCTTGAGTCCTGAA NM_007486.1 101
Reverse: GGAAGAACCCAGTGGCAAGA

Marcks Forward: GTCTCCACCCTGCCCATTT NM_008538.2 102
Reverse: AACAGTAACCATTCCACGTATCACA

Bex2 Forward: TGGAGAAGCTGAGGGAAAGG XM_977338.1 100
Reverse: CAGGGCATAAGGCAAAACTCAT

Endod1 Forward: GCTAATGGAAGCCAGTCATGGT NM_028013.2 100
Reverse: AGCCTGTCGTCTTGATGGTGAT

Al428936 Forward: TGGCCACCGGAAACATTTAG NM_153577.2 100
Reverse: CAGCATTGCATCAGGCAGACT

Slc40al Forward: GCCTTAAGGGCTAGGAGCAC NM_011400.2 98
Reverse: GACTGCCTCTCCCTCTTCCT

Bok Forward: GAGAAGCCAGGGATGCAGAGT NM_016778 100
Reverse: TGGTTCCTGCCATGAAGGA

Mest Forward: CCTCCCCCATTCTCGTATCTG NM_008590.1 100
Reverse: GTGAAGGAAATGGACTTTGATGAA

Anxab Forward: GATTTGATGGCAGGGCTGAT NM_009673.1 100
Reverse: TTGCTTCGGGATGTCAACAG

Peg3 Forward: CCCCTTGAGACTGATTGTGTAACC NM_008817.2 106
Reverse: TTTGCAAGAAAACCACTGTAAGGTA

7530408C15Rik Forward: CGATCCTGGGACAAACACTTG NM_001195075.1 100
Reverse: TCCAACTACGTACAGTAGCCCATTC

KlhI5 Forward: TTTCATGGAAGTAATCAGGAACCA NM_175174.2 100
Reverse: CTCCTCGTTCGGGATGTTCA

Slc2al Forward: ACCTCTTCCGAACCGACAGA NM_011400.2 100
Reverse: TGGAGCCATCAAAGTCCTGAA

Dcbldl Forward: CGGCCATGACTGCTCTTTTG NM_025705.2 103

Reverse

: ACATGCACGCTTGCACATTT
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g > Trp53rk Forward: GGTGTCTTAAGAGGGCACCA NM_023815.4 101
9;'8 Reverse: GCCTTTCCACAGGACCAGAG
gﬁ Ddit4 Forward: AGGTTGTATGCAGGTGGCTC NM_029083.1 100
gg Reverse: TACACATCCAGCCAGAAGCC
> Gata2 Forward; CACCCCTATCCCGTGAATCC NM_008090.4 100
8 Reverse: AGGGCTCAGCAGTAGAGAGT
S Q Cnih4 Forward: GTGCTGATGCTTGTCTCCCT NM_030131.2 100
T Reverse: GTTGCCACTTGGCACCATAA
39/ 5 Xist Forward: AAAACGGGAAGAGGCCAGAG NR_001463.2 101
>3 Reverse: GTGTTCTGCATGCTTGGTCC
ég Tiaml Forward: GGAAGGCTACAGCTTCCTGA NM_009384.2 100
2o Reverse: CCACAATGGTTCTACCCGCT
o g Grmé Forward: AGAGTCCTCCCTTGGTGTGT NM_173372.1 98
B Reverse: CAGAAGCCTCAGTCCAGAGC
<) s Capl Forward: CGCCTCCTCCCCCAATTC NM_007598.2 97
= Reverse: TGTGTGATGCTTTCCCCCTG
o= X99384 Forward: TGAAGAAGGAGGTGGATGCG NM_013753.1 101
g Reverse: TGCCTGTCGGTAGGTGGATA
g
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Supplementary Table S2: List of 370 differentially expressed genes by microarray analysis.

