Blame and Coercion: Together Again for the First Time

Jeremy Siek
Indiana University, USA
jsiek@indiana.edu

Peter Thiemann
Universität Freiburg, Germany
thiemann@informatik.uni-freiburg.de

Philip Wadler
University of Edinburgh, UK
wadler@inf.ed.ac.uk

Abstract

C#, Dart, Pyret, Racket, TypeScript, VB: many recent languages integrate dynamic and static types via gradual typing. We systematically develop three calculi for gradual typing and the relations between them, building on and strengthening previous work. The calculi are: \(\lambda B \), based on the blame calculus of Wadler and Findler (2009); \(\lambda C \), inspired by the coercion calculus of Henglein (1994); and \(\lambda S \), inspired by the space-efficient calculus of Herman, Tomb, and Flanagan (2006) and the threesome calculus of Siek and Wadler (2010). While \(\lambda B \) is little changed from previous work, \(\lambda C \) and \(\lambda S \) are new. Together, \(\lambda B, \lambda C, \) and \(\lambda S \) provide a coherent foundation for design, implementation, and optimisation of gradual types.

We define translations from \(\lambda B \) to \(\lambda C \) and from \(\lambda C \) to \(\lambda S \). Much previous work lacked proofs of correctness or had weak correctness criteria; here we demonstrate the strongest correctness criterion one could hope for, that each of the translations is fully abstract. Each of the calculi reinforces the design of the others: \(\lambda C \) has a particularly simple definition, and the subtle definition of blame safety for \(\lambda B \) is justified by the simple definition of blame safety for \(\lambda C \). Our calculus \(\lambda S \) is implementation-ready: the first space-efficient calculus that is both straightforward to implement and easy to understand. We give two applications: first, using full abstraction to validate the challenging part of full abstraction between \(\lambda B \) and \(\lambda C \); and, second, using full abstraction from \(\lambda B \) to \(\lambda S \) to easily establish the Fundamental Property of Casts, which required a custom bisimulation and six lemmas in earlier work.

Categories and Subject Descriptors F.3.3 [Logics and meaning of programs]: Studies of Program Constructs—Type structure

Keywords Blame, lambda calculus, gradual typing

1. Introduction

Contracts and blame. Findler and Felleisen (2002) introduced two seminal ideas: higher-order contracts to monitor adherence to a specification, and blame to indicate which of two parties is at fault if the contract is violated. In particular, at higher-order a contract allocates blame to the environment if it supplies an incorrect argument or to the function if it supplies an incorrect result. Blame characterises correctness: one cannot guarantee that a contract is verified between typed and untyped code will not be violated, but one can guarantee that if it is violated then blame allocates to the untyped code, a result first established by Tobin-Hochstadt and Felleisen (2006).

Findler and Felleisen’s innovation led to a bloom of others. Siek and Taha (2006) introduced hybrid typing; Flanagan (2006) introduced gradual typing; and, second, using full abstraction from \(\lambda B \) to \(\lambda C \) and, finally, using full abstraction from \(\lambda C \) to \(\lambda S \) to easily establish the Fundamental Property of Casts, which required a custom bisimulation and six lemmas in earlier work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06 . . . $15.00.
http://dx.doi.org/10.1145/—
cated, and showed decorated types are in one-to-one correspondence with normalised coercions. A recursive definition computes the meet of the two decorated types (or equivalently the composition of the two corresponding coercions); it is straightforward to calculate, avoiding the associativity problem of coercions. However, the notation for decorated types is far from transparent. Siek reports that Tanter attempted to implement Gradualtalk with threesomes, but found it too difficult. Wadler reports that while preparing a lecture on threesomes a few years after the paper was published, he required several hours to puzzle out the meaning of his own notation, \(\lambda_mGp \). Eventually, he could only understand it by relating it to the corresponding coercion—a hint that coercions may be clearer than threesomes once blame is involved.

Hence we have two approaches: Herman et al. (2007, 2010) is easy to understand, but hard to compute; Siek and Wadler (2010) is easy to compute, but hard to understand. Garcia (2013) attempted to ameliorate this tension by starting with the former and deriving the latter. However, the derivation necessarily contains all the confusing notation of Siek and Wadler while also introducing additional notations of its own, notably, a collection of ten supercoercions. By design, his derived definition of composition matches Siek and Wadler’s original and so is no easier to read.

Much previous work lacked proofs of correctness or had weak correctness criteria. Herman et al. (2007, 2010) give no proof relating their calculi to others for gradual typing. Siek and Wadler (2010) establish that a term in the blame calculus converges if and only if its translation into the threesome calculus converges, but they do so only at the top level (Kleene equivalence: roughly, contextual equivalence without the context).

Our approach. We establish new foundations for gradual typing by considering a sequence of calculi and the relations between them: \(\lambda B \), based on the blame calculus of Wadler and Findler (2009); \(\lambda C \), inspired by the coercion calculus of Henglein (1994); \(\lambda S \), inspired by the space-efficient calculus of Herman et al. (2007, 2010) and the threesome calculus of Siek and Wadler (2010). While \(\lambda B \) is little changed from previous work, the other two are new.

The two new calculi are based on ideas so simple it is surprising no one thought of them years ago. For \(\lambda C \), the novel insight is to present a computational calculus as close as possible to the original coercion calculus of Henglein (1994). For \(\lambda S \), the novel insight is to restrict coercions to a canonical form and write out the algorithm that composes two canonical coercions to yield a canonical coercion.

Henglein (1994) explored optimisation of coercions, but remarkably neither he nor anyone else has written down the obvious reduction rules for evaluating a lambda calculus with coercions, as we have done here with \(\lambda C \). The result is a pleasingly simple calculus, close to correct by construction.

Our translation from \(\lambda B \) into \(\lambda C \) resembles many in the literature; it compiles casts into coercions. We show that this translation is a lockstep bisimulation, where a single reduction step in \(\lambda B \) corresponds to a single reduction step in \(\lambda C \), giving a close correspondence between the two calculi. There are several subtleties in the design of \(\lambda B \), but essentially none in the design of \(\lambda C \), and that the two run in lockstep suggests that both designs are correct.

A key property of the blame calculus is blame safety—“Well-typed programs can’t be blamed”. Surprisingly, no previous work considers whether translations preserve blame safety. Here we show that blame safety is preserved by translations between calculi, and, as a pleasant consequence, that the subtle definition of blame safety for \(\lambda B \) is justified by the straightforward definition of blame safety for \(\lambda C \).

Our reverse translation from \(\lambda C \) to \(\lambda B \) is novel. We observe that a single coercion must translate into a sequence of casts, because a coercion may contain many blame labels but a cast contains only one. The challenge is to show that translating from \(\lambda C \) to \(\lambda B \) and back again yields a term contextually equivalent to the original. This, together with the bisimulation, establishes the strongest correctness criterion one could hope for, full abstraction: translation from \(\lambda B \) to \(\lambda C \) preserves and reflects contextual equivalence.

