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Fig. 1. Developable shapes can be digitally acquired by 3D scanning or freeform modeling (a). In such scenarios, the meshing is typically not aligned to

principal curvature directions, which hampers practical applications, such as fabrication with flat polygonal panels (Figure 2). Our method remeshes an

input mesh of a (piecewise) developable surface into a curvature-aligned, planar polygonal mesh (e) by computing a vector field (c), from which we integrate

a function whose isolines (d) align as well as possible to the locally estimated noisy rulings (b). Our vector field contains automatically placed singularities

in the planar region (d), which result in naturally placed triangular patches.

We introduce an algorithm to remesh triangle meshes representing devel-

opable surfaces to planar quad dominant meshes. The output of our algo-

rithm consists of planar quadrilateral (PQ) strips that are aligned to prin-

cipal curvature directions and closely approximate the curved parts of the

input developable, and planar polygons representing the flat parts of the

input that connect the PQ strips. Developable PQ-strip meshes are useful in

many areas of shape modeling, thanks to the simplicity of fabrication from

flat sheet material. Unfortunately, they are difficult to model due to their

restrictive combinatorics. Other representations of developable surfaces,

such as arbitrary triangle or quad meshes, are more suitable for interactive

freeform modeling but generally have non-planar faces or are not aligned

to principal curvatures. Our method leverages the modeling flexibility of

non-ruling-based representations of developable surfaces while still obtain-

ing developable, curvature-aligned PQ-strip meshes. Our algorithm opti-

mizes for a scalar function on the input mesh, such that its isolines are ex-

trinsically straight and align well to the locally estimated ruling directions.

The condition that guarantees straight isolines is non-linear of high order

and numerically difficult to enforce in a straightforward manner. We de-

vise an alternating optimization method that makes our problem tractable

and practical to compute. Our method works automatically on any devel-

opable input, including multiple patches and curved folds, without explicit

domain decomposition. We demonstrate the effectiveness of our approach
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on a variety of developable surfaces and show how our remeshing can be

used alongside handle-based interactive freeform modeling of developable

shapes.

CCS Concepts: • Computing methodologies → Mesh models; Mesh

geometry models;

Additional Key Words and Phrases: Developable surfaces, planar quadrilat-

eral meshes, curvature line nets, remeshing
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1 INTRODUCTION

Developable surfaces are commonly used in architecture and prod-

uct design due to the simplicity of their fabrication. Such surfaces

are locally isometric to a planar domain, which means they can be

manufactured by mere bending of sheet material, such as metal.

Freeform developable surfaces form a rich and interesting shape

space, but they are notoriously difficult to design due to their

highly constrained nature. Therefore, in most cases, only simple

forms are used, such as cylinders and cones.

The majority of methods for developable surface modeling use

rulings-based representations (see, e.g., Tang et al. [2016] and

Solomon et al. [2012]) or isometry optimization (see, e.g., Burgoon

et al. [2006] and Fröhlich and Botsch [2011]). The recently pro-

posed discrete orthogonal geodesic nets [Rabinovich et al. 2018]

and the checkerboard pattern isometries [Jiang et al. 2020] repre-

sent developable surfaces without explicitly accounting for prin-

cipal curvature directions or patch decomposition. A more recent

approach to creating developable surfaces is through the approx-

imation of existing shapes with developables. Proposed methods

include cutting surfaces into developable pieces [Sharp and Crane

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.
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Fig. 2. An architectural illustration of our result from Figure 1, fitted with

flat glass-like panels.

2018], fitting developable patches to a surface [Ion et al. 2020], and

flowing existing surfaces to reduce a discrete developability mea-

sure [Binninger et al. 2021; Kohlbrenner et al. 2021; Liu and Jacob-

son 2021; Sellán et al. 2020; Stein et al. 2018].

While these discrete representations of developable surfaces are

excellently suited for creative exploration and design of freeform

developable shapes, they fall short of providing a suitable final rep-

resentation for manufacturing. For that purpose, it is especially

important to have planar mesh faces aligned to principal curva-

ture directions [Alliez et al. 2003; Liu et al. 2006; Tang et al. 2016],

that only the ruling-based representations provide. A curvature-

line representation of a developable surface possesses the desired

properties for fabrication once the shape is fixed, since the mini-

mal curvature lines on a developable surface are rulings on which

the normal is constant; as such, they can be easily tessellated into

planar polygons that approximate the surface shape well. In fact,

meshes composed of planar quadrilateral strips (with no interior

vertices) constitute a well-known model for discrete developable

surfaces, whose refinement and convergence properties have been

studied [Liu et al. 2006]. Additionally, the planar quadrilateral strip

representation allows for the shape to be fabricated by bending

developable material, such as sheet metal, along the ruling edges

of the mesh (as shown in Figure 23). General planar quadrilateral

meshes that do not consist of strips, i.e., not aligned to minimal

curvature, are not suitable for this fabrication process.

In this article, we develop a method to convert a triangle mesh

representation of a developable surface into a discrete curvature-

line representation in order to reap the benefits of both worlds: the

support for developable shape creation provided by a representa-

tion of choice and the desirable properties for fabrication offered

by the curvature-line representation. Our method produces strips

of planar quadrilaterals (PQs) aligned to principal curvature di-

rections that closely approximate the curved parts of a given input

mesh, along with planar polygons representing the flat parts of the

input (see Figure 1). In particular, our method produces precisely

straight rulings, modeled as individual edges in the output mesh.

The past decade has seen a highly active stream of fruitful re-

search on field-aligned quad meshing, where principal curvature

fields have naturally received special attention [Bommes et al.

2012; de Goes et al. 2015; Vaxman et al. 2016]. However, to the

Fig. 3. Attempting to convert a quad mesh of a developable shape to a PQ

mesh using a general-purpose planarization technique (ShapeUp [Bouaziz

et al. 2012]) significantly alters the shape and makes it non-developable.

This happens because the edges of the input mesh are generally not

aligned to principal curvature directions. Our method is applied to a triv-

ial triangulation of the input mesh. We report Hausdorff distance h with

respect to bounding box diagonal and the maximal planarity error p .

best of our knowledge, no existing general remeshing method is

guaranteed to produce completely straight-edge sequences that

are consistent with curvature lines, which are often difficult to ob-

tain fully and faithfully for discrete meshes. In this work we exploit

this specific constrained setting and the geometric structure of de-

velopable shapes to reproduce straight minimum-curvature lines,

as well as automatically segment the input into curved and pla-

nar parts in a robust manner that is consistent with the structure

dictated by developability.

Our method is based on fitting a scalar function on the input

mesh, such that its isolines are straight and align as best as pos-

sible to the locally estimated rulings on non-planar regions (see

Figure 1). The condition that guarantees straight isolines on de-

velopable surfaces is simple to formulate: the normalized gradi-

ent of the scalar field needs to be divergence free. This non-linear

and high-order condition is numerically difficult to enforce in a

straightforward manner. We therefore devise a dedicated optimiza-

tion scheme that factors the problem into a divergence-free and

integrable directional field optimization that is subsequently inte-

grated into a scalar function. This makes our problem tractable and

practical to optimize. We extract the isolines of the obtained scalar

field at the desired resolution and remesh the input into strips of

planar quads whose chordal edges are the isolines, i.e., the rulings.

We supplement the mesh by planar polygonal faces that represent

the planar patches of the input surface. The flexibility of the field-

to-function design allows for the automatic placement of singular-

ities, flat regions, and curved folds without explicitly segmenting

different curvature regions on the mesh.