The table shows normalized intensities of AGM-derived HSC at 9.5 dpc and 10.5 dpc (n = 3), ratio (non-log fold-change), p-value and adjusted p-value.
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Probe AGM-derived HSC at 9.5 dpc AGM-derived HSC at 10.5 dpc
Symbol ratio | p-value | Adjusted p-
ID Sample#1 Sample#2 Sample#3 Sample#1 Sample#2 Sample#3 value
2970324 Hdc 830.25 935.83 231.57 9519.32 9364.16 7794.57 15.69 0.00014 0.07378
4880386 Mucl3 291.20 293.79 650.28 3445.93 2988.55 2794.07 8.03 0.00005 0.06115
6550500 Slc41a3 220.98 223.15 339.68 3891.32 1252.49 669.85 5.80 0.00448 0.12896
5890719 Fam110b 365.57 389.56 281.13 3673.80 1807.58 1157.27 5.77 0.00053 0.08413
160327 1700012H17Rik 367.81 397.98 317.76 3509.98 1887.92 1267.01 5.65 0.00026 0.08153
2340484 Unc13d 274.09 280.67 1171.16 2492.29 3366.98 1897.98 5.61 0.00386 0.12220
5720609 Lyz 355.62 371.78 610.36 1701.37 2622.91 2588.35 5.23 0.00007 0.06715
1340092 Unc13d 256.82 252.24 755.13 2137.08 2353.34 1211.12 4.99 0.00211 0.10870
5960717 | C230009C22Rik 369.61 404.06 466.08 3182.19 2818.14 921.41 491 0.00179 0.10232
7570228 Chd2 269.20 270.92 240.68 455.97 1911.28 2187.25 4.77 0.00606 0.14063
1570594 Socs3 1271.77 1272.89 3891.32 13433.56 7015.73 7095.24 4.73 0.00292 0.11416
6940132 | A230050P20Rik 807.34 875.24 1334.95 8202.50 4610.44 2622.14 4.72 0.00128 0.09534
4880026 Tspanl17 290.23 311.85 533.15 4201.84 1270.65 887.80 4.61 0.00702 0.14724
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4150725 Ctsz 840.91 738.73 2187.25 7425.53 4503.58 3403.05 4.38 0.00309 0.11416
150458 Trp53rk 458.18 409.77 277.21 1917.66 2082.78 1026.80 4.29 0.00041 0.08299
4540626 Tmem38b 790.50 805.67 280.14 3551.82 1980.80 1806.46 4.15 0.00361 0.12045
6450438 Stk38I 228.80 225.86 835.59 1305.11 2227.71 1005.70 4.08 0.00920 0.16242
7040446 Gfil 344.45 371.11 622.49 2573.71 1688.22 1178.57 4.01 0.00079 0.08614
450615 Bbc3 1096.15 886.40 4279.67 12257.64 6436.76 3363.15 4.00 0.02527 0.22570
6330717 | LOC100044776 773.77 856.84 1502.20 5399.21 3953.60 2897.70 3.96 0.00060 0.08413
6860253 H13 1476.47 1365.00 263.33 3886.80 3006.20 2820.69 3.96 0.01882 0.20295
3450091 Ctsz 743.48 674.68 1745.53 5793.72 3914.03 2397.59 3.96 0.00367 0.12071
1110202 Camkk2 1579.67 1599.46 1961.20 10155.45 7161.22 4152.41 3.94 0.00057 0.08413
6200719 Acssi 410.76 446.32 252.09 1630.10 1529.18 1126.99 3.93 0.00018 0.07378
4540564 Dok2 261.14 265.47 342.33 1220.66 1229.69 881.23 3.82 0.00003 0.06115
130634 Ddit4 568.31 588.80 1092.67 3363.15 2332.50 2439.05 3.74 0.00042 0.08299
1050092 Serpina3g 267.80 262.82 247.66 568.66 1324.19 1180.30 3.71 0.00069 0.08413
6580021 Mpo 3535.14 3506.52 3883.81 9975.33 12586.18 17879.26 3.60 0.00010 0.07378
7510390 | 4933439C20Rik 788.54 832.69 550.99 3261.82 2910.35 1664.35 3.52 0.00058 0.08413
270673 Acads 1903.60 2058.83 7292.12 15463.33 11386.26 7088.47 3.52 0.01486 0.18482
3520546 Emp3 716.26 763.21 1184.15 2313.10 3998.36 2731.26 3.39 0.00048 0.08413
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4200204 Sh3bp2 711.78 727.29 4035.31 6692.16 4543.87 2679.31 3.39 0.04430 0.26916
4900403 Gnas 462.38 502.92 270.39 818.76 2231.59 1330.63 3.38 0.00380 0.12168
2940681 Gata2 3451.52 3246.33 4606.56 16151.05 8857.75 13501.76 3.34 0.00035 0.08299
6660634 Irfl 2094.55 2194.27 3858.86 11473.01 7184.64 7955.19 3.33 0.00072 0.08413
1470170 Cebl1 359.57 360.48 607.53 2017.24 1393.67 1033.32 3.33 0.00102 0.09198
7160044 Cyth4 1958.18 1977.98 6589.56 9936.96 11345.42 8337.98 3.33 0.00871 0.15965
4060593 Vangl2 450.57 481.80 579.40 1761.05 1908.88 1337.61 3.29 0.00005 0.06115
6620685 Lgals8 516.74 482.07 781.30 2691.01 2203.52 1162.80 3.28 0.00195 0.10631
4390239 Fcho1 294.88 295.02 491.64 1180.30 1517.40 831.36 3.27 0.00082 0.08622
7380630 | E330016A19Rik 745.37 749.89 1608.78 2546.40 3501.82 3451.52 3.25 0.00150 0.09965
2570672 Atp2a3 1558.48 1620.16 5155.74 10012.60 6948.49 6383.68 3.24 0.00999 0.16502
2480343 | A430106G13Rik 295.93 318.74 1230.25 1299.75 1624.65 1849.68 3.23 0.01761 0.19827
3830524 Mageel 400.86 420.21 2221.63 2790.58 2117.67 2014.87 3.17 0.03826 0.25410
5270209 | (C330013J21Rik 222.12 222.64 390.58 1006.01 1032.91 591.39 3.17 0.00131 0.09534
3710136 | 2310033F14Rik 1221.39 1252.03 3535.14 9071.22 4757.79 3944.45 3.16 0.01296 0.17741
6900465 Plcb2 629.39 630.28 1063.78 3410.85 2131.37 1817.44 3.15 0.00125 0.09486
2450113 Stab2 421.05 434.95 323.07 2382.44 1109.34 641.20 3.06 0.00979 0.16491
2340349 Aldh2 6097.19 5775.55 12288.13 28741.38 22247.96 19029.61 3.04 0.00190 0.10618
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s> 1450333 Clec7a 246.66 231.57 251.49 753.09 821.82 648.83 3.03 0.00002 0.06115
oS3
—
82 130370 LOC677144 394,51 422.19 1013.27 2721.83 1358.65 1255.98 3.02 0.01020 0.16502
o5
R
gg 7400397 D530007E13Rik 328.70 334.42 493.41 1864.39 925.16 862.91 3.02 0.00228 0.11264
o.=
H‘l—
Qé 940541 Ferls 423.85 433.03 326.64 1168.86 1097.15 1270.86 3.01 0.00004 0.06115
B
Eg 1230040 5730525022Rik 890.26 1037.22 2213.81 6006.11 3727.42 2353.34 2.95 0.01115 0.17066
>3
o=
g’8 6590167 Fegrt 405.36 404.52 274.40 1159.82 1011.28 975.14 2.94 0.00013 0.07378
=
O O
T % 4850594 Hmhal 2110.48 2313.75 4046.22 9601.63 8702.41 5933.97 2.93 0.00160 0.10081
o5
£ §> 2350017 Hspala 493.41 475.21 231.57 1214.61 822.78 1340.56 2.91 0.00309 0.11416
[
o=
g_@\ 6560703 Hépd 716.00 699.21 2592.43 3310.16 3322.62 2883.86 2.90 0.01873 0.20279
hojoX
o}
; 8 3310400 Gp5 230.57 235.28 809.52 910.10 1138.43 1014.42 2.88 0.01673 0.19343
o
$B.O
_gg 4390022 Lrrc28 347.19 351.32 621.78 1485.51 1318.57 925.32 2.88 0.00140 0.09834
D
=20
58
8—*&; 6520075 ler3 4913.47 5294.77 8125.00 23512.67 17426.03 12104.34 2.86 0.00170 0.10205
]
)
Ef 6180411 Gltp 449.79 447.08 1411.06 2998.87 1915.51 1137.06 2.84 0.02802 0.23120
c,:
C—Q
é g 2810685 Gliprl 416.41 393.17 377.65 842.75 1621.14 1034.60 2.84 0.00061 0.08413
£8
'gg 5270608 Vavli 1510.09 1639.32 2461.14 4689.37 6471.30 4577.63 2.84 0.00052 0.08413
>
Lo
o
%’:@ 5270279 Alox5ap 958.02 900.19 2103.18 2773.87 4134.68 3553.41 2.82 0.00415 0.12608
D
gg— 7320181 Slc39a11 282.78 273.46 615.90 1484.09 973.76 727.23 2.80 0.00742 0.15057
=0
88
?3_0 1990437 Stac3 266.61 257.08 244.40 1094.18 776.19 429.61 2.79 0.00306 0.11416
Z &
=8
<3
o
g
g
(7))
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60673 Pip4k2c 380.48 390.15 1061.17 1529.18 1467.00 1523.20 2.79 0.00777 0.15359
940309 Mpo 11146.78 10513.86 11450.52 31002.28 29213.21 31831.42 2.78 0.00001 0.06115
1010196 Zfp341 303.61 315.71 246.30 806.63 856.22 719.41 2.76 0.00005 0.06115
5360300 Lpl 2143.21 2229.51 5024.87 10126.49 7221.37 6887.72 2.76 0.00509 0.13498
5960347 Als2 1007.66 944.77 2432.73 3522.29 3504.36 3879.86 2.74 0.00551 0.13683
5890110 Cbfa2t3h 485.30 469.23 402.02 880.60 1267.90 1667.39 2.73 0.00074 0.08538
3420500 Oxct1 351.58 378.14 268.58 914.24 721.10 1094.46 2.72 0.00033 0.08299
5860154 Lstl 643.90 674.92 767.84 1547.38 2280.48 1888.36 2.71 0.00013 0.07378
2140221 Slc40a1 306.05 313.44 303.61 756.40 692.31 1107.46 2.71 0.00023 0.07845