For \(\lambda S \) we isolate a novel grammar corresponding to coercions in canonical form. Canonical forms are unique, and in one-to-one correspondence with normal forms. We present a simple recursive function that takes two coercions in canonical form, \(s \) and \(t \), and returns their composition in canonical form, \(s \circ t \). Validating the correctness of this definition against Henglein’s original rules is straightforward. As with threesomes, it avoids the problems of associativity previously attached to using coercions; but because it is based on coercions, it avoids the problems of decoding the meaning of the decorated types attached to threesomes.

Translation from \(\lambda C \) to \(\lambda S \) is straightforward, but establishing its correctness is the most challenging result in the paper. The difficulty is that \(\lambda C \) breaks compositions into simpler components,

\[M(c; d) \rightarrow M(c)(d), \]

while \(\lambda S \) assembles simpler components into compositions,

\[M(s)(t) \rightarrow M(s \circ t). \]

(As explained in Sections 3 and 4, \(c, d \) range over coercions and \(s, t \) over space-efficient coercions, \(M(c) \) denotes the application to term \(M \) of coercion \(c \), and similarly for \(M(s) \).) We introduce a relation between terms of \(\lambda C \) and \(\lambda S \) and show it is a bisimulation. In this case the bisimulation is not lockstep: one step in \(\lambda C \) may correspond to many in \(\lambda S \), and vice-versa. Siek and Wadler (2010) establish a bisimulation similar to the one here, but our development is simpler because it uses coercions rather than decorated types, and because it uses \(\lambda C \) as an intermediate step. Because the mapping of \(\lambda S \) back to \(\lambda C \) is simply an inclusion, the bisimulation easily establishes full abstraction of the translation from \(\lambda C \) to \(\lambda S \).

Outline. Sections 2–4 systematically consider \(\lambda B \), \(\lambda C \), and \(\lambda S \). For each calculus we introduce its syntax, type rules, and reduction rules; and we establish type safety and blame safety. In Sections 3–4, for each calculus we also consider translations to and from the previous calculus, show the translations preserve type and blame safety, and demonstrate a bisimulation and full abstraction.

In Section 5, we observe that full abstraction often makes it easy to establish equivalences in \(\lambda B \) or \(\lambda C \), because equivalent terms in those calculi translate into one and the same term in \(\lambda S \). In particular, we exploit full abstraction between \(\lambda C \) and \(\lambda S \) to establish the key lemma required to show full abstraction between \(\lambda B \) and \(\lambda C \). We also exploit full abstraction between \(\lambda B \) and \(\lambda S \) to establish The Fundamental Theorem of Casts, which required a custom bisimulation and six lemmas in Siek and Wadler (2010).

Section 6 discusses related work, including a survey of how gradual typing is used in practice. Section 7 concludes.

2. Blame Calculus

Figure 1 defines the blame calculus, \(\lambda B \). This section reprises results from Wadler and Findler (2009), Siek and Wadler (2010), and Ahmed et al. (2011). Additional motivation and examples can be found in Wadler (2015).

Blame calculus is based on simply-typed lambda calculus, standard constructs of which are shown in gray. Let \(A, B, C \) range over types. A type is either a base type \(\alpha \), a function type \(A \rightarrow B \), or the dynamic type \(* \). Let \(G, H \) range over ground types. A ground type is either a base type \(\epsilon \) or the function type \(* \rightarrow * \). The dynamic type satisfies the domain equation

\[* \equiv \epsilon + (\epsilon \rightarrow \epsilon) \]

so each value of dynamic type belongs to one ground type.
Syntax

\[A, B, C ::= \epsilon | A \rightarrow B | * \]
\[G, H ::= \epsilon | \star * \]
\[L, M, N ::= k | op(M) | x | \lambda x. A. N | L M \]
\[M : A \Rightarrow B | \text{blame } p \]
\[V, W ::= k | \lambda x. A. N | V : A \rightarrow B \Rightarrow A' \rightarrow B' | \]
\[V : G \Rightarrow \star \]
\[E ::= \square | E[\alpha(V, \square, \bar{M})] | E[\square M] | E[V \square] | \]
\[E[\square : A \Rightarrow \star B] \]

Compatible

\[\Gamma \vdash M : A \]
\[\Gamma \vdash (M : A \Rightarrow B) : B \]
\[\Gamma \vdash \text{blame } p : A \]

Term typing

\[\Gamma \vdash B N \]

Reduction

\[E[\alpha(V)] \Rightarrow E[\alpha(V)] \]
\[E[\alpha(x. A. N) \rightarrow V \rightarrow N[x := V]] \]
\[E[V : \Rightarrow \epsilon] \Rightarrow E[V] \]
\[E[(V : A \rightarrow B \Rightarrow A' \rightarrow B') W] \Rightarrow \]
\[E[V : \Rightarrow \epsilon (W : A' \Rightarrow A) : B \Rightarrow B'] \]
\[E[V : G \Rightarrow \star \Rightarrow \epsilon \Rightarrow E[V] : G \Rightarrow \star \Rightarrow \epsilon] \]
\[E[V : G \Rightarrow \star \Rightarrow G \Rightarrow \star \Rightarrow \epsilon] \]
\[E[V : G \Rightarrow \star \Rightarrow G \Rightarrow \star \Rightarrow \epsilon] \]

Embedding dynamically typed \(\lambda \)-calculus

\[\begin{bmatrix} [M] \end{bmatrix} \]
\[[k] = k : \epsilon \Rightarrow \star \]
\[[\alpha(V)] = \alpha([V] : \Rightarrow \star \Rightarrow \epsilon) : \epsilon \Rightarrow \star \]
\[[x] = x \]
\[[\lambda x. A. N] = (\lambda x. \star * [\square A. N]) : \star * \Rightarrow [\square M] \]

Incompatibility is the source of all blame: casting a type into the dynamic type and then casting out at an incompatible type allocates blame to the second cast.

Let \(p, q \) range over blame labels. To indicate on which side of a cast blame lays, each blame label \(p \) has a complement \(\overline{p} \). Complement is involutive, \(\overline{\overline{p}} = p \).

Let \(L, M, N \) range over terms. Terms are of simply-typed lambda calculus, plus casts and blame. Each operator \(op \) on base types is specified by a total meaning function \([op] \) that preserves types; if \(op : \overline{\epsilon} \rightarrow k \) and \(\overline{\epsilon} \rightarrow \epsilon \), then \([op] (\overline{k}) = k \) with \(k : \epsilon \).

Typing, reduction, and safety judgments are written with subscripts indicating to which calculus they belong, except we omit subscripts in figures to avoid clutter. We write \(\Gamma \vdash B M : A \) to indicate that in type environment \(\Gamma \) term \(M \) has type \(A \). Type rules for simply-typed lambda calculus are standard and omitted. The type rule for casts is straightforward:

\[\Gamma \vdash B M : A \]
\[\Gamma \vdash (M : A \Rightarrow B) : B \]

If term \(M \) has type \(A \) and types \(A \) and \(B \) are compatible then a cast of \(M \) from \(A \) to \(B \) is a term of type \(B \). The cast is decorated with a blame label \(p \). We abbreviate a pair of casts

\[(M : A \Rightarrow B) : B \Rightarrow C \]
\[M \Rightarrow A \Rightarrow B \Rightarrow C. \]

A term \(\text{blame } p \) has any type.