We demonstrate the effectiveness of our approach on a vari-

ety of input developable shapes represented by general triangle

meshes (and triangulated quad meshes) and show how our remesh-

ing can be used side by side with freeform modeling of devel-

opables.

2 RELATED WORK

Remeshing general meshes into (planar) quad meshes is an active

area of research. A comprehensive review is beyond the scope

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.



Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 29:3

of this article, but we highlight the main features of existing ap-

proaches most closely related to our work.

As stated in the introduction, the quadrilaterals in freeform

models of developable surfaces are usually non-planar, and typi-

cally neither triangle nor quad meshes are curvature aligned. Our

goal is to obtain a curvature-aligned remeshing with planar faces.

Planarization of general polygonal meshes has been explored in

several works [Alexa and Wardetzky 2011; Bouaziz et al. 2012; Dia-

manti et al. 2014; Poranne et al. 2013; Tang et al. 2014]. These meth-

ods take arbitrary shapes as input and are not specifically targeted

at developable surfaces. Typically, applying a general planarization

method to developable surfaces leads to poor results in terms of

curvature alignment and shape approximation (see Figure 3).

A different approach to obtaining PQ meshes from general de-

velopable input meshes is to utilize the fact that PQ meshes are

a discrete model for conjugate nets and seek a remeshing that

is aligned to ruling directions. Many curvature-aligned or just

conjugate quad remeshing techniques for general shapes exist; see

e.g. Bommes et al. [2012], Jakob et al. [2015], Diamanti et al. [2014],

Liu et al. [2011], and Zadravec et al. [2010]. Similar to our method,

these techniques rely on numerical estimation of the principal cur-

vature directions, but they do not guarantee exact alignment or

straight edge sequences and may introduce unnecessary singular-

ities on developable shapes. Their optimization process might fail

to create precise, straight rulings on developable surfaces, unlike

the algorithm we propose in this work (see Figure 5). From a fabri-

cation viewpoint, a general PQ remeshing method is lacking since

it merely produces a PQ mesh, rather than a PQ strip mesh, which

allows for simpler construction.

A more promising approach to PQ meshing of developable

shapes is a dedicated technique that utilizes their specific proper-

ties. Peternell [2004] converts a scan of a single torsal developable

patch into a PQ mesh by thinning its tangent-space representa-

tion into a one-dimensional object (a simple curve). This approach

is not immediately applicable to composite and possibly piecewise

developable surfaces that consist of multiple torsal patches and pla-

nar regions. Kilian and colleagues [2008] compute a torsal patch

decomposition for 3D scans of physical developable surfaces by

estimating flat regions and ruling directions. This approach may

struggle with developable meshes that are coarse in comparison

to scans due to insufficient data density for reliable ruling fitting.

Their method relies on the ruling estimates to initialize a planar

mesh development, which is used in the subsequent optimization.

The connectivity of this initial mesh cannot be changed during the

optimization, and thus determines the approximation quality that

can be obtained. Locally estimated rulings on developable meshes

can be quite noisy and inaccurate, as we discuss in Section 4. We

avoid a direct domain decomposition based on rulings employed

in Kilian et al. [2008] and instead devise a global constrained opti-

mization approach. As a result, our method is successful on coarse

and noisy inputs. Additionally, in contrast to Kilian et al. [2008],

our method can handle piecewise developable surfaces that are not

curved folds constructed from a single sheet of material. Their

method optimizes and deforms a surface to become developable as

a whole, whereas our work takes a piecewise approach to remesh-

ing the existing surface without deforming it. We compare our re-

sults to their work in Section 6.

Fig. 4. Developable surfaces (top row) and their decompositions into pla-

nar and curved (torsal) patches, shown on the 2D development (bottom

row). We display the planar patches in white and the curved patches in

purple. The rulings are illustrated as thin gray lines, with the borders be-

tween curved and flat patches in thick black and inflection lines in blue.

Wang and colleagues [2019] use discrete parallel geodesic nets

as a discrete model for developable surfaces. They require the geo-

desic strips to be of constant width for a surface to be developable

but do not impose any requirements on the directions of these

strips and as such do not have a ruling-aligned representation for

developables. They also use parallel geodesic nets to approximate

surfaces by piecewise developable strips. The individual geodesic

strips of a parallel geodesic net are approximated by piecewise pla-

nar faces in a post-processing step, but this does not guarantee that

compatibility between neighboring strips is preserved. In contrast,

our method produces a complete, connected remeshing of the in-

put developable surface with strips aligned to the rulings, rather

than in the orthogonal direction.

While targeting geodesic fields, rather than planar quad remesh-

ing, the works by Vekhter et al. [2019] and Pottmann et al. [2010]

show parallels to our proposed method. They compute a unit curl-

free field, while we compute a divergence-free field—these two

kinds of fields are in fact duals. Nevertheless, our field has further

constraints in terms of ruling alignment, which we take into ac-

count. In addition, our optimization strategy is different, interlac-

ing integrability optimization with divergence reduction. We dis-

cuss this in further detail in Section 3.

3 BACKGROUND

We next summarize relevant facts about both continuous and dis-

crete developable surfaces that inform our algorithm and offer a

directional-field-based definition of developable surfaces. We pro-

vide a discrete setup for these fields in Section 4 and an optimiza-

tion scheme in Section 5.

3.1 Developable Surface Parameterization

AC2-continuous surface S that has vanishing Gauss curvature ev-

erywhere is a smooth developable surface. A general developable

comprises multiple developable patches {Si } ,
⋃Si = S, where

each such patch is either a torsal patch (a curved ruled surface

with constant normal along each ruling) or a planar patch. The

rulings are completely contained in each Si ; i.e., they extend up to

the boundary ∂Si [Massey 1962]. The planar patches are regions

with vanishing mean curvature H = κ2/2, where κ2 is the max

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.
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Fig. 5. Remeshing an input developable surface using the directional field design of Diamanti et al. [2014] does not result in globally straight edge sequences.

Instant Meshes, the curvature-aligned quad dominant remeshing technique of Jakob et al. [2015], introduces superfluous singularities and does not always

succeed in finding the exact rulings. For Instant Meshes we use the following settings: 4-RoSy extraction, quad-dominant mesh extraction, no boundary

alignment (to ensure better curvature alignment; trimming can be done in a post-processing step).

(absolute) curvature. They are bounded by rulings of torsal patches

and the boundary of the surface, as shown in Figure 4.

Non-smooth developables. We also consider more general, piece-

wise developable surfaces. One type is creased shapes, where sev-

eral smooth developable surfaces are joined along curves with only

C0-continuity [Huffman 1976]. These curves are termed curved

folds when the surface is globally isometric to a planar domain

(as in Figure 22), and creases when this is not the case (e.g.,

Figure 18). We treat curved folds and creases identically in the

rest of this article and refer to them as creases from now on. An-

other type is surfaces that contain point singularities, such as cone

apexes (see Figure 19). These surfaces are locally non-developable

at the singularities; they can be constructed by gluing parts of

the boundary of a developable surface together while allowing iso-

metric deformation. The cone apexes are easily identified, and to

run our method we remove the apex vertices that don’t coincide

with a crease together with their incident faces. If desired, they

can be added back in post-processing. We note that our method re-

quires that the individual pieces are sufficiently smooth and allow a

definition of rulings whose endpoints are always on boundaries or

creases (as is the case for the surface types described above), there-

fore explicitly excluding surfaces that look like crumpled paper.