10730 Cbx6 665.35 708.29 1834.10 1605.21 4596.28 2323.10 2.71 0.02803 0.23120
4010019 Ifitm1 356.81 359.28 544.95 898.00 1241.18 1242.20 2.71 0.00053 0.08413
4890041 livbl 2209.98 2353.92 3690.98 7054.43 8942.33 6003.37 2.70 0.00088 0.08899
3800482 | 2310047C04Rik 617.41 574.54 1118.16 3343.13 1736.66 1333.22 2.69 0.01002 0.16502
4920600 | C230071H18Rik 310.77 317.44 227.28 827.79 700.74 745.87 2.68 0.00012 0.07378
7040307 | 2810410C14Rik 392.77 434.72 274.21 667.64 2151.06 621.87 2.67 0.02403 0.22170
3450180 Tmem176b 484.93 401.78 1307.22 1795.99 1819.34 1480.76 2.67 0.01421 0.18086
1030682 Slc11a2 312.71 310.94 229.85 980.74 638.37 677.16 2.67 0.00047 0.08413
3420139 I1r2 218.76 219.05 543.73 732.41 813.37 828.45 2.67 0.00626 0.14207
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2070243 Aldh5a1 784.40 745.37 1760.07 3104.34 2740.18 2290.93 2.67 0.00513 0.13498
4180647 Zkscan6 1499.96 1566.12 406.21 2921.90 2817.22 2180.62 2.66 0.03059 0.23812
2900327 Pfkfb4 417.64 478.62 1338.32 1775.55 2484.23 1139.38 2.66 0.02573 0.22570
2470424 | 2310004H21Rik 602.50 665.60 1098.70 3264.73 1448.19 1745.21 2.66 0.00661 0.14406
1500301 Tuba8 508.29 484.93 825.61 2550.60 1381.43 1065.07 2.64 0.00693 0.14652
3400646 Sirpa 2027.71 2149.26 3108.64 6924.06 6811.32 5250.19 2.63 0.00042 0.08299
6940040 Msi2h 884.37 1016.97 804.00 2794.07 2475.38 1872.08 2.62 0.00024 0.07845
7610356 Dynli2 213.00 213.86 238.84 1308.94 263.93 560.47 2.61 0.03605 0.25022
6420520 Fosb 525.66 547.15 1099.79 3474.18 1259.02 1275.56 2.60 0.02382 0.22105
6270091 Stk17b 265.19 270.00 553.00 888.50 822.78 931.45 2.58 0.00282 0.11416
1410113 Uap1l1 617.69 558.35 1404.71 2271.66 2471.12 1458.30 2.57 0.01110 0.17066
5910681 Als2 890.52 860.13 2311.52 2960.76 3019.18 3298.44 2.55 0.01013 0.16502
7200189 | C330006A16Rik 1342.35 1374.58 3296.26 4966.77 6097.19 3311.78 2.55 0.01315 0.17818
5340762 AW212394 332.27 332.81 325.22 1139.38 687.94 751.36 2.54 0.00047 0.08413
540437 Nfatc2ip 320.78 318.92 491.26 1201.84 1021.97 641.49 2.50 0.00288 0.11416
1030053 Mta2 4157.22 3896.60 10829.65 16542.26 13678.29 12139.00 2.50 0.01377 0.17917
4850291 Pik3cg 260.95 268.90 448.50 1308.04 687.16 545.99 2.50 0.00986 0.16502
3710215 Map2k7 44415 457.98 701.29 2182.83 1308.04 773.66 2.49 0.01263 0.17711
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6290768 Cd52 586.94 586.94 936.07 755.79 2793.40 2336.51 2.48 0.03595 0.25022
5090445 Unc84b 1199.88 1121.46 2209.98 3425.66 4137.66 3163.46 2.47 0.00276 0.11406
6330543 Glrx1 578.72 582.47 436.87 1298.59 1106.34 1542.85 2.47 0.00033 0.08299
1770201 Serinc3 2286.66 2675.05 2687.78 8915.72 5165.93 5311.72 2.46 0.00114 0.09418
2750594 Tmemb51 553.95 569.17 400.25 1428.33 1817.44 720.98 2.46 0.00868 0.15965
7000300 | 2900006A08Rik 334.92 319.99 516.49 1167.80 1091.51 643.81 2.46 0.00357 0.12013
270228 Stard5 330.04 330.04 459.85 1159.60 1029.96 620.98 2.46 0.00243 0.11313
4050112 Glrx 533.15 527.00 303.30 1039.52 813.93 1462.01 2.44 0.00439 0.12808
5560470 Psap 2675.05 2931.87 6700.35 10964.97 8759.81 7937.85 2.44 0.01007 0.16502
1230612 Agpl 465.05 478.29 726.76 1470.72 1495.44 1058.21 2.43 0.00117 0.09418
4180458 Etfa 980.22 1097.15 1627.98 4270.28 2124.81 2765.13 2.43 0.00474 0.13086
5290170 Zfp180 737.26 821.97 2332.50 3953.60 2540.88 2013.08 2.43 0.03328 0.24207
2140753 Grina 930.84 962.16 1122.32 1904.34 3324.55 2265.21 2.43 0.00098 0.09054
5960341 Msrb2 525.39 466.33 582.00 1973.25 1106.62 928.62 2.42 0.00349 0.11952
6250291 Rpia 416.98 425.81 440.02 1477.21 893.91 838.26 2.42 0.00112 0.09418
3310091 | LOC100048589 1255.62 1213.55 1111.72 2796.02 3017.69 2839.62 2.42 0.00004 0.06115
4480093 LOC225897 1999.61 2010.75 2663.46 6107.17 6011.72 4125.31 2.42 0.00070 0.08413
6580711 | LOC100044172 817.17 857.21 2498.83 2219.09 3572.96 3108.64 2.41 0.02707 0.22755
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% 3170577 Pla2g15 2871.81 2796.34 7473.80 10608.51 10829.65 7239.23 2.40 0.01803 0.19933
g 6650477 Gimap6 1630.89 1835.12 4274.85 6075.00 6940.70 4112.37 2.38 0.01725 0.19544
>