Every well-typed term not containing blame has a unique type: if \(\Gamma \vdash M : A \) and \(\Gamma \vdash M : A' \) and \(M \) does not contain a subterm of the form \(\text{blame } p \), then \(A = A' \).

If a cast from \(A \) to \(B \) decorated with \(p \) allocates blame to \(p \) we say it has positive blame, meaning the fault lies with the term \(\text{contained} \) in the cast; and if it allocates blame to \(\overline{p} \) we say it has negative blame, meaning the fault lies with the context \(\text{containing} \) the cast.

Let \(V, W \) range over values. A value is a constant, a lambda abstraction, a cast of a value from function type to function type, or a cast of a value from ground type to dynamic type. Let \(E \) range over evaluation contexts, which are standard, and include casts in the obvious way. We write \(M \Rightarrow B N \) to indicate that term \(M \) steps to term \(N \). For any reduction relation \(\Rightarrow \), we write its reflexive and transitive closure as \(\Rightarrow^* \).

The first two rules are standard (and not repeated in subsequent figures). A cast from a base type to itself leaves the value unchanged. A cast of a function applied to a value reduces to a term that casts on the domain, applies the function, and casts on the range; to allocate blame correctly, the label on the cast of the domain is complemented, corresponding to the fact that function types are contravariant in the domain and covariant in the range (Findler and Felleisen 2002; Wand and Findler 2009). A cast from type \(\star \) to itself leaves the value unchanged. Assume \(A \) is neither the dynamic type \(\star \) nor a ground type, and \(G \) is the unique ground type compatible with \(A \); then a cast from \(A \) to \(\star \) factors into a cast from \(A \) to \(G \) followed by a cast from \(G \) to \(\star \), and a cast from \(\star \) to \(A \) factors into a cast from \(\star \) to \(G \) followed by a cast from \(G \) to \(A \). A cast from a ground type \(G \) to type \(\star \) and back to the same ground type \(G \) leaves the value unchanged. A cast from a ground type \(G \) to type \(\star \) and back to an incompatible ground type \(H \) allocates blame to the label of the outer cast. (Why the outer cast? This choice traces back to Findler and Felleisen (2002), and reflects the idea that we always hold an injection from ground type to dynamic type blameless, but may allocate blame to a projection from dynamic type to ground type.)

Two rules have side conditions \(A \neq \star, A \neq G, A \sim \).

The condition implies that \(G = \star \rightarrow \star \), so we could rewrite the rules replacing \(G \) by \(\star \rightarrow \star \). We use the given form because it is more

Figure 1. Blame calculus (\(\lambda B \))

Types \(A \) and \(B \) are compatible, written \(A \sim B \), if either is the dynamic type, if they are both the same base type, or they are both function types with compatible domains and ranges. Every type is either the dynamic type or compatible with a unique ground type. Two ground types are compatible if and only if they are equal.

Lemma 1 (Grounding).

1. If \(A \neq \star \), there is a unique \(G \) such that \(A \sim G \).
2. \(G \sim H \) if \(G = H \).
compact, and it adapts if we permit other ground types, such as
product $G = \times \times \times$.

The following lemma will prove useful later.

Lemma 2 (Failure). If $A \neq \star$, $A \sim G$, and $G \neq H$, then

$$V : A \xrightarrow{p_1} G \xrightarrow{p_2} \star \xrightarrow{p_3} H \xrightarrow{p_4} B \xrightarrow{\star} \text{blame } p_3$$

Embedding $[M]$ takes terms of dynamically-typed lambda calculus into the blame calculus. The embedding introduces a fresh label p for each cast.

Type safety is established via preservation and progress.

Proposition 3 (Type safety, Wadler and Findler (2009)).

1. If $\vdash_b M : A$ and $M \rightarrow_b N$ then $\downarrow_b N : A$.

2. If $\vdash_b M : A$ then either
 (a) there exists a term N such that $M \rightarrow_b N$, or
 (b) there exists a value V such that $M = V$, or
 (c) there exists a label p such that $M = \text{blame } p$.

The same will hold, mutatis mutandis, for $\land C$ and $\land S$.

Type safety does not rule out blame as a result. How to guarantee blame cannot arise in certain circumstances is the subject of the next section.

2.1 Blame Safety

Figure 2 presents four different subtyping relations and defines safety for blame calculus.

Why do we need four different subtyping relations? Each has a different purpose. Relation $A \prec B$ characterizes when a cast $A \rightarrow B$ never yields blame; relations $A \prec_+ B$ and $A \prec^- B$ characterize when a cast $A \rightarrow B$ cannot yield positive or negative blame, respectively; and relation $A \prec_\pi B$ characterizes when type A is more precise than type B. All four relations are reflexive and transitive, and subtyping, positive subtyping, and naive subtyping are antisymmetric.

The first three subtyping relations are characterised by *contravariance*. A cast from a base type to itself never yields blame. A cast from a function type to a function type never yields positive blame if the cast of the arguments never yields negative blame and if the cast of the results never yields positive blame; and ditto with positive and negative reversed; as with casts, each rule is contravariant in the function domain and covariant in the function range. A cast from ground type to dynamic type never yields blame. A cast to dynamic type never yields positive blame, while a cast from dynamic type never yields negative blame.

Naive subtyping is characterised by *covariance*. A base type is as precise as itself, precision of function types is covariant in both the domain and range of functions, and the dynamic type is the least precise type.

These four relations are closely connected: ordinary subtyping decomposes into positive and negative subtyping, which can be reassembled to yield naive subtyping, almost like a tangram.

Lemma 4 (Tangram, Wadler and Findler (2009)).

1. $A \prec B$ iff $A \prec_+ B$ and $A \prec^- B$.

2. $A \prec_\pi B$ iff $A \prec_+ B$ and $B \prec^- B$.

A cast from A to B decorated with p is *safe* for blame label q.

$$\text{if evaluation of the cast can never allocates blame to } q.
\text{The three rules reflect that if } A \prec_\pi B \text{ the cast never allocates positive blame,}
\text{if } A \prec^- B \text{ the cast never allocates negative blame, and a cast with}
\text{label } p \text{ never allocates blame other than to } p \text{ or } \overline{p}. \text{Safety extends}
\text{to terms in the obvious way: } M \text{ safe } q \text{ if every cast in } M \text{ is safe for } q.
\text{Blame safety is established via a variant of preservation and progress.}

Proposition 5 (Blame safety, Wadler and Findler (2009)).

1. If $M \text{ safe } q$ and $M \rightarrow_b N$ then $N \text{ safe } q$.

2. If $M \text{ safe } q$ then $M \not\rightarrow_b \text{ blame } q$.

The same will hold, mutatis mutandis, for $\land C$ and $\land S$.