Conjugate nets. Consider a single torsal patch Si , where we pa-

rameterize the patch with coordinates Si (u,w ) as follows:

Si (u,w ) = p (u) +w r (u), (1)

wherep (u) : R→ R3 is a generating curve, and everyu-isoline is a

straight line with direction r (u) : R→ S2, i.e., a ruling. The Gauss

map n(u,w ) must be constant on the u-isolines in order for Si to

be developable: n(u,w ) = n(u). This means that the u-isolines on

Si are extrinsically straight; they constitute lines in R3.

The rulings are the minimum curvature lines of Si . The uw-

parameterization constitutes a conjugate net [Liu et al. 2006]. In

particular, choosing p (u) to be a max curvature line (i.e., having

the p (u) curve intersect all rulings at right angles) makes Si (u,w )
a principal curvature line parameterization.

Seamless parameterization. WhenS isC2-continuous, every tor-

sal patch borders either a planar patch or the outer boundary of S.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.
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Planar patches allow to connect several dif-

ferent ruling strips, with multiple orienta-

tions, by introducing singularities within

the planar patch (see inset). These planar

patches cannot be ruled in a manner that is

consistent with all adjacent torsal patches,

and so u on a planar patch will be a smooth

interpolation of the u function on the adjacent torsal patches

(while locally also being subject to the constraints detailed in Sec-

tion 3.2). Since the rulings are by definition 2-symmetric (i.e., they

are invariant to the sign of r (u)), the singularities can be of in-

dices ± 1
2 , and the function u is only seamless rather than con-

tinuous on S, similarly to the stripe patterns of Knöppel et al.

[2015]. Note, however, that u is locally fully continuous (it can be

“combed”) on each torsal patch Si . Across creases, rulings are only

C0-continuous, and thus we constrain u to be C0 there as well.

We further note that works such as Diamanti et al. [2014], Liu

et al. [2011], and Jakob et al. [2015] intermix between the u and

thew coordinates and enable full quad-mesh ± 1
4 singularities (see

Figure 5). While this provides more meshing flexibility for general

curved surfaces, it in fact hinders the ability to correctly capture

the pure foliation topology of the ruling stripes comprising the de-

velopable surfaces.

3.2 Ruling Fields

Our work focuses on designing directional fields that generate the

rulings of a developable surface from other representations and

integrate them to compute u. Consider the gradient vector field

∇u, which is by definition orthogonal to the isolines of u. The geo-

desic curvature of isolines is defined as κд (u) = ∇ · ∇u
‖∇u ‖ [Sethian

1999]. Since the u-isolines of the uw-parameterization of a devel-

opable surface following Equation (1) are extrinsically flat, we have

∀u, κд (u) = 0. As such, ruling fields are both geodesic and princi-

pal.

Denote by r⊥ a unit-length vector field orthogonal to the ruling

directions r in the tangent bundle of S, such that ∇u
‖∇u ‖ = r

⊥. Next,

consider a unit length 2-vector field Y on a developable surface S,

which is the assignment of a tangent vectorY to every point p ∈ S,

and which is defined up to sign. If we align Y with r⊥, we have by

definition

∇u ‖ Y . (2)

For simplicity we first consider the case where Y does not have

singularities, and the surface S does not contain creases. This al-

lows Y to be combed (i.e., the sign branching to be resolved) in

every local surface patch by consistently choosing 1 of the two di-

rections to obtain a smooth one-vector field. Using this combed

single-vector field version of Y , we then get

∇ · Y = ∇ · ∇u‖∇u‖ = 0. (3)

This means that Y is a divergence-free unit vector field. Our ob-

jective is to design Y and integrate u from it, which leads to the

question for which divergence-free unit fields Y such a u exists.

Y must be integrable up to a multiplicative scalar. That is, there

must exist a positive scalar function s , s (p) > 0, ∀p ∈ S, for which

(using the combed version of Y ):

∇ × (sY ) = 0. (4)

The geometric meaning of the scalar function s is the density of the

isolines of u at point p. A non-constant s comes up naturally when

the isolines have a fan-like structure (for instance, the rulings of a

cone).

Singularities and combing. We designY as a 2-vector field, where

it is only defined up to sign. Therefore, the divergence and curl

operators do not automatically apply. Rather, in every local sur-

face patch that does not contain singularities, Y can be combed

by consistently choosing one of the two directions to obtain a

smooth single-vector field on which we adhere to conditions in

Equations (3) and (4).

Since our field Y is 2-symmetric, singularities have indices that

are integer multiples of ± 1
2 . As Y is a unit field, it is not defined

there, and neither isu. As a consequence, it is not divergence free in

any neighborhood that contains the singularity, and the isolines of

u are not straight there (see Figure 1). Note that singularities arise

either on planar patches or on cone apexes and therefore do not

compromise the properties of the field on torsal patches. Following

the common paradigm of seamless parameterization (e.g., Bommes

et al. [2009] and Diamanti et al. [2015]), this is the reason we design

the field sY as curl-free, rather than as the conservative ∇u, which

is only locally defined in simply connected non-singular patches.

Relation to geodesic fields. Vekhter et al. [2019] and Pottmann

et al. [2010] both apply the unit-length divergence property to de-

sign geodesic fields; more precisely, Vekhter et al. [2019] work with

the dual curl-free vector field Y⊥ and define a similar integrability

measure. Nevertheless, our work handles further challenges, as it

is not enough to target geodesic fields to guarantee that they fol-

low rulings, even though rulings are geodesics. It is in fact theoret-

ically impossible to characterize rulings of a developable merely as

geodesics, since they depend on the shape operator and are thus

extrinsic. Therefore, Y has to be designed such that Y⊥ aligns to

prescribed rulings. As we see in Section 4, estimating and aligning

to reliable rulings is a challenging task that must include comple-

tion in unreliable regions.

Ruling field at creases. Rulings on two developable patches adja-

cent to a crease typically do not form a single, intrinsically straight

line but rather meet at an angle (see, e.g., Figures 21 and 22). We

therefore do not requireY to be divergence-free near creases, effec-

tively allowing the vector field to break across them. Furthermore,

the ruling field does not have to be strictly divergence-free on pla-

nar regions to create planar quads, and it will not be divergence-

free around singularities; nevertheless, we optimize for this

property everywhere smooth, while letting singularities emerge

naturally, to avoid identifying and segmenting these regions ex-

plicitly.

3.3 Discrete Ruling-aligned Developable Meshes

A discrete sampling of theu-isolines of a principally aligned param-

eterization creates a quadrilateral mesh whose faces are planar up

to second order [Liu et al. 2006]. Anisotropic quadrilateral mesh-

ing aligned to principal directions is known to have optimality

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.
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properties in terms of approximation quality (see, e.g., Alliez et al.

[2003]). These facts motivate curvature-aligned polygonal remesh-

ing, in particular for fabrication purposes.

Since we only design and discretize u, leaving the coordinate

w as a degree of freedom, our discretization for a torsal patch is

that of a mesh comprising long planar polygons. These polygons

are for the most part quadrilaterals whose edges are two bound-

ary curves and two straight rulings; thus, a torsal patch is repre-

sented as a PQ-strip model. Planar patches are represented as big

flat polygons, where the non-straight isolines are fully contained

in the plane, and we are therefore allowed to straighten them out.

The planar polygons are in general non-quad, since they may con-

tain singularities determined by the number of torsal patches it

connects; nevertheless, their planarity makes them easy to refine

if required.