g 3420689 EG665369 564.30 513.53 1065.72 1541.44 1648.03 1647.11 2.38 0.00344 0.11945
E 7330026 Egr2 358.03 355.36 300.41 932.05 492.95 1120.51 2.38 0.00535 0.13600
% 5340270 Epci 811.98 851.12 1310.72 4656.54 2257.81 1155.51 2.38 0.04062 0.25987
§ 2060373 Cd79b 672.24 636.28 367.02 2151.57 1103.85 883.40 2.37 0.01541 0.18801
g 6900632 | 1810026J23Rik 732.41 806.84 1948.78 3087.67 2487.88 1987.68 2.37 0.01682 0.19343
o]

g, 2940504 Ncf4 225.85 238.01 348.42 473.75 623.45 836.70 2.36 0.00265 0.11406
é 3360138 Irf1 494.58 486.81 720.98 1408.29 1141.69 1423.08 2.36 0.00060 0.08413
a

g) 6290193 | 2510010K19Rik 519.27 515.93 929.13 1651.44 1800.59 1102.20 2.36 0.00486 0.13213
-E 6280168 Mpo 526.28 528.24 452.79 1190.50 1189.41 1168.86 2.36 0.00005 0.06115
i 7330110 Crtc3 485.30 458.29 474.27 1982.96 945.96 739.13 2.36 0.01044 0.16624
é 2900139 Ube2e2 538.54 502.92 257.20 1324.48 961.74 718.02 2.36 0.01013 0.16502
_g 7000497 Ssrl 876.59 956.77 1315.87 2579.23 2729.11 2055.49 2.36 0.00067 0.08413
g 3120563 Fbf1 560.03 543.83 394.18 2212.62 1085.54 654.93 2.36 0.02476 0.22472
>

g 3800603 Slc22a3 259.33 238.26 371.88 1017.91 651.15 452.17 2.35 0.00734 0.14998
i%— 7100392 Pop1 254.59 251.38 332.80 825.25 640.46 525.00 2.35 0.00084 0.08736
'g 110717 Al428936 333.19 363.03 302.05 815.43 884.37 656.69 2.35 0.00020 0.07472
:

g

g
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2900255 Wsb2 539.95 549.16 977.28 2112.29 1566.71 1132.64 2.35 0.00679 0.14539
2370390 Krtcap3 652.96 694.71 381.31 1261.53 1609.28 1100.95 2.35 0.00315 0.11550
4390148 Rhox5 401.80 398.74 389.03 1198.64 1038.47 630.86 2.33 0.00199 0.10681
3800630 FbxI20 523.12 533.15 673.60 2364.42 1070.59 929.80 2.32 0.01210 0.17462
1070224 Emp3 255.03 263.50 224.43 495.00 657.36 572.78 2.31 0.00018 0.07378
3140279 A130052D22 230.50 229.90 687.66 801.98 964.60 581.93 2.31 0.03362 0.24290