2.2 Contextual Equivalence

Contextual equivalence is defined as usual. Evaluating a term may have three outcomes: converge, allocate blame to p, or diverge. Two terms are contextually equivalent if they have the same outcome in any context.

Let C range over contexts. A context is an expression with a single hole in any position. Write $M \upharpoonright C$ if M diverges; coinductively, $M \upharpoonright C$ if $M \not\rightarrow_b N$ and $N \upharpoonright C$.

Definition 6 (Contextual equivalence). Two terms are contextually equivalent, $M \equiv_C N$, if for any context C, either

1. both converge, $C[M] \rightarrow_b V$ and $C[N] \rightarrow_b W$, for some values V and W.

2. both blame the same label, $C[M] \not\rightarrow_b \text{ blame } p$ and $C[N] \not\rightarrow_b \text{ blame } p$, for some label p, or

3. both diverge, $C[M] \not\rightarrow_b$ and $C[N] \not\rightarrow_b$.

The same will apply, mutatis mutandis, for $\land C$ and $\land S$.

3. Coercion Calculus

Figure 3 defines the coercion calculus, λC. Our coercions correspond to those of Henglein (1994), except that a coercion from dynamic type to ground type is decorated with a blame label, as in Siek and Wadler (2010), and we add a coercion \perp^{type}, similar to
Syntax
\[c, d ::= \text{id}_A \mid G ! \mid G ?^p \mid e \rightarrow d \mid e; d \mid \bot^{G \rho H} \]

\[L, M, N ::= k \mid \text{op}(\vec{M}) \mid x \mid \lambda x : A. N \mid L \cdot M \mid M(c) \mid \text{blame } p \]

\[V, W ::= k \mid \lambda x : A. N \mid V(e \rightarrow d) \mid V(G !) \]

\[\mathcal{E} ::= \emptyset \mid \mathcal{E}[\text{op}(V, \emptyset, \vec{M})] \mid \mathcal{E}[\emptyset M] \mid \mathcal{E}[V \emptyset] \mid \mathcal{E}[\mathcal{E}(c)] \]

Coercion typing

\[
\begin{array}{ll}
\text{id}_A : A \rightarrow A & \\
G ! : G \rightarrow \star & G ?^p : \star \rightarrow G \\
(c \rightarrow d) : A \rightarrow B \Rightarrow A' \rightarrow B' & \\
(c : A \Rightarrow B) : d : B \Rightarrow C & \\
A \neq \star & A \sim G \quad G \neq H \\
\end{array}
\]

Term typing

\[
\begin{array}{ll}
\Gamma \vdash M : A & \\
\Gamma \vdash M(c) : B & \\
\Gamma \vdash \text{blame } p : A & \\
\end{array}
\]

Reduction

\[
\begin{array}{ll}
\mathcal{E}[V(\text{id}_A)] & \rightarrow \mathcal{E}[V] \\
\mathcal{E}[V(e \rightarrow d) W] & \rightarrow \mathcal{E}[V(W(e)))(d)] \\
\mathcal{E}[V(G !)(G ?^p)] & \rightarrow \mathcal{E}[V] \\
\mathcal{E}[V(G !)(H ?^p)] & \rightarrow \text{blame } p & \text{if } G \neq H \\
\mathcal{E}[V(c ; d)] & \rightarrow \mathcal{E}[V(c)(d)] \\
\mathcal{E}[\mathcal{E}(c)] & \rightarrow \text{blame } p & \text{if } \mathcal{E} \neq \emptyset \\
\end{array}
\]

Safe coercion

\[
\begin{array}{ll}
\text{id}_A \text{ safe } q & \\
\text{safe } c \mid d \text{ safe } q & \\
c \rightarrow d \text{ safe } q & \\
c ; d \text{ safe } q & \\
G ! \text{ safe } q & \\
G ?^p \text{ safe } q & \\
p \neq q & \\
\bot^{G \rho H} \text{ safe } q & \\
\end{array}
\]

Height

\[
\begin{array}{ll}
||\text{id}_A|| = 1 & \\
||c \rightarrow d|| = \max(||c||, ||d||) + 1 & \\
||G !|| = 1 & \\
||G ?^p|| = 1 & \\
\end{array}
\]

Figure 3. Coercion calculus (λC)

Fail in Herman et al. (2007, 2010). Our type rules and definition of height are well-known; our reduction rules and all results in this section are new.

Blame labels and types are as in λB. Let c, d range over coercions. We write $c : A \Rightarrow B$ to indicate that c coerces values of type A to type B. Our type rules follow Henglein (1994). The identity coercion at type A is written id_A. Injection from ground type G to dynamic type is written $G !$, and projection from dynamic type to ground type G is written $G ?^p$. The latter is decorated with a label p, to which blame is allocated if the projection fails. A function coercion $c \rightarrow d$ coerces a function $A \rightarrow B$ to a function $A' \rightarrow B'$, where c coerces A' to A, and d coerces B to B'. This construct is contravariant in the domain coercion c and covariant in the range coercion d. The composition $c ; d$ coerces A to C, where c coerces A to B, and d coerces B to C. The fail coercion $\bot^{G \rho H}$ represents the result of a failed coercion from ground type G to ground type H, and is introduced because it is essential to the space-efficient representation described in the following section.

Terms of the calculus are as before, except that we replace casts by application of a coercion, $M (c)$. The typing rule is straightforward:

\[
\begin{array}{ll}
\Gamma \vdash M : A & c : A \Rightarrow B \\
\Gamma \vdash M(c) : B & \\
\end{array}
\]

Values and evaluation contexts are as in the blame calculus, with casts replaced by corresponding coercions. We write $M \triangleleft c N$ to indicate that term M steps to term N. The identity coercion leaves a value unchanged. A coercion of a function applied to a value reduces to a term that coerces on the domain, applies the function, and coerces on the range. If an injection meets a matching projection, the coercion leaves the value unchanged. If an injection meets an incompatible projection, the coercion fails and allocates blame to the label in the projection. (Here it is clear why blame fails on the outer coercion: the inner coercion is an injection and has no blame label, while the outer is a projection with a blame label.) Application of a composed coercion applies each of the coercions in turn.

A coercion c is safe for blame label q, written $c \text{ safe}_q$, if application of the coercion never allocates blame to q. The definition is pleasingly simple: a coercion is safe for q if it does not mention label q.

Height of a coercion is as in Herman et al. (2007, 2010), and will be used in Section 4.

Type and blame safety and contextual equivalence for λC are as in λB. Propositions 3 and 5 and Definition 6 apply mutatis mutandis.

3.1 Relating λB to λC

The relation between λB and λC is presented in Figure 4. In this section, we let M, N range over terms of λB and M', N' range over terms of λC.

We write

\[A \xrightarrow{\rho} B \mid \text{blame } c \]

to indicate that the cast on the left translates to the coercion on the right. The translation is designed to ensure there is a lockstep bisimulation between λB and λC. The translation extends to terms in the obvious way, replacing each cast by the corresponding coercion.