4 DISCRETIZATION

The input to our algorithm is a triangle meshM = {V,E,F } rep-

resenting the (piecewise) developable surface, where V denotes

the set of vertices, E the set of edges, and F the faces. To regular-

ize the scale of surface curvature between different surfaces and

our optimization parameters, we scale the inputM to have unit-

length bounding box diagonal. We define u as a piecewise-linear

vertex-based function u (v ), v ∈ V , and consequently represent

r , r⊥, and ∇u as face-based piecewise-constant tangent fields; we

denote this space as X. We use the conforming discrete gradient

G : (V → R) → X and divergence D : X → (V → R) operators,

and the non-conforming discrete curl operatorC : X → (E → R).
Their explicit expressions can be found in, e.g., Brandt et al. [2017].

Estimating rulings. We compute a ruling direction r ( f ), ∀f ∈
F , as the eigenvector corresponding to the minimal eigenvalue

of the face-based shape operator S ( f ), as defined in de Goes et al.

[2020]. Since we know the ruling only up to sign, we represent it

unambiguously using a power representation [Azencot et al. 2017;

Knöppel et al. 2013]: we first represent r ( f ) as a complex number

in a local coordinate system and then square this complex num-

ber to have a representation that is invariant to the sign of the

direction; i.e., we store R ( f ) = r2 ( f ). We also define R⊥ ( f ) =
(r⊥ ( f ))2, the power representation of the ruling locally rotated by

90 degrees.

Confidence weights. A clean domain decomposition into planar

and torsal regions would significantly simplify the fitting of indi-

vidual developable patches. Unfortunately, we cannot obtain such

a clean segmentation directly, because the curvature measure (like

the ruling estimates) is noisy and does not delineate planar and

torsal patches nicely (Figure 6). Therefore, we model on the as-

sumption that the rulings are least reliable in planar or near-

planar regions, and mostly consistent in strongly curved areas (see

Figures 1 and 7). We thus attach a relative confidence weight w ( f )
to each face f ∈ F , as a function of the discrete absolute max and

min curvatures κ1 ( f ) and κ2 ( f ):

w ( f ) = θ1

(
1 − eθ2 (κ1 (f )−κ2 (f ))2

)
. (5)

Forκ1 ( f ) andκ2 ( f ) we use the absolute largest and smallest eigen-

values of the shape operator S ( f ) and set θ1 = 0.8, θ2 = −0.014.

Fig. 6. The curvature isolines of |κ1 − κ2 | (middle) do not provide a clean

delineation between torsal and planar parts. However, our method auto-

matically places a planar polygon in the appropriate region, without being

provided with an explicit decomposition (right).

The confidence function is a logis-

tic curve (see inset), facilitating a

stronger distinction between confi-

dence in planar and near-planar re-

gions (albeit still small compared to

stronger curved regions). The value

of w ( f ) is capped at 0.8 by design,

ensuring that we never fully rely on

a ruling. We define Vb to be all ver-

tices on the boundary ofM and Fb all faces that contain a vertex

inVb , and we set w ( f ) = 0 for these faces.

Creases. Our method requires as input the explicit identification

of the set of crease edges Ec that define curved-fold creases and

boundaries to developable pieces. We defineVc as all vertices that

are incident on an edge in Ec , and from this we define the set of

faces adjacent to them: Fc is the set of all faces that have one or

more vertices inVc . We update the confidence weights by setting

w ( f ) = 0 for all faces in Fc . UsingVc andVb , we initializeV∗ as

the set of mesh vertices but with the boundary and crease vertices

excluded, i.e. :V∗ = V \ (Vb ∪Vc ). The user can provide crease

edges as input or we can make an initial guess for the crease edges

based on the dihedral angle of adjacent faces and manually add

edges belonging to softer creases. We require that the final set of

crease edges divides the surface into smooth developable surfaces.

The required seams for this segmentation are typically easily vi-

sually distinguishable (e.g., using reflection lines). Figures 11, 18,

20, 21, and 22 show examples of developable surfaces with creases,

and Figure 20 explicitly shows them on a complex model. When

creases end in the interior of a developable piece rather than on

another crease or boundary, so-called open creases, we duplicate

their interior vertices and define them as mesh boundaries. Exam-

ples of such open creases can be seen in Figures 11, 19, and 20 (the

chair model).

5 METHOD

We describe our approach to remeshing a (near-)developable in-

put triangle mesh to a curvature-aligned, planar polygonal mesh

consisting primarily of PQ strips.

5.1 Optimization Problem

Setup. We compute the face-based shape operator and the rul-

ing related quantities r ( f ) and r⊥ ( f ). Our computed field Y and

the ruling fields r ( f ) and r⊥ ( f ) are represented as either vectors

in C |F | or the equivalent R2 |F | , defined in a local basis defined

on each f ∈ F ; for simplicity we do not distinguish between them
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Fig. 7. Our remeshing pipeline: (a) the original inputM; (b) the noisy input rulings r ; (c) our computed Y field, visualized with streamlines; (d) the isolines

of the optimized function u ; (e) the final remeshing result M′. Note how the isolines in (d) bend inside the planar region, which gets meshed as one large

polygon, but are straight in the torsal regions, which result in PQ-strips.

and it is made clear by the context. We further compute the quan-

tities R ( f ) = r2 ( f ), R⊥ ( f ) = (r⊥)2 ( f ), ∀f ∈ F , as well as the

confidence weights w ( f ), as detailed in Section 4.

We consider the diagonal face-based mass matrix either for

vector-valued quantitiesMX : 2 |F |×2 |F | or for scalar or complex

quantitiesMF : |F |×|F |, holding the face areasm( f ). We further

consider the edge-based mass matrix ME holding edge masses

m(e ) =
‖e ‖
‖edual‖

(m( f ) +m(д)) /2,

where ‖edual‖ is defined as the summed length of the two dual

edges from the midpoint of e to the barycenters of the adjacent

faces f and д. Finally, for a vector field Y ∈ X we use the in-

tegrated discrete divergence DY = GTMXY (∈ R |V | ), where

G is the discrete gradient operator, which for a triangular face

f consisting of vertices i, j,k and scalar function u is defined as

Gui jk ( f ) = 1
2m (f ) (e⊥

jk
ui + e

⊥
ki
uj + e

⊥
i juk ).

Objective. We optimize for a gradient ruling field Y ( f ), accord-

ing to the requirements of Section 3.2. That is, Y ( f ) should have

unit norm; it should align to the estimated rulings r⊥ ( f ) up to sign

and according to confidence; it should be divergence-free away

from creases, boundaries, and singularities; and it should be curl-

free up to scaling. Our variables are then Y ( f ) itself, its power rep-

resentation Γ( f ) = Y 2 ( f ), where Γ( f ) should align to the perpen-

dicular power ruling field R⊥ ( f ) according to the confidencew ( f ),
and where Y is divergence-free away from singularities. Further-

more, we optimize for a scalar field s ( f ), such that s ( f ) · Y ( f ) is

curl-free. Our objective breaks down to the following terms:

Alignment objective. Our alignment term is

Ea (Γ) =
∑

f ∈F
m( f )w ( f ) ‖Γ( f ) − R⊥ ( f )‖2, (6)

wherem( f ) is the face area of f andw ( f ) is the confidence weight

as defined in Equation (5). This can be formulated in matrix form

as

Ea (Γ) = (Γ − R⊥)HMFWF (Γ − R⊥), (7)

whereWF is the diagonal matrix of per-face confidences for com-

plex numbers or scalars, and Γ and R⊥ are arranged as |F | × 1

complex vectors. Note the conjugate transpose (Γ − R⊥)H.