10402 Trim25 2509.13 2037.49 355341 11295.76 3715.45 5306.50 231 0.02620 0.22613
3800601 Muted 3448.87 3556.62 2173.05 5736.32 8954.25 6293.42 2.30 0.00290 0.11416
150209 | A430006M23Rik 321.02 334.22 311.77 662.19 994.99 614.57 2.30 0.00081 0.08614
1710754 Ctsc 648.38 635.17 470.52 1383.33 1101.09 1535.67 2.29 0.00066 0.08413
1940608 Lyzs 224.43 218.38 255.46 442.36 649.82 522.49 2.29 0.00039 0.08299
1070152 Stxbp2 3969.90 3775.46 4718.20 7837.02 10414.45 10372.06 2.29 0.00034 0.08299
2370437 BC031781 1583.49 1775.75 1041.55 5867.11 3089.98 1925.44 2.28 0.02621 0.22613
4040563 | 4631409F12Rik 1031.10 1094.97 1256.64 3998.36 2351.74 1791.89 2.28 0.00557 0.13683
2030382 | A930023F12Rik 255.98 272.18 277.70 662.82 492.38 700.44 2.28 0.00032 0.08299
6250600 Cdkn2d 468.58 454.39 1241.35 2397.59 1408.29 923.51 2.28 0.04857 0.27915
6130014 lqgap2 1964.18 2137.08 1228.52 6576.75 2894.81 3171.53 2.27 0.01550 0.18837
5050437 Cerk 403.76 440.73 762.90 1275.82 1693.28 730.85 2.27 0.01678 0.19343
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2030368 | 9130404D08Rik 761.20 739.13 1178.57 2034.09 2229.51 1691.25 2.26 0.00145 0.09920
3840273 2223 545.01 607.49 794.02 1486.79 1505.84 1338.32 2.25 0.00040 0.08299
2570451 Mrps23 969.60 902.77 1710.25 3193.38 2422.83 2203.52 2.25 0.00492 0.13223
2570187 Zfp87 354.62 346.95 619.92 1329.30 1062.04 614.38 2.25 0.01369 0.17917
290632 Axinl 5243.75 5162.52 16829.94 17686.21 19844.03 14711.51 2.25 0.04079 0.26008
6940324 Rassf4 224.20 235.83 249.88 554.77 629.07 426.88 2.24 0.00042 0.08299
7330292 Mgst2 289.81 290.25 958.42 1009.15 1156.28 772.66 2.24 0.04687 0.27624
450368 Rgs1 330.54 349.25 387.80 1151.15 623.59 696.72 2.24 0.00257 0.11406
5080450 | 4833426J09Rik 1519.20 1650.08 641.78 2574.71 2583.13 2699.70 2.23 0.01504 0.18618
5260433 Agtrap 391.11 379.20 635.72 1331.33 1092.60 722.28 2.23 0.00666 0.14406

10717 B9d2 1079.77 1069.03 2220.78 3180.46 4152.41 2154.29 2.23 0.01632 0.19263

70414 5730601F06Rik 2162.39 2320.43 6174.38 9376.47 7705.11 4721.98 2.22 0.04061 0.25987
2230477 Mmp24 344.23 365.22 1027.97 1161.85 1441.35 844.86 2.22 0.03836 0.25410
6620735 | 2310036D04Rik 464.28 452.47 1052.73 1631.83 1394.44 1061.74 2.22 0.01604 0.19159
4900678 | 9030619K07Rik 2079.13 2224.37 3971.28 7497.79 6393.31 4178.46 2.22 0.01003 0.16502
7330131 | A630006E02Rik 453.13 426.73 327.98 665.87 1143.01 903.00 2.21 0.00227 0.11264
4220008 Tmem81 380.01 377.59 290.71 750.84 882.41 678.36 2.21 0.00045 0.08413
5290402 | 4933407NO1Rik 365.34 383.16 364.38 1394.90 520.84 750.38 2.20 0.01351 0.17914
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7000438 Bat2d 698.57 693.08 989.35 3331.39 1472.63 1038.94 2.20 0.03252 0.23995
6270131 Pqlci 764.18 710.97 346.90 1239.73 1011.97 1593.29 2.20 0.01302 0.17785
6900470 Mrpli6 787.03 711.37 719.52 2005.61 1428.52 1489.51 2.20 0.00041 0.08299
450561 Frmd4a 293.48 302.09 238.01 969.90 579.11 396.14 2.19 0.01081 0.16852
4010670 | 2700033B16Rik 433.20 439.89 487.68 1472.63 769.78 860.54 2.19 0.00355 0.12013
6290379 Sdad1 1385.78 1395.21 3564.67 5539.06 4102.78 3183.19 2.19 0.02946 0.23433
3360048 Keap1 522.76 552.38 838.83 1656.06 1243.17 1231.73 2.19 0.00211 0.10870
4010133 Cdc42ep4 1189.00 1163.37 1920.25 4786.91 2981.88 1944.65 2.19 0.01803 0.19933
630091 Nfkbid 621.39 617.69 985.41 1527.41 1767.68 1461.32 2.18 0.00159 0.10081
2190066 Tmem38b 398.57 390.95 253.61 833.89 676.75 730.13 2.18 0.00141 0.09834
2100497 LOC621823 375.65 351.42 552.62 1206.05 830.08 755.94 2.18 0.00343 0.11945
1170170 Nfe2 934.40 996.34 599.20 1545.17 1764.74 2081.65 2.17 0.00243 0.11313
6660039 Mad 444,90 423.65 932.46 955.01 1470.72 1268.89 2.16 0.01432 0.18175
1010601 Napa 565.37 522.09 535.24 2496.16 981.63 652.20 2.16 0.04718 0.27730
6110577 | 1110003EO01Rik 623.63 592.94 830.25 1890.20 1287.91 1274.51 2.16 0.00178 0.10205
1510669 Acyl 842.34 864.27 1407.39 2435.44 224497 1863.28 2.15 0.00274 0.11406
4010097 Map4k1 558.74 557.57 1463.58 1247.08 2367.69 1523.49 2.14 0.03965 0.25599
3460762 Rasgrp4 794.74 823.88 1560.62 2335.16 2814.25 1510.09 2.13 0.01587 0.19083
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4060240 Ptpn6 1902.08 1958.18 2009.63 3233.71 4683.26 4774.31 2.13 0.00078 0.08614
6760546 Rbbp5 326.49 335.92 367.75 574.97 933.42 725.73 2.13 0.00118 0.09418
460692 Bcllla 482.70 412.10 471.60 870.51 860.54 1206.05 2.13 0.00066 0.08413
3390452 | E330019I03Rik 223.78 226.06 549.58 947.67 574.54 488.41 2.12 0.03647 0.25153
6510041 Frmd4a 291.13 301.54 241.90 904.02 573.43 390.00 2.12 0.01018 0.16502
130661 5830436K05RIK 241.20 253.50 239.45 461.90 569.42 529.51 2.12 0.00016 0.07378
5310360 Stat3 4818.48 4436.46 4963.18 14145.48 8796.27 8015.52 2.11 0.00277 0.11406
1090180 Arhgdib 1187.16 1255.51 1424.35 2509.13 2708.39 2936.27 2.11 0.00019 0.07378
5420142 Churcl 312.50 317.16 244.04 1065.07 422.33 501.95 2.11 0.01943 0.20497
3140465 | 6330548G22Rik 1139.38 1088.41 1137.06 3572.96 2265.21 1624.11 2.10 0.00730 0.14946
3420528 | 4933407N0O1Rik 394.78 406.21 330.93 1280.35 540.84 711.54 2.10 0.01239 0.17647
3460392 Mpl 799.35 732.41 1197.47 1718.14 1975.22 1915.51 2.10 0.00176 0.10205
4220193 Pgpep1 405.04 423.49 787.68 811.50 1230.72 1247.53 2.10 0.01163 0.17309
6620180 Fnbp1 11512.36 13207.85 18821.72 46164.40 26090.96 21892.28 2.10 0.01380 0.17917
6860609 Rbp1 1552.25 1681.57 1516.40 4582.08 3339.36 2370.40 2.09 0.00390 0.12246
2120014 Pole3 1816.07 1945.69 3632.38 7926.70 5186.75 2846.08 2.09 0.04381 0.26863
5670634 Synpo 785.59 827.23 1015.40 2238.61 1750.98 1533.53 2.09 0.00110 0.09418
3170672 Sergef 284.67 283.27 377.65 613.78 819.10 548.90 2.08 0.00167 0.10205
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2690253 Angptl6 252.65 255.96 447.83 751.36 953.74 365.37 2.08 0.03508 0.24736
1400523 Smap2 2563.26 2393.66 4869.62 4700.35 7278.26 7883.73 2.08 0.01623 0.19247
4540278 Pcbd2 787.38 786.38 1208.07 1898.39 2222.16 1585.96 2.08 0.00273 0.11406
4640168 | 3110001D03Rik 2150.54 2063.27 4543.87 7509.61 4869.62 4915.77 2.07 0.02047 0.20904