We write

\[|c|^{\text{CB}} = Z \]

to indicate that the coercion on the left translates to the sequence of casts on the right. Here Z ranges over sequences of casts. As defined in Figure 4, we write $Z \rightarrow B$ (respectively $B \rightarrow Z$) to replace in Z each source or target type A by $A \rightarrow B$ (respectively $B \rightarrow A$), we write Z to reverse the sequence Z and complement all the blame labels, and we write $Z \leftrightarrow Z'$ to concatenate two sequences Z and Z', where the last type of one sequence must match the first of the other. In the clause for $c \rightarrow d$, the right-hand
Lemma 7 (Equivalences). The following hold in $\mathcal{L}C$.

1. $M(id) \triangleq_C M$
2. $M(c; d) \triangleq_C M(c) \triangleq(d)$
3. $M(c \rightarrow d) \triangleq_C M((c \rightarrow id) ; (id \rightarrow d))$
4. $M(c \rightarrow d) \triangleq_C M((id \rightarrow c) ; (d \rightarrow id))$

Proof of this lemma is deferred to Section 5.1, where we apply a new technique that makes the proof straightforward.

Translating from $\mathcal{L}C$ to $\mathcal{L}B$ and back again is the identity, up to contextual equivalence.

Lemma 8 (Coercions to blame). If M' is a term of $\mathcal{L}C$ then $|M'|^{CB} \triangleq_C M'$.

The subtle definition of positive and negative subtyping is justified by the correspondence to the coercion calculus. It is not too surprising that the definition is sound (safety in B implies safety in C), but it is surprising that the definition is also complete (safety in C implies safety in B).

Lemma 9 (Positive and negative subtyping).

1. $A <_{+} B$ iff $A \vdash_{C} \vdash_{B} B^{\ast} \triangleq_C A$.
2. $A <_{-} B$ iff $A \vdash_{C} \vdash_{B} B^{\ast} \triangleq_C A$.

(The full proof is in the supplementary material.)

It follows immediately that translation from $\mathcal{L}B$ to $\mathcal{L}C$ preserves type and blame.

Proposition 10 (Preservation, $\mathcal{L}B$ to $\mathcal{L}C$).

1. If $\Gamma \vdash B : A$ then $\Gamma \vdash_{C} |M|^{BC} \triangleq A$.
2. If M safe$_B$ then M^{BC} safe$_C$.

The translation from $\mathcal{L}B$ to $\mathcal{L}C$ is a bisimulation. The bisimulation is lockstep: a single step in $\mathcal{L}B$ corresponds to a single step in $\mathcal{L}C$, and vice versa.

Proposition 11 (Bisimulation, $\mathcal{L}B$ to $\mathcal{L}C$).

Assume $\Gamma \vdash B : A$ and $\vdash_C M' : A$ and $|M|^{BC} = M'$.

1. If $M \rightarrow_B N$ then $M' \rightarrow_C N'$ and $|N|^{BC} = N'$ for some N'.
2. If $M' \rightarrow_C N'$ then $M \rightarrow_B N$ and $|N|^{BC} = N'$ for some N.
3. If $M = V$ then $M' = V'$ and $|V|^{BC} = V'$ for some V'.
4. If $M' = V'$ then $M = V$ and $|V|^{BC} = V'$ for some V.
5. If $M = \blame p$ then $M' = \blame p$.
6. If $M' = \blame p$ then $M = \blame p$.

Translation from $\mathcal{L}B$ to $\mathcal{L}C$ is fully abstract.

Proposition 12 (Fully abstract, $\mathcal{L}B$ to $\mathcal{L}C$). M and N are terms of $\mathcal{L}B$ then $M^{CB} \triangleq_C N^{BC}$.

4. Space-efficient Coercion Calculus

Figure 5 defines the space-efficient coercion calculus, $\mathcal{L}S$. Space-efficient coercions correspond to coercions in a canonical form. All results in this section are new.

Blame labels and types are as in $\mathcal{L}B$ and $\mathcal{L}C$. Space-efficient coercions follow a specific, three-part grammar. There is one space-efficient coercion for each equivalence class of coercions with respect to the equational theory of Henglein (1994). The grammar has been chosen to facilitate the definition of a recursive composition operator, that takes two canonical coercions and computes the canonical coercion corresponding to their composition.

Let s, t range over space-efficient coercions, i range over intermediate coercions, and g, h range over ground coercions. Space-efficient coercions are either the identity coercion at dynamic type id, a projection followed by an intermediate coercion $(Gp; i)$, or just an intermediate coercion i. An intermediate coercion is either a ground coercion followed by an injection $(g; G1)$, just a ground coercion g, or the failure coercion \bot. A ground coercion is an identity coercion of base type id, or a function coercion $s \rightarrow t$. Let f range over identity-free coercions, which play a role in reduction.
Syntax

\[s, t ::= \text{id}, \ | \ (G ?^p \ ; i) \ | \ i \]
\[i ::= (g \ ; G_1) \ | \ g \ | \ □_{G^p H} \]
\[g, h ::= \text{id}, \ (s \rightarrow t) \]
\[f ::= (G ?^p \ ; i) \ | \ (g \ ; G_1) \ | \ □_{G^p H} \ | \ (s \rightarrow t) \]

L, M, N ::= k \ | \ op(\tilde{M}) \ | \ x \ | \ λx:A. N \ | \ L M \ | \ M t \ | \ \text{blame} \ p \]
\[U ::= k \ | \ λx:A. N \]
\[V, W ::= U \ | \ U (s \rightarrow t) \ | \ U (g \ ; G_1) \]
\[E ::= F \ | \ F[□(f)] \]
\[F ::= □ | E[op(\tilde{V}, □, \tilde{M})] | E[□M] | E[V □] \]

Composition

\[\text{id}, \text{id} = \text{id}, \]
\[(s \rightarrow t) \text{id} = (s \rightarrow t) \]
\[(g \ ; G_1) \text{id} = g \ ; G_1 \]
\[□_{G^p h} = □_{G^p h} \]
\[□_{G^p h} \text{id} = \text{id} \]
\[□_{G^p h} (s \rightarrow t) = □_{G^p h} (s \rightarrow t) \]

Reduction

\[E[U (s \rightarrow t)] \]
\[F[U (\text{id})] \]
\[F[U (\text{id}s)] \]
\[F[U (s \rightarrow t)] \]
\[F[U (□_{G^p h})] \]
\[F[\text{blame} p] \]

Lemma 13 (Source and Target).

1. If \(i : A \Rightarrow B \) then \(A \neq \star \).
2. If \(g : A \Rightarrow B \) then \(A \neq \star \) and \(B \neq \star \) and there exists a unique \(G \) such that \(A \sim G \) and \(G \sim B \).