Unit-norm divergence-free objective. We ideally want the field to

be perfectly divergence-free and have unit norm everywhere. How-

ever, this is impossible at singularities (Section 3.2) and in general

would only be important on torsal patches. We follow Viertel and

Osting [2019] and Sageman-Furnas et al. [2019] by employing a

Ginzburg-Landau functional, introducing the following objective

term (defined as ε → 0):

Ed (Y ) =
∑

v ∈V

1

m(v )
|DY (v ) |2 + 1

ϵ2

∑
f ∈F

m( f )
(
‖Y ( f )‖2 − 1

)
, (8)

wherem(v ) is the barycentric Voronoi area of vertexv ; note that its

reciprocal is used since Dy is an integrated quantity. When ϵ → 0,

this is analogous to minimizing the divergence of a unit-norm field

after removing a ball of radius ϵ around singularities. Since the

unit-norm divergence-free condition is satisfiable on torsal patches

in a direction that matches with the alignment terms, singularities

(if any) will naturally be located inside planar regions.

Smoothness regularizer. To encourage the field to smoothly tran-

sition from curved to planar parts, and in general to regularize

low-confidence regions, we add a small smoothness term that en-

codes the smoothness of the power vector field across edges. For

each interior edge e adjacent to faces f and д, the power smooth-

ness [Knöppel et al. 2013] is measured as

‖Γ( f ) ē2
f
− Γ(д) ē2

д ‖2. (9)

Here, ēf is the conjugate of ef , which is the complex representation

of the normalized edge vector e in the basis of f , and similarly for

д. Our smoothness regularizer then becomes

Es (Γ) =
∑
e ∈E

m(e ) (1 −w (e )) ‖Γ( f ) ē2
f
− Γ(д) ē2

д ‖2, (10)

where w (e ) = (w ( f ) +w (д))/2. In matrix form, we write this en-

ergy as Es (Γ) = ΓHL2Γ, where

L2 = G
H
EME (I −WE )GE , (11)

whereGE implements the differences Γ( f ) ē2
f
− Γ(д) ē2

д from Equa-

tion (9).

Integrability. We use the discrete curl operatorC to measure in-

tegrability of the (per-face) scaled field sY :

CsY (e ) =
〈
s ( f )Y ( f ) − s (д)Y (д), e

〉
. (12)

We constrain

CsY = 0. (13)

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.



29:8 • F. Verhoeven et al.

To constrain s to be positive and prevent large density variations,

we further bound

∀f ∈ F , slow < s ( f ) < shigh . (14)

We provide the values used for slow and shigh in Section 5.2.

Branching and singularities. Generating Γ fromY is well defined.

However, the inverse has a sign degree of freedom. We follow com-

mon practice by arbitrarily choosing a sign in each face and relat-

ing Y values across faces by using principal matching [Diamanti

et al. 2014]; in our context, this means we match vectors accord-

ing to the smallest rotation angle. The curl and divergence op-

erators are always understood to be defined with relation to the

matching at every edge and vertex, with the exception of singular-

ities, creases, and boundary vertices (where we do not optimize for

divergence).

Full optimization problem. Our optimization problem can then

be finally formulated as follows:

(Γ,Y , s ) = arg min ωaEa (Γ) + ωdEd (Y ) + ωsEs (Γ), s .t . (15)

∀f ∈ F , Γ( f ) = Y 2 ( f ), (16)

CsY = 0, (17)

∀f ∈ F , slow < s ( f ) < shigh . (18)

Here, ωa ,ωd ,ωs are scalar weights. Similar to Sageman-Furnas

et al. [2019], we seek solutions where ωs
ωd
→ 0 and ωs

ωa
→ 0 to al-

low the solution to converge to a divergence-free unit-norm field

aligned to rulings away from planar regions and singularities.

5.2 Optimization Algorithm

Our energy is nonlinear and its constraints use discrete variable

quantities such as the matching. As the optimization problem is

separable in the Γ, Y , and s variables, we optimize for them in an

alternating fashion, following the spirit of Sageman-Furnas et al.

[2019] and Viertel and Osting [2019]. Our method proceeds as de-

scribed in Algorithm 1.

ALGORITHM 1: Optimize for ruling field

Initialize Γ0 = R⊥, k = 0, V∗ = V \ (Vb ∪ Vc )
repeat

k ← k + 1

Γk
a ← ImplicitAlign(Γk−1)

Γk
s ← ImplicitSmooth(Γk

a )

∀f ∈ F , Γk
u (f ) ← Γk

s (f )
�
�
�
Γk
s (f )��

�(
Y k

u , Ck , Dk , V∗
)
← LocalRawRepresentation(Γk

u )

Y k
d
← ProjectDivFree(Y k

u , Dk , V∗)
Y k

c ← ProjectCurlFree(Y k
d
, Ck )

Γk ← PowerRepresentation(Y k
c )

until maxf ‖Γk (f ) − Γk−1 (f ) ‖ < 10−3;

The function ImplicitAlign(Γk−1) reduces the alignment en-

ergy Ea by a single implicit Euler step, by solving the following

linear system:(
I +

ωa

μa
WX

)
Γk
a = Γk−1 +

ωa

μa
WF R

⊥. (19)

The implicit step size ωa is scaled by μa , which is the low-

est non-zero eigenvalue of WF . Note that the mass matrix

MF is canceled out in the gradient and eigenvalue. Similarly,

ImplicitSmooth(Γk
a ) solves the following linear system:(
MF +

ωs

μs
L2

)
Γk ′
s = MF Γk

a (20)

with the lowest nonzero eigenvalue μs so that ∃x � 0, L2x =
μsMF x . The step size ωa is fixed to 0.1, and the step size ωs starts

as 0.005 and is halved every 30 iterations, to ensure that the alter-

nation with the renormalization of Γ converges.

After normalizing the current vector field, it is transformed into

the “raw” representationY , where the principal matching (and con-

sequently, the singularities) are computed, and from them the curl

matrix C and divergence matrix D are updated. Furthermore, this

function updates V∗ according to the current singularities. Note

that the sets of boundary verticesVb and crease verticesVc (Sec-

tion 4) are always mutually exclusive withV∗.
Next, ProjectDivFree(Yk

u ) finds the closest divergence-free

solution to Yk
u by solving the following linear system:

arg min
Y k

d

‖Yk
d
− Yk

u ‖2 s.t. DYk
d

(V∗) = 0. (21)

Specifically, we do this by solving

arg min
x ∗

‖x∗‖ s.t. Dx∗
(V∗) = −DYk

u
(V∗) ,

where x∗ = Yk
d
− Yk

u . For x∗ to be a minimum-norm solution ad-

hering to the constraints, it should be expressible as x∗ = DTw for

somew . So we can solveDDTw (V∗) = −DYk
u (V∗), set x∗ = DTw ,

and finally obtain the divergence-free solution as x∗ + Yk
u .

Finally, the function ProjectCurlFree(Yk
d
) finds the closest

scaled curl-free solution by solving the following convex system:

arg min
Y k

c , s

‖Yk
c − sYk

d
‖2, (22)

s .t . CYk
c = 0, (23)

0.4 ≤ s ≤ 1.6. (24)

Although we have no guarantee of convergence (as discussed in

Section 6), in our experiments it typically takes 50 iterations of

our optimization algorithm or less for Γ to converge.