50079 Histlhlc 535.41 527.80 1087.47 1730.90 1052.61 1492.93 2.07 0.01756 0.19814
4760041 Tmem160 1750.16 1792.71 2870.46 6262.75 3847.39 3304.20 2.07 0.01166 0.17309
4280056 Trib3 380.19 349.69 511.53 622.90 1058.76 907.72 2.06 0.00449 0.12896
2810315 Chst3 280.76 286.10 238.53 650.80 568.95 454.97 2.06 0.00080 0.08614
450088 9830134C10Rik 381.41 391.36 362.47 674.34 871.48 806.63 2.06 0.00029 0.08299
3120619 Myom1 370.44 350.67 286.59 1369.24 452.44 521.93 2.06 0.04198 0.26309
6650458 Nfkbiz 741.01 791.55 517.58 1354.84 1145.18 1698.94 2.06 0.00304 0.11416
4490239 Znfx1 614.17 623.59 1490.88 2108.10 1413.95 1662.30 2.05 0.02773 0.23041
6100523 Cugbp2 1588.43 1498.82 1212.23 3899.94 2490.17 2561.15 2.05 0.00261 0.11406
360270 Pom1b 5365.70 4601.54 8058.71 18365.09 12288.13 7595.70 2.05 0.02505 0.22570
360524 | 2700087H15Rik 1563.58 1674.44 2804.24 2639.88 6135.43 3874.86 2.04 0.02558 0.22570
1980619 Pom1b 5033.81 4555.59 7946.54 18470.99 11625.30 7230.98 2.04 0.03032 0.23744
3990228 Tmem44 541.10 553.95 628.74 1429.02 1195.36 934.33 2.04 0.00121 0.09486
3310538 Pcbd2 1151.41 1300.96 2025.15 3221.51 2979.68 2669.10 2.04 0.00364 0.12051
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5' > 4200224 Helb 767.16 753.46 1335.46 2332.50 1754.02 1588.09 2.03 0.00788 0.15486
oS3
—
gg 1110095 Muted 6309.46 5634.74 3590.70 8954.25 12621.22 9499.90 2.03 0.00569 0.13749
o5
R
gg 2030259 Depdc5 351.47 337.10 445.24 977.17 739.86 607.45 2.03 0.00262 0.11406
o.=
H‘l—
Qé 6220044 Denndlc 219.79 216.71 310.10 390.49 563.84 558.00 2.03 0.00295 0.11416
B
Eg 7100291 Hoxas 700.10 660.61 1619.41 1570.18 1500.60 2639.88 2.03 0.03943 0.25555
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o=
29 20064 Capg 666.29 656.60 686.11 1591.92 1265.39 1236.88 2.02 0.00036 0.08299
=
O O
3 % 4780184 Ly6e 596.81 648.01 676.75 874.38 1309.81 1895.00 2.02 0.00902 0.16162
o5
£ §> 150035 Fut8 812.70 844.72 775.73 1455.46 1551.18 1955.62 2.02 0.00048 0.08413
[
o=
g_@\ 6980187 Gria3 548.71 490.57 400.66 862.91 1004.58 1031.10 2.02 0.00069 0.08413
hojoX
o}
; 8 4610300 Pet112/ 289.90 291.04 224.43 584.72 592.97 450.12 2.02 0.00108 0.09406
o
#O
_gg 5220279 Mtl 4089.44 4209.24 4498.59 6225.31 10372.06 9872.41 2.02 0.00282 0.11416
D
=20
58
8—*&; 2070246 4733401105Rik 311.13 321.14 810.19 768.82 1033.32 836.98 2.02 0.03435 0.24477
]
)
Ef 1690497 | 2310043N10Rik 525.10 535,51 568.55 1524.46 1051.82 813.55 2.01 0.00428 0.12775
c,:
C—Q
é g 160086 Vamp1 212.61 212.93 230.72 545.01 256.21 606.54 2.01 0.01882 0.20295
£8
'gg 4050437 Chst3 285.24 308.38 227.63 624.43 557.40 465.99 2.01 0.00114 0.09418
>
<o
o
%’:@ 3610162 Dbr1 739.34 712.45 724.53 1842.34 993.06 1686.85 2.01 0.00527 0.13540
D
gg— 6660707 Klhl5 529.25 557.07 523.35 332.03 242.45 239.44 0.50 0.00079 0.08614
=0
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?3_0 2370446 Eif5a 596.22 741.33 732.09 259.62 405.50 383.80 0.50 0.00254 0.11406
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2940164 Rbm13 3126.30 2817.68 1389.28 930.44 1047.92 1552.25 0.50 0.02601 0.22586
5270687 | E330020G21Rik 4714.91 4894.25 1980.80 1688.22 1494.47 2238.61 0.50 0.03274 0.24080
4060609 | 9830005G06Rik 698.66 717.64 471.16 372.70 254.06 304.64 0.50 0.00357 0.12013
4290458 | F730003HO7Rik 867.52 835.59 653.84 336.11 451.80 380.71 0.50 0.00107 0.09406
2750682 Chd1 1919.57 2191.34 1651.65 468.10 1455.46 1239.73 0.50 0.04902 0.28042
6590286 P2ry5 10101.38 11160.89 7074.16 3390.57 5102.58 5532.61 0.49 0.00616 0.14188
6840433 Npm1 25925.63 24957.99 11716.57 13347.47 5964.96 11427.53 0.49 0.04539 0.27169
430576 Ptprm 866.52 873.94 469.78 394.47 315.97 341.58 0.49 0.00736 0.15029
3170397 | LOC100045967 3400.51 3299.86 1681.57 1055.81 1231.26 1733.67 0.49 0.01767 0.19848
3710242 Arpc3 3039.31 2871.81 1301.73 774.60 1051.05 1661.58 0.49 0.04273 0.26457
6860333 | A130099L09Rik 741.52 721.36 691.23 451.15 300.71 322.88 0.49 0.00108 0.09406
4490168 Wdr74 3163.46 3120.79 2559.53 942.27 1370.43 2315.24 0.49 0.01662 0.19343
2030091 Rbm9 595.00 549.44 401.04 248.41 244.00 254.74 0.49 0.00092 0.09018
5270452 Tiam1 3596.56 3369.53 2392.86 1724.77 1283.19 1530.37 0.49 0.00194 0.10631
6510553 Gnb1 1177.33 1323.70 749.53 364.54 504.10 741.66 0.49 0.01598 0.19115
7380364 Carhsp1 1825.10 1726.53 1120.32 845.42 601.51 808.79 0.49 0.00409 0.12546
1500768 Dcbld1 881.68 921.93 710.39 342.22 462.24 422.83 0.49 0.00086 0.08804
2750221 Bat2d 960.96 914.15 550.45 434.28 464.04 276.76 0.49 0.01036 0.16598
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sd
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o
é_{a;‘;’ 2490255 Narg1 2952.95 2965.26 2159.93 869.84 1253.51 1921.50 0.48 0.01128 0.17166
o¢c
==
%‘Q 1990564 Txndc5 2098.55 2041.04 2308.43 728.35 1298.59 1153.44 0.48 0.00309 0.11416
oY
E ] 4040768 Rn18s 1901.37 1817.99 996.77 485.30 800.34 974.78 0.48 0.01978 0.20633
k=
Lo
g’-g_ 2810634 Sept11 17879.26 21606.02 8833.80 7109.72 6844.10 7659.39 0.48 0.01508 0.18634
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o2
E’g 1260164 Asns 2890.38 2628.47 1455.46 879.10 1145.47 1189.00 0.48 0.00819 0.15762
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5 a 6760538 Prkd3 2489.73 2256.11 1170.52 1058.21 786.83 853.91 0.48 0.01087 0.16911
£5
EE 2100221 LOC270589 886.96 821.49 438.88 428.48 0.47 0.01212 0.17462
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‘§_§ 2710544 Gli3 2158.49 2176.83 2145.13 1442.50 787.68 918.77 0.47 0.00274 0.11406
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1240564 Appbp2 10372.06 10952.90 5566.06 2765.13 4440.31 5274.55 0.47 0.01657 0.19343
3140370 Nid1 1750.74 1931.27 804.44 791.97 728.73 480.40 0.47 0.02274 0.21601
2510037 Alad 4342.34 4863.18 3233.71 1310.29 2177.70 2429.57 0.47 0.00613 0.14188
3370487 Extl 1651.44 1828.19 1439.70 415.02 1049.43 1011.63 0.47 0.02095 0.20988
5890255 Cd93 2063.27 2121.89 798.74 642.94 587.08 937.03 0.47 0.03230 0.23952
7330551 Sall4 835.39 826.20 335.28 291.95 270.71 291.60 0.46 0.01851 0.20217
4880554 Cnih4 2341.05 2386.38 1591.44 872.82 975.52 1036.81 0.46 0.00098 0.09054
6980025 Shroom2 3105.63 3111.46 1964.18 1122.03 1059.21 1551.18 0.46 0.00304 0.11416
6940068 X99384 1487.66 1339.79 1286.74 755.13 501.51 657.07 0.46 0.00066 0.08413
6900017 Bzw1l 2699.70 2341.05 1549.32 581.05 827.39 1968.44 0.46 0.04597 0.27279
2710328 | €230070D10Rik 2452.64 2636.25 1318.94 871.72 1051.39 898.07 0.46 0.00566 0.13725
5080114 | D130047L08Rik 615.22 678.06 647.06 247.10 337.12 312.28 0.46 0.00030 0.08299
450372 Bok 2243.17 1962.47 2329.19 842.41 945.04 1235.39 0.46 0.00060 0.08413
2490113 Lin28 582.94 507.24 1264.77 284.55 375.37 333.39 0.46 0.01537 0.18801
1580088 Cend2 3136.60 3274.47 1117.18 1268.72 792.66 1078.32 0.46 0.03699 0.25198