Terms of the calculus are as in \(\lambda \mathcal{C} \), except that we restrict coercions to space-efficient coercions. The key idea of the dynamics, as in Herman et al. (2007, 2010) and Siek and Waldner (2010), is to combine and normalize adjacent coercions, which ensures space efficiency. Ensuring adjacent coercions are combined requires we adjust the notion of value and evaluation context. Let \(U \) range over uncoerced values and \(V, W \) range over values, where an uncoerced value contains no top-level coercion and a value at most one top-level coercion. Let \(\mathcal{E} \) range over contexts and \(\mathcal{F} \) range over coercion-free contexts, where no context applies two coercions in succession, each applied coercion is identity free, and a coercion-free context does not have a coercion application innermost. Reduction of a term that is a cast must occur in a cast-free context. These adjustments ensure that if a term contains two coercions in succession in an evaluation context, then those coercions are composed before other reductions occur. The other reduction rules are straightforward.

If space-efficient coercions \(s \) and \(t \) are the canonical form of coercions \(c \) and \(d \), then \(s \vdash t \) is the canonical form of \(c \vdash d \). We establish the termination of composition by observing that the sum of the sizes of the arguments gets smaller at each recursive call. Further the correctness of each equation in the definition is easily justified by the equational theory of Henglein (1994).

Height is preserved by composition.

Proposition 14 (Height). \(||s \vdash t|| \leq \max(||s||, ||t||) \).

A space-efficient coercion contains at most two compositions (check the grammar), so a space-efficient coercion bounded in height is also bounded in size.

Type and blame safety and contextual equivalence are as in \(\lambda \mathcal{B} \).

The definition of blame safety from Figure 3, Propositions 3 and 5, and Definition 6 apply mutatis mutandis.

4.1 Relating \(\lambda \mathcal{C} \) to \(\lambda \mathcal{S} \)

The translation from \(\lambda \mathcal{C} \) to \(\lambda \mathcal{S} \) is presented in Figure 6. In this section, we let \(M, N \) range over terms of \(\lambda \mathcal{C} \) and let \(M', N' \) range over terms of \(\lambda \mathcal{S} \).

We write

\[|c|_{\mathcal{C}} = s \]

to indicate that the coercion on the left translates to the space-efficient coercion on the right. The translation extends to terms in the obvious way, replacing each coercion by the corresponding space-efficient coercion.

The inverse translation

\[|s|_{\mathcal{C}} = c \]

is trivial, since each space-efficient coercion is a coercion.

Translating \(\lambda \mathcal{C} \) to \(\lambda \mathcal{S} \) preserves type and blame safety.

Proposition 15 (Preservation, \(\lambda \mathcal{C} \) to \(\lambda \mathcal{S} \)).

1. If \(\Gamma \vdash \mathcal{C} M : A \) then \(\Gamma \vdash s |_{\mathcal{C}} | M |_{\mathcal{C}} : A \).
2. If \(M \text{ safe}_{\mathcal{C}} q \) then \(|M|_{\mathcal{S}} \text{ safes } q \).

Dynamics of \(\lambda \mathcal{C} \) and \(\lambda \mathcal{S} \) differ in that the former breaks up compositions, while the latter combines them. In Figure 6, we define a bisimulation \(\approx \) that relates \(\lambda \mathcal{C} \) to \(\lambda \mathcal{S} \).

Rules in grey make the relation a congruence; rules (i), (ii), (iii) relate a sequence of zero or more coercion applications to a single space-efficient coercion application. Consider the sequence of reductions in \(\lambda \mathcal{C} \).

\[(V (c_1) \rightarrow d_1) (c_2) (d_2) \]
\[(V (c_1) \rightarrow d_1) (W (c_2)) (d_2) \]
\[(V (W (c_2) (c_1)) (d_2) \]

If \(V \approx V' \), \(W \approx W' \), \(|c|_{\mathcal{C}} = s_i \), and \(|d|_{\mathcal{C}} = t_i \), these two reductions relate to a single reduction in \(\lambda \mathcal{S} \).

\[(V (s_1) (t_1) (t_2)) \]
\[(V (W (s_2) (t_2)) \]

Here (a) \(\approx \) (d) via (i) once and (ii) twice; and (b) \(\approx \) (d) via (i) once, (ii) once, and (iii) once; and (c) \(\approx \) (e) via (i) once and (ii) twice in both the domain and the range.

Relation \(\approx \) is a bisimulation. It is not lockstep: a single step in \(\lambda \mathcal{C} \) corresponds to zero or more steps in \(\lambda \mathcal{S} \), and vice versa.
Coercions to space-efficient (λC to λS)

$$|\text{id}_s|_{\text{CS}} = \text{id}_s$$
$$|\text{id}_b|_{\text{CS}} = \text{id}_b$$
$$|\text{id}_A|_{\text{CS}} = |\text{id}_B|_{\text{CS}}$$
$$|G\beta_\mu^p|_{\text{CS}} = G|\beta_\mu^p|_{\text{CS}}$$
$$|G!|_{\text{CS}} = |G!|_{\text{CS}}$$

Bisimulation between λC and λS

$$M \approx_{\text{CS}} M'$$

<table>
<thead>
<tr>
<th>$k \approx k$</th>
<th>$\sigma(M) \approx \sigma(M')$</th>
<th>$x \approx x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda x : A . M \approx \lambda x : A . M'$</td>
<td>$\lambda x . L \approx \lambda x . L'$</td>
<td>$\lambda x . M \approx \lambda x . M'$</td>
</tr>
<tr>
<td>$\text{blame } p \approx \text{blame } p$</td>
<td>$M \approx M'(s)$</td>
<td>$\text{bind } c \approx \text{bind } c$</td>
</tr>
<tr>
<td>$M \approx M'(s)$</td>
<td>$\text{bind } c \approx M'(s \downarrow t)$</td>
<td></td>
</tr>
<tr>
<td>$\text{bind } c \approx M'(s)$</td>
<td>$\text{bind } c \approx M'(s \downarrow t)$</td>
<td></td>
</tr>
<tr>
<td>$M(d) \approx (\lambda' r \rightarrow (M'(s))) M'$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Relating λC to λS

5. Applications

Full abstraction considerably eases some proofs. In this section, we use it to demonstrate two useful results, Lemma 7 from Section 3.1, which justifies the translation $| \cdot |_{\text{CS}}$ of λC to λB. We repeat the lemma here, with some additional clauses.

Lemma 7 (Equivalences). The following hold in λC.