5.3 Vector Field Integration and Meshing

Having an integrable Y , we use a mixed-integer integration

scheme [Bommes et al. 2009] to obtain a seamless globally smooth

parameterization that produces u. The input triangle mesh is cut

into a topological disc, where the singularities are on the boundary,

and then a corner-based u function is extracted, which is seamless

across the cuts, using integer translations. We configure the inte-

grator to produce u ∈ Z+ 1
2 values at singular vertices, since then

the integer isolines avoid meeting at these singularities, and we

obtain a single polygon around the singularity.

To create the final PQ-strip mesh, we trace the integer iso-

lines of u (at a user-specified global resolution) and then collapse

all valence-2 vertices that are not on the boundary, thereby re-

moving all interior vertices. This effectively straightens the poly-

lines of the isolines, which has little effect in torsal regions, since
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Fig. 8. Several snapshots from an interactive editing session (top row). The user deforms the DOG model by interacting with point handles at some selected

vertices. At any time during the interactive session, the user may pause and invoke our remeshing algorithm and view the curvature-aligned remesh (bottom

row). Note how the combinatorial structure of the ruled remeshing automatically changes to accommodate the changes in the surface geometry, without

forcing the user to specify the patch decomposition manually.

Fig. 9. Our result from Figure 24 is planarized using ShapeUp [Bouaziz

et al. 2012], achieving a maximal face planarity error of p = 0.0034%, com-

pared with p = 11.84% in our initial result. The visual difference between

the results is negligible. The Hausdorff distances are reported in Table 3.

the isolines are already almost straight by the optimization (see

Figure 1 and Figure 7). However, the isolines in planar regions,

which might be more curved if a singularity causes the divergence-

free constraint to be excluded, become chords between boundary

vertices. We note that since we have a full parameterization of

the surface, control over individual panel width is also possible

by specifying a custom set of u values for tracing the isolines. We

illustrate our remeshing pipeline in Figure 7.

6 RESULTS AND DISCUSSION

We implemented our algorithm using libigl [Jacobson et al. 2018]

and Directional [Vaxman et al. 2017a] on a machine with i7-8569U

CPU and 16 GB RAM. Our typical input mesh resolution is 1,800

faces, and for this approximate input size the vector field design

part of our method takes 4–5 seconds, of which the majority of

the time is spent in the ProjectCurlFree step, i.e., solving the

convex optimization in Equations (22)–(24). We currently use CVX

[Grant and Boyd 2014], but this part can be optimized for better

speed. Although we do not have a formal convergence guaran-

tee for our alternating algorithm, we observe that it typically con-

verges to our specified tolerance level within 10–20 iterations for

vector fields without singularities and 40–50 iterations for shapes

Fig. 10. Our result on a better tessellation of the input from Figure 9 has

maximal planarity error of p = 2.58%, compared with p = 11.84% initially.

with planar parts that introduce singularities in the vector field.

We also test our method on inputs of up to 160k faces, which does

not cause problems for convergence. The parameterization part of

our method takes approximately 10–15 seconds.

A variety of our results can be seen in Figure 24. Note that our

method preserves the input boundary vertices, and therefore our

output faces are quadrilateral-like higher-degree polygons, rather

than actual quadrilaterals. Examples of our results with various

boundary shapes and non-disk topologies are included in Figure 24.

Our method is applicable to developables with curved folds, as seen

in Figures 1, 2, and 22 (input models from Rabinovich et al. [2019])

as well as in Figure 11. It can handle piecewise developable shapes,

such as D-forms (shapes obtained by gluing together two planar

domains with the same perimeter) from Jiang et al. [2020] and

sphericons from Tang et al. [2016] (see Figure 18), as well as other

shapes with creases from Tang et al. [2016] (see Figure 21). Works

by Stein et al. [2018], Sellán et al. [2020], Ion et al. [2020], and oth-

ers produce piecewise developable approximations, but they are

not PQ meshes. Our work can be used to remesh those surfaces;

see Figure 20 for an example. We successfully apply our method

to glued constructions from Jiang et al. [2020], including point

singularities; see Figure 19. We have physically fabricated some
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of our results, shown in Figure 23. Table 3 lists the most important

statistics about our results.

Developable surface editing with dynamic connectivity. To

demonstrate the utility of our approach, we use the point handle-

based editing system of Rabinovich et al. [2018] to interactively

deform an input discrete orthogonal geodesic net (DOG) and

create a sequence of a few developable surfaces, on which we run

our algorithm (offline) after trivial triangulation. See Figure 8 and

the accompanying video for some examples of such editing ses-

sions. Note the natural change in the combinatorics that our al-

gorithm induces to model exact developability, which can change

considerably even for small deformations in the input.

Planarity evaluation. Since our output meshes have no interior

vertices inside the developable patches, the ultimate accuracy mea-

sure for the developability of our results is the planarity of the

mesh faces. We measure planarity of each quadrilateral face by

the ratio of the distance between the diagonals to their average

length, in percent [Liu et al. 2006]. For higher-degree polygons,

we compute the root-mean-square (RMS) error of all quads con-

structed from every four consecutive vertices in the polygon. An

acceptable stringent tolerance for the planarity error is ≤ 1% [Vax-

man et al. 2017b]. It is generally not expected for parameterization-

based methods to achieve planarity to more than first order, so that

usually further planarization post-processing is needed. We show

the raw maximum and mean planarity error values of our results

without any post-processing in Table 3. Even though our output

meshes are quite coarse, our planarity errors are typically very low

without such planarity optimization, and very close to the toler-

ance. Our worst maximum planarity error is obtained on a mesh

with very thin features (Figure 24, fifth row, middle column), and

the output quad with this maximal planarity error is toward the

end of the spiral. As can be seen in Figure 24 and Figure 10, the in-

put triangulation is very coarse there. We planarize this example,

which has the worst maximum planarity error (p = 11.84%), to

zero planarity (p = 0.0034%) using ShapeUp [Bouaziz et al. 2012]

and reach a visually highly similar result; see Figure 9. This demon-

strates the capability of our algorithm to utilize the information in

the original mesh effectively. Interestingly, the triangulation of the

input mesh is similar to a Schwartz lantern, and remeshing this

input to a more uniform triangulation already drastically brings

down the maximal planarity error of our algorithm to p = 2.58%;

see Figure 10.

Constraints and objective values. As described in Section 5.2, we

have an iterative multi-step optimization algorithm. Because of its

alternating nature, we can only guarantee that the converged solu-

tion will meet the curl-free constraint that is optimized for in the

final step. We see that the divergence of the final (normalized) vec-

tor field is not fully zero everywhere, but it is nevertheless very

low (see Table 1). A plot of the divergence values over the mesh

shows that it mostly concentrates on planar regions (see inset).

As the divergence is close to zero in torsal

regions, the resulting function isolines are

very straight and similar to their simpli-

fied version there. The simplified isolines

in planar regions possibly deviate more, but since any straight line

Table 1. Maximal and Mean Absolute Divergence for

Converged Vector Fields

Mesh Max Divergence Mean Divergence

Figure 7 0.0105 0.00046

Figure 8 left 0.0032 0.00004

Figure 16 bottom 0.0102 0.00050

The reported absolute divergence values are computed on the
final normalized fields and exclude values at singularities and
boundaries.

in a planar region is a ruling, this does not pose a problem. Our

final converged vector field may be far from unit-norm, but this

does not raise any issues as long as the divergence of its normal-

ized version is zero.