Mogat2 698.27 716.26 772.59 307.48 344.58 344.01 0.46 0.00008 0.07262
1030338 Atp5ci 6368.01 6622.65 3180.46 2130.52 1990.15 2951.52 0.45 0.01007 0.16502
1980392 Gaint1 877.53 864.66 430.84 292.53 297.91 344.65 0.45 0.00638 0.14319
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£8
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2030692 D130071N09 4811.10 5812.17 4894.25 1238.97 2857.82 2894.81 0.42 0.00885 0.16088
6060376 Orcé6l 1851.62 1697.73 735.92 604.11 426.77 659.04 0.42 0.01369 0.17917
3290747 Bex2 3216.97 3492.91 2793.40 1537.72 1210.87 1237.43 0.42 0.00016 0.07378
5290148 Setd5 1205.49 1197.63 449.89 258.50 347.01 527.75 0.42 0.02715 0.22765
2350079 | A730094H17Rik 2487.20 2977.58 857.76 866.90 685.15 774.89 0.42 0.02866 0.23278
3990484 | 3110004L20Rik 1740.60 1768.32 1503.83 638.90 752.33 686.64 0.41 0.00007 0.06715
1980487 | 4921506J03Rik 5465.30 6097.19 2894.81 1420.41 2074.70 2294.71 0.41 0.00649 0.14345
3840300 | E130012P04Rik 614.48 619.99 597.68 230.44 222.10 311.03 0.41 0.00018 0.07378
780093 Cox6b1 2419.34 2278.11 706.23 421.00 672.78 956.54 0.41 0.04830 0.27829
1740553 Raf1 3480.68 3104.34 1595.08 879.32 1028.61 1323.09 0.41 0.00604 0.14049
3990500 | 5330408NO5Rik 1674.44 1744.52 921.03 383.95 799.68 586.01 0.41 0.00823 0.15777
6940136 Miit4 5682.19 6214.35 1527.41 1671.72 1208.77 1772.05 0.40 0.04637 0.27410
1710504 1sg2012 1376.83 1388.78 947.04 314.70 445.99 833.89 0.40 0.00957 0.16367
4040037 Tpm4 16123.05 16050.96 9418.58 4319.04 4361.23 8234.12 0.40 0.00578 0.13838
7610494 Ssr2 2892.86 3080.86 1975.85 654.93 1048.58 1614.26 0.40 0.00728 0.14946