1. $M(\text{id}) \approx_{\text{CS}} M$
2. $M(c ; d) \approx_{\text{CS}} M(c ; d)$
3. $(c \rightarrow d) \approx_{\text{CS}} M((c \rightarrow d))$
4. $(c \rightarrow d) \approx_{\text{CS}} M((c \rightarrow d))$
5. $(c \rightarrow d) \approx_{\text{CS}} M((c \rightarrow d))$
6. $(c \rightarrow d) \approx_{\text{CS}} M((\text{id} ; c) ; (\text{id} ; d))$

Proof. Part 1 follows from $M(\text{id}) \rightarrow M$, part 2 is similar, and part 3 follows from parts 1 and 2. Part 4 is more interesting. Let $|\cdot|_{\text{CS}} = s$, $|d|_{\text{CS}} = t$, $|c|_{\text{CS}} = s'$ and $|d'|_{\text{CS}} = t'$. Applying $|\cdot|_{\text{CS}}$ to each side of the equation gives

$$(s
ightarrow t) \approx (s
ightarrow t') \approx (s' ; s) \rightarrow (t ; t')$$

which holds immediately from the definition of \approx. Then part 4 follows because $|\cdot|_{\text{CS}}$ reflects contextual equivalence, the backward part of Proposition 18. Part 5 follows from

$$c \rightarrow d \approx_{\text{CS}} (\text{id} ; c) \rightarrow (\text{id} ; d) \approx_{\text{CS}} (c \rightarrow d) ; (\text{id} \rightarrow d)$$

which follows from parts 3 and 4. Part 6 is similar.

Typically, one might be tempted to prove a result such as Lemma 7 by introducing a custom bisimulation relation—indeed, that is how we first attempted to demonstrate it. Eventually we realised that we could show terms equivalent in λC by mapping them into λS and exploiting full abstraction. Instead of introducing a custom bisimulation relation, all of the “heavy lifting” is done by bisimulation \approx_{CS} from Figure 6 and by Proposition 16.

Full abstraction from λC to λS does not depend of full abstraction from λB to λC, so there is no circularity.

5.2 Fundamental Property of Casts

As a second application, we show how to establish the Fundamental Property of Casts, Lemma 2 of Sicke and Wadler (2010), which asserts that a single cast is contextually equivalent to a pair of casts. We will do so by mapping two terms of λB to contextually equivalent terms of λS.

First, we define a notion of pointed type.

$$S, T ::= \varepsilon | S
ightarrow T | \ast | \bot$$

We extend naive subtyping to include pointed types by setting $\bot \ll_{\text{CS}} \varepsilon$, for all T. Meet of two types is their greatest lower bound with respect to naive subtyping, \ll_{CS}. Take $|\cdot|_{\text{BS}}$ to be the composition of $|\cdot|_{\text{BC}}$ and $|\cdot|_{\text{CS}}$. We first establish one simple lemma, which follows immediately by case analysis on A, B, and C.

Lemma 20. If $A \ll_{\text{CS}} C$ then

$$|A|_{\text{BS}} = |A|_{\text{BC}} |C|_{\text{CS}}$$

The fundamental property follows immediately by full abstraction from λB to λC and λC to λS.

Lemma 21 (Fundamental Property of Casts). Let M be a term of λB. If $A \ll_{\text{CS}} C$ then

$$M : A \Rightarrow B \Rightarrow C$$

We extend naive subtyping to include pointed types by setting $\bot \ll_{\text{CS}} \varepsilon$, for all T. Meet of two types is their greatest lower bound with respect to naive subtyping, \ll_{CS}. Take $|\cdot|_{\text{BS}}$ to be the composition of $|\cdot|_{\text{BC}}$ and $|\cdot|_{\text{CS}}$. We first establish one simple lemma, which follows immediately by case analysis on A, B, and C. We extend naive subtyping to include pointed types by setting $\bot \ll_{\text{CS}} \varepsilon$, for all T. Meet of two types is their greatest lower bound with respect to naive subtyping, \ll_{CS}. Take $|\cdot|_{\text{BS}}$ to be the composition of $|\cdot|_{\text{BC}}$ and $|\cdot|_{\text{CS}}$. We first establish one simple lemma, which follows immediately by case analysis on A, B, and C. We extend naive subtyping to include pointed types by setting $\bot \ll_{\text{CS}} \varepsilon$, for all T. Meet of two types is their greatest lower bound with respect to naive subtyping, \ll_{CS}. Take $|\cdot|_{\text{BS}}$ to be the composition of $|\cdot|_{\text{BC}}$ and $|\cdot|_{\text{CS}}$. We first establish one simple lemma, which follows immediately by case analysis on A, B, and C.
Siek and Wadler (2010) establish the same result with more difficulty: they require a custom bisimulation and six lemmas.

6. Related Work

This section provides an in-depth comparison to the work of Siek and Wadler (2010), Greenberg (2013), and Garcia (2013), then summarizes systems that use gradual typing and other relevant work.

6.1 Relation to Siek and Wadler (2010)

Siek and Wadler (2010) use threesomes of the form
\[(T \xrightarrow{P} S) \downarrow\]
where \(s\) is a term, \(S, T\) are types, and \(P\) is a labeled type that indicates how blame is allocated if the cast fails. Here is the grammar for labeled types:
\[P, Q ::= l \mid \epsilon\]
Their \(l, m\) range over blame labels (our \(p, q\)), their \(p, q\) range over optional blame labels, their \(P, Q\) range over labeled types, their \(B, \epsilon\) ranges over base types (our \(i\)), and their \(G, H\) range over ground types (our \(G, H\)). The meaning of a labeled type is subtle as it depends on whether each label is present or not. For example, their \(\downarrow_{iG}\) corresponds to our \(\downarrow_{Gr}h\), while their \(\downarrow_{iGm}\) correspond to our \(G\rho_1\); \(\downarrow_{Gr}h\) (taking their \(l, m\) to correspond to our \(p, q\), respectively).

If our space-efficient coercions \(s, t\) correspond to their labeled types \(P, Q\), then \(s \downarrow t\) corresponds to \(Q \circ P\) (note the reversal!), defined as follows.
\[B^q \circ B^p = B^p\]
\[P \circ \epsilon = P\]
\[\ast \circ P = P\]
\[Q^Hm \circ P^{Gp} = \downarrow_{mGp}\] if \(G \neq H\)
\[Q \circ \downarrow_{mGp} = \downarrow_{mGp}\]
\[\downarrow_{mGp} \circ P^{Gp} = \downarrow_{mGp}\] if \(G \neq H\)
\[P' \xrightarrow{p} Q' \circ (P \xrightarrow{p} Q) = (P \circ P') \xrightarrow{Q' \circ Q}\]

Here \(P^{Gp}\) means that labelled type \(P\) is compatible with ground type \(G\) and that \(p\) is the topmost optional blame label in \(P\). The correctness of these equations is not immediate. For instance, in the penultimate line why do \(P^{Gp}\) and \(\downarrow_{mHj}\) compose to yield \(\downarrow_{Gr}h\)? Perhaps the easiest way to validate the equations is to translate to coercions using \(\downarrow\), then check that the left-hand side normalises to the right-hand side. In contrast, our definition of \(\downarrow\) (Figure 5) is easily justified by the equational theory of Heneghan (1994).

6.2 Relation to Greenberg (2013)

Greenberg (2013) considers a sequence of calculi CAST, NAIVE, and EFFICIENT, roughly corresponding to our \(\lambdaB\), \(\lambdaC\), and \(\lambdaS\). Unlike us, he includes refinement types, but omits blame; and he formulates correctness in terms of logical relations rather than full abstraction.