Comparison with state of the art. In Figure 11 we compare our re-

sults with the work by Kilian et al. [2008] through a visual compar-

ison between (triangulated versions of) their output meshes and

our outputs obtained from an isotropic remeshing of their output

as our input. Because we require the input surface to already be de-

velopable, our method does not work directly on the surface scans

that they use as input. We generated our input by explicitly pre-

serving the crease edges and isotropically remeshing the patches in

between. For the triangulated output meshes of Kilian et al. we de-

termined a lower bound on the maximal and mean planarity errors

by taking the global maximum and mean of the minimal planarity

values attainable by pairing each face with each of its neighbors.

We obtain visually similar results and also obtain comparable pla-

narity error measures, while requiring less user input and manual

tweaking. Specifically, we do not require the user to ensure that the

initial mesh connectivity is a valid developable decomposition.

Effect of output resolution. We extract u isolines of varying iso-

values to create output meshes of different resolutions; we then

measure their planarity and approximation quality w.r.t. the input

mesh in terms of Hausdorff distance (Figure 12). We note that the

approximation quality and the planarity improve with higher reso-

lution, although even for the coarsest resolution these metrics are

already below tolerance.

Comparison with analytical principal-curvature directions. We

test our method on an input mesh sampled from an analytical

clothoid surface with varying resolution and compare the obtained

vector field Y with the analytical max curvature directions. See

Figure 13 and Table 2. Note that the input to our method is nu-

merically estimated ruling directions r , not their analytical values.

As the data shows, upon refinement of the input mesh, our output

field converges toward the analytical solution.

Robustness. Our method is robust with respect to the parameters

ωa and ωs , for which there is a range of values that leads to visu-

ally very similar results. As the relative weight of ωs with respect

to ωa increases, the vector field turns into a more constant field,

reducing alignment quality of the final output mesh. Because the

smoothing step is the last one before the vector field is projected

onto the divergence-free solution space, ωs is the dominating

parameter in determining the rough layout of the final vector field.
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Fig. 11. We compare our results (bottom row) with those of Kilian et al. [2008] (middle row, polygons are triangulated). As our method requires an input

that is already developable, we used an isotropic remeshing of the output produced by Kilian et al. [2008] as input (top row). The car model (third from left)

is designed by Gregory Epps. Note that this output is a higher-resolution version of the one in Figure 17.

Fig. 12. Sampling the isolines of our optimized function u with increasing

density leads to finer remeshing of the input mesh, where the Hausdorff

distance to the input h, as well as the maximal and mean polygon planarity

error, pmax and pmean, decreases. The output resolution is denoted by the

number of faces |F ′ |. The Hausdorff distance is reported relative to the

bounding box diagonal.

The parameter ωa (within reasonable range) has a smaller contri-

bution but can affect the exact placement of singularities and the

iterations required to reach convergence (see Figure 14). For noisy

inputs, as in Figure 15, our method does not converge with our

standard parameter settings, or it converges but generates a vector

field with a large amount of singularities. For these cases, simply

increasing ωs ensures that the optimization converges, although

some small and noisy details may be lost (in Figure 15 (right) we

use ωs = 0.15). This shows that our method with the help of the

Fig. 13. As the input resolution |F | of a sampled analytical developable

surface increases, the approximation accuracy and the planarity of our

remeshed result increase. The meshing direction also aligns better with

the mesh boundaries that coincide with analytical ruling directions in this

case as the resolution increases.

smoothness term manages to recover a principally aligned vector

field even if the information from the input ruling directions is very

weak. For optimal alignment the value of ωs should be chosen as

small as possible but as high as necessary so to not introduce ex-

cessive singularities; e.g., for the cone in the second-to-last row of

Figure 24 we useωs = 0.00005 to emphasize better alignment near

the boundary.
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Table 2. Angular Difference (in Degrees) between

Our Optimized Vector Field and the Analytical

Principal Curvature Directions on the Clothoid

Mesh Shown in Figure 13

|F | Max ° Mean °

10k 9.49 2.24

40k 4.80 1.19

160k 2.31 0.52

Fig. 14. A reasonable value for ωs (top row) leads to visually similar re-

sults under varying ωa . High values for ωa cause the vector field to fol-

low the noisy ruling evaluations in the central planar region, generating

more singularities and increasing the iterations required to reach conver-

gence. A too-high value for ωs (bottom row) causes over-smoothing of the

field and overrules the alignment to the ruling estimates. The left column

demonstrates our standard parameters.

Limitations. Our method is not entirely triangulation indepen-

dent, as shown in Figure 16. If the input meshing does not allow

for an accurate estimation of the principal curvature directions,

this might lead to poor ruling estimation and diminished perfor-

mance of our algorithm in terms of planarity error. This is most

noticeable near the corners of the given input, where there is rela-

tively little data for our algorithm to align to. In order to minimize

bias introduced by the triangulation, it is advisable to triangulate

polygonal input meshes with higher valences by inserting a new

vertex at the face center and connecting it to the vertices of the

original polygon in a triangle fan.

Furthermore, as we treat curved folds in an identical manner to

creases (namely we assume they delineate a developable surface

piece), there is no guarantee that the curved folded surface as a

whole remains developable in one piece. An interesting direction

for future work would be to incorporate known geometrical con-

straints at curved folds into our method.

If a cone apex is present in the mesh (see Section 3.1), the natu-

ral behavior encouraged by our algorithm is to place a singularity

on the crease to compensate for the curvature of the seam (see

Fig. 15. Our method is robust to noise on developable inputs. These ex-

amples show our fourth example from Figure 16, but with random vertex

displacements applied. Left: a displacement of maximally 12.5% of the av-

erage edge length is applied; right: maximally 25% of the average edge

length. Our method still recovers a meshing that is compatible with the

original principal directions.

Fig. 16. Different triangulations of a quad mesh lead to different remesh-

ing results, mainly in the near-planar regions. Nevertheless, all of the re-

sulting meshing directions on the planar region are valid.

the cylinder example in Figure 21 and Figure 17, bottom). Nev-

ertheless, our algorithm may fail to put the singularity exactly

on the seam, depending on discretization. As a result, our opti-

mization might get stuck, oscillating between nearby solutions

with different singularity configurations (Figure 17). Even though

our method nominally fails to converge for the car example in

Figure 17, a reasonable result close to the expected one is still

obtained.

Our method may struggle with thin features, e.g., as part of a

piecewise developable, as these can often provide no alignment

information at all. In the future it would be interesting to see how

the vector field on surrounding developable pieces can be used to
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Fig. 17. When a cone apex of non-trivial curvature is present in the in-

put mesh, our method might get stuck oscillating between solutions with

different singularity configurations. The top row shows our method strug-

gling to put the singularity exactly on the crease and oscillating between

two solutions for the circled part of the car model (courtesy of Kilian

et al. [2008], designed by Gregory Epps). The middle row shows the in-

put mesh and our obtained result. In comparison, the bottom row shows

a successfully placed singularity on the crease of the cylinder model from

Figure 21.

add constraints to these thin features, since in the final meshing

we wish to guarantee continuity throughout the pieces. As shown

in Figure 13, our output quality with respect to Hausdorff dis-

tance, as well as mean and maximal planarity error, increases as

the input resolution increases. Our method is therefore dependent

on the input resolution but still performs well on low-resolution

inputs.