7530408C15Rik 4395.28 4543.87 5979.14 2324.44 2188.63 1465.30 0.40 0.00077 0.08610
6510333 Sfrs1 10437.95 10069.31 3574.95 2311.52 1757.86 5593.79 0.39 0.04944 0.28050
2570196 Soatl 1208.34 1418.84 341.34 292.44 301.24 400.31 0.39 0.03873 0.25410
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3890008 | E230020D15Rik 3104.34 3249.09 905.42 690.95 703.45 695.84 0.33 0.01398 0.17957
5360367 | mtDNA_COXIlI 6692.16 7230.98 1772.64 1607.45 1076.52 1576.09 0.32 0.01915 0.20497
4060521 Xist 2281.13 2399.39 1088.77 471.60 543.83 684.85 0.31 0.00157 0.10062
5290523 LOC280097 1291.91 1057.60 451.94 261.24 258.45 260.97 0.31 0.00302 0.11416
5900392 Xist 3412.69 3236.13 1414.96 559.75 637.74 976.16 0.28 0.00240 0.11289
3520240 Rn18s 7124.23 5906.61 1959.66 495.18 1499.32 2077.42 0.27 0.02537 0.22570
630241 LOC386288 2382.44 2089.66 555.33 291.29 321.20 330.88 0.22 0.00526 0.13540
630519 Mid1 4744.18 4606.56 1153.44 1641.52 394.87 288.64 0.20 0.02222 0.21524
5260431 | LOC100043402 3799.46 3167.20 923.10 280.66 466.51 480.63 0.18 0.00284 0.11416
4220386 | LOC100041388 21340.58 19921.24 6750.41 1897.98 2517.94 2617.46 0.16 0.00072 0.08413
2750066 Rn18s 4838.85 3979.86 1234.09 256.45 565.87 608.15 0.15 0.00257 0.11406
6330047 LOC386112 8759.81 8220.00 2278.11 653.75 817.62 851.12 0.14 0.00099 0.09054
650221 LOC385923 10686.55 9996.04 1148.23 739.96 644.95 623.63 0.13 0.01050 0.16671
1230494 LOC386199 7713.92 6461.29 1345.22 329.65 595.85 642.00 0.12 0.00308 0.11416
4780753 LOC386330 13276.58 14333.16 2362.85 706.00 1063.78 1116.09 0.12 0.00340 0.11945
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Supplemental Figures

Figure S1

A Gene expression profiles of HSC surface markers
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FIG. S1. (A) Expression profiles of genes encoding HSC surface markers (FIk-1, c-Kit,
CD31, CD34 and Sca-1) and lineage markers (E-cad, F4/80, Gr-1, CD4, CDS8,
Ter119 and CD19) over the course of HSC development. The X-axis shows gene names, and
the Y-axis their relative expression. (B) Expression profile of genes (Twistl, Ccndl and
Ifnar2) encoding HSC regulators during HSC development. The X-axis shows the 10 samples
obtained at different sites at different stages, and the Y-axis indicates relative expression of

each gene.