Finally, we have no theoretical guarantees that the ruling-

aligned edges in our output mesh do not intersect, although we

never see this happen in our experiments. In torsal regions, the

guiding field discourages overlapping behavior, as rulings on a de-

velopable are ordered. For planar regions, the guiding field con-

tains more noise, but here the smoothness requirement for the vec-

tor field (and thus the corresponding parameterization) strongly

discourages crossovers.

7 CONCLUSION

We presented an algorithm that converts developable surfaces

represented by triangle meshes to a discrete curvature line

parameterization, i.e., polygonal meshes with planar faces, where

all interior edges correspond to rulings. This conversion from an

unstructured triangulation of a developable surface to a curvature-

aligned PQ mesh is an important step in the developable modeling

and fabrication pipeline, for which thus far a robust practical solu-

tion was missing. Our method can only be expected to work well

for nearly developable input shapes. We show a non-developable

example in the inset, where the edge simplification step is omitted

as it would degenerate the mesh. It would be interesting to see

Fig. 18. Sphericons and D-forms are piecewise developable surfaces with

creases connecting the individual pieces, and therefore can be remeshed

with our method. The top two models are courtesy of Jiang et al. [2020],

the bottom two are courtesy of Tang et al. [2016].

Fig. 19. Our method applied to glued developable surfaces that include

cone apexes. The bottom model contains open creases that end in cone

apexes. These models are courtesy of Jiang et al. [2020].
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Fig. 20. Our method can handle open creases when they are defined as

mesh boundaries. Examples of open creases can be seen on the forehead

of the mask or on the top of the faucet. Since these creases are defined

as mesh boundaries, seamless parameterization and meshing across them

are no longer guaranteed. The red lines highlight the set of crease edges

Ec . The models are courtesy of Stein et al. [2018].

how we can adapt our remeshing algorithm to be usable for the ap-

proximation of non-developable surfaces by developable patches.

Another venue for further study would

be the automatic tuning of the values

ωs and ωa based on the noise levels of

the estimated input rulings. Finally, it

is conceivable to adapt the output mesh

resolution based on the local curvature,

allowing a denser representation in more curved areas.

Fig. 21. Our method can handle piecewise developable surfaces with or

without boundary and of different genera. These models are courtesy of

Tang et al. [2016].

ACM Transactions on Graphics, Vol. 41, No. 3, Article 29. Publication date: March 2022.



Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces • 29:15

Fig. 22. For surfaces with curved folds our method produces meshes with faces that align well along the folds. Models courtesy of Rabinovich et al. [2019].

Fig. 23. Our output meshes can be physically fabricated from planar sheets of stiff material. For this experiment, we parameterize our output mesh to the

plane and etch the flattened mesh edges into cardboard using a laser cutter. Appropriately bending the sheet of cardboard along the edges then gives a

shape that matches our output.
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Fig. 24. Various remeshing results obtained with our method. Note that our method can handle a wide variety of developable geometry and topology,

including cylindrical topology, multiple holes, and sophisticated boundary shapes.
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Table 3. Statistics of Our Results, Reported by Figure Number (in Scanline Order within Figures That Show Multiple Results)

Fig. |V′ | |F ′ | Iter. pmax [%] pmean [%] h[%]

1 693 137 47 0.38 0.06 0.46

3 270 74 5 1.80 0.41 0.67

5 180 51 8 1.53 0.28 0.45

5 206 44 5 0.59 0.15 0.85

5 218 50 9 0.88 0.18 1.07

5 190 48 5 0.95 0.19 2.55

7 190 48 5 0.95 0.19 2.55

8 208 45 4 0.41 0.11 0.66

8 206 44 5 0.59 0.15 0.85

8 210 46 3 0.54 0.16 0.41

8 208 45 4 0.45 0.17 1.39

8 218 50 9 0.88 0.18 1.07

9 288 107 52 11.84 1.98 0.48

9 288 107 - 0.00 0.00 0.95

10 520 110 6 2.58 0.71 0.09

11 1,115 275 16 1.62 0.19 0.28

11 1,603 747 14 0.31 0.06 1.90

11 3,117 1202 299 7.63 0.21 4.03

11 1,473 294 10 1.84 0.12 0.18

12 164 23 3 0.52 0.24 0.47

12 210 46 3 0.54 0.16 0.41

12 298 90 3 0.32 0.10 0.41

13 384 68 7 1.08 0.34 0.31

13 632 67 7 1.22 0.10 0.26

13 1,130 66 36 0.25 0.02 0.24

15 176 29 18 3.64 1.04 0.56

15 156 19 22 5.42 2.51 1.34

16 254 68 19 3.83 0.42 0.63

16 254 68 23 3.82 0.42 0.66

16 242 62 51 4.12 0.50 0.23

16 258 70 23 3.34 0.48 0.21

17 2,194 447 299 4.78 0.34 2.90

18 202 100 12 0.14 0.05 0.20

18 324 100 10 0.46 0.14 0.22

18 858 274 9 1.66 0.09 1.15

18 966 272 6 1.14 0.08 0.13

Fig. |V′ | |F ′ | Iter. pmax [%] pmean [%] h[%]

19 306 54 2 0.15 0.04 0.15

19 438 54 6 0.14 0.04 1.91

19 578 93 41 2.55 0.30 1.09

20 2,455 440 46 2.65 0.25 3.29

20 3,833 1599 46 3.19 0.17 1.37

20 972 195 17 1.71 0.26 0.53

20 1677 752 17 2.16 0.13 0.75

21 288 170 18 0.19 0.05 0.09

21 1,970 567 49 0.82 0.05 0.04

21 1,947 636 18 0.26 0.05 0.01

21 738 211 15 0.84 0.10 0.14

22 258 98 4 1.16 0.24 0.23

22 243 80 44 0.67 0.20 0.62

22 280 115 6 1.98 0.16 0.35

22 232 82 21 2.24 0.32 0.42

22 693 137 47 0.38 0.06 0.46

23 196 52 4 2.39 0.37 0.26

23 210 28 9 3.49 0.43 1.47

24 254 68 15 3.63 0.41 0.65

24 210 46 4 1.25 0.19 0.23

24 204 43 20 7.18 0.50 0.34

24 212 47 3 0.56 0.33 0.60

24 390 70 7 3.93 0.31 0.67

24 204 43 3 0.69 0.14 0.10

24 422 88 5 3.35 0.56 0.85

24 208 45 7 0.43 0.10 0.46

24 226 63 8 0.40 0.12 0.18

24 328 75 40 0.78 0.18 0.69

24 1,033 71 7 1.72 0.34 0.38

24 218 50 4 2.35 0.20 0.32

24 242 58 4 0.80 0.36 1.29

24 288 107 52 11.84 1.98 0.48

24 208 45 4 0.38 0.11 0.20

24 214 48 9 0.15 0.05 0.08

24 502 53 16 0.32 0.06 0.09

24 194 45 3 1.19 0.24 0.40

24 609 47 7 2.89 0.60 0.21

24 204 43 7 0.49 0.13 0.39

24 288 67 16 1.31 0.20 0.82

∗Same model displayed from three viewing angles.
∗∗Same model displayed from two viewing angles.
∗∗∗Maximal number of iterations, not converged.
We record the number of output mesh vertices |V′ | and faces |F ′ |, the number of optimization iterations needed to reach convergence, and the
maximum and mean face planarity error p (in percentage of the average diagonal length of the face). We also report the Hausdorff distance between
the input and output mesh. Many of our meshes meet the common planarity tolerance of ≤ 1% without any planarization optimization.
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