His EFFICIENT resembles our \(\lambdaS\), in that it defines a composition operator that serves the same purpose as our \(\dagger\). He writes \(c_1 \ast c_2 \Rightarrow c_3\) to indicate that the composition of \(c_1\) and \(c_2\) is equivalent to \(c_3\). The rules to compute \(c_1 \ast c_2\) compose the right-most primitive coercion of \(c_1\) with the left-most primitive coercion of \(c_2\), then recursively compose the result with what is left of \(c_1\) and \(c_2\). For example, here is the rule for composing function coercions.
\[c_1 \ast c_1 \Rightarrow c_1\]
\[c_1 \ast c_2 \Rightarrow c_2\]
\[c_1 \ast (c_1 \Rightarrow c_2) \Rightarrow c_2 \Rightarrow c\]

His definition is recursive but not a structural recursion, and proving it total is challenging, requiring four pages. In contrast, our definition is a structural recursion, and totality is straightforward.

6.3 Relation to Garcia (2013)

Garcia (2013) observes that coercions are easier to understand while threesomes are easier to implement, and shows how to derive threesomes from coercions through a series of correctness-preserving transformations. To accomplish this, he defines supercoercions and gives their meaning in terms of a translation \(\mathcal{N}(_________)\) to coercions.
\[\mathcal{N}(\tau_P) = \tau_P\]
\[\mathcal{N}(\text{Fail}^l) = \text{Fail}^l\]
\[\mathcal{N}(\text{Fail}^l \xi) = \text{Fail}^l \circ G\rho^l\]
\[\mathcal{N}(G!) = G!\]
\[\mathcal{N}(G\rho^l) = G\rho^l\]
\[\mathcal{N}(G\rho^l \xi) = G! \circ G\rho^l\]
\[\mathcal{N}(\xi \rightarrow \xi) = (\ast \rightarrow \ast) \circ (\xi \rightarrow \xi)\]
\[\mathcal{N}(\xi \rightarrow \xi \xi) = (\xi \rightarrow \xi) \circ (\ast \rightarrow \ast)\]

His \(l\) ranges over blame labels (our \(p, q\)), his \(\tau\) is the identity coercion (our \(i\)), his \(P\) ranges over atomic types (either a base type or the dynamic type), his \(\text{Fail}^l\) is a failure coercion (our \(\downarrow_{Gr}h\)), and his \(c\) ranges over supercoercions. Garcia (2013) derives a recursive composition function for supercoercions but the definition was too large to publish as there are sixty pairs of compatible supercoercions. In contrast, our definition fits in ten lines.

6.4 Systems that use Gradual Typing

Racket (formerly Scheme) supports dynamic and static typing and higher-order contracts with blame (Flatt and PLT 2014). Racket permits contracts to be written directly. Typed Racket inserts contracts that allocate blame when dynamically typed code fails to conform to the static types declared for it (Tobin-Hochstadt and Felleisen 2008). Racket has an extensive and well-tested implementation of contracts, but does not support space-efficient contracts. Racket is the source, via Findler and Felleisen (2002), of the rule for casting functions in \(\lambdaB\) (the fourth reduction rule in Figure 1).

Pyret has limited support for gradual typing (Patterson et al. 2014). Pyret checks that a first-order value (such as integer) conforms to its declared parameter and result types. Pyret does not implement any equivalent of the rule for casting functions in \(\lambdaB\).

Dart provides support for gradual typing with implicit casts to and from type dynamic (Bracha and Bak 2011; ECMA 2014). Dart does not provide full static type checking; its type checker aims to warn of likely errors rather than to ensure lack of failures. In checked mode, Dart performs a test at every place that a value can be assigned to a variable and raises an exception if the value’s type is not a subtype of the variable’s declared type. Dart does not implement any equivalent of the rule for casting functions in \(\lambdaB\).
C# type dynamic and VB type Object play a role similar to our type *, with the compiler introducing first-order casts as needed (Bierman et al. 2010; Feigenbaum 2008). These languages do not have higher-order structural types, only nominal types, so the programmer must manually construct explicit wrappers to accomplish what would amount to a higher-order cast. C# and VB do not implement any equivalent of the rule for casting functions in λB.

TypeScript provides interface declarations that allow users to specify types for an imported JavaScript module or library (Hejlsberg 2012). The DefinitelyTyped repository contains over 150 such declarations for a variety of popular JavaScript libraries (Yankov 2013). TypeScript is not concerned with type soundness, which it does not provide (Bierman et al. 2014), but instead exploits types to provide better prompting in Visual Studio, for instance to to populate a pulldown menu with well-typed methods that might be invoked at a given point. The information supplied by interface declarations is taken on faith; failures to conform to the declaration are not reported. TypeScript does not implement any equivalent of the rule for casting functions in λB.

Several systems explore how to modify TypeScript to restore various forms of type safety.

Safe TypeScript is a refinement of TypeScript that guarantees type safety by adding run-time type information (RTTI) to values of dynamic type any (Rastogi et al. 2015). It introduces the notion of erased types that cannot be coerced to any. Erased types are used to communicate with external libraries that are unaware of RTTI. Furthermore, subtyping of function types is restricted to never manipulate RTTI, avoiding the need for wrappers that may change the object identity. Safe TypeScript does not implement any equivalent of the rule for casting functions in λB.

StrongScript (Richards et al. 2015) extends TypeScript’s optional types with concrete types. A concrete type is a (nominal) class type which is statically checked and which is protected by compiler-generated casts against its less strictly typed context. The main goals of this work are compatibility with TypeScript and enabling the generation of efficient code for concretely typed parts of a program. Blame tracking is an optional feature that may be disabled to avoid run-time overhead. StrongScript relies upon an equivalent of the rule for casting functions in λB.

Microsoft has funded Wadler and a PhD student to build a tool, TypeScript TNG, that uses blame calculi to generate wrappers from TypeScript interface declarations. The wrappers monitor interactions between a library and a client, and if a failure occurs then blame will indicate whether it is the library or the client that has failed to conform to the declared types. TypeScript TNG relies upon an equivalent of the rule for casting functions in λB.

Initial results on TypeScript TNG appear promising, but there is much to do. We need to assess how many and what sort of errors are revealed by wrappers, and measure the overhead wrappers introduce. It would be desirable to ensure that generated wrappers never change the semantics of programs (save to detect more errors) but aspects of JavaScript (notably, that wrappers affect pointer equality) make it difficult to guarantee noninterference; we need to determine to what extent these cases are an issue in practice. The current design of TypeScript TNG is not space-efficient, and implementing a space-efficient version and measuring its effect would be interesting future work.

6.5 Other Relevant Work

Siek et al. (2009) explore design choices for cast checking and blame tracking in the setting of the coercion calculus. Ahmed et al. (2011) extend the blame calculus to include parametric polymorphism. Siek and Garcia (2012) define a space-efficient abstract machine for the gradually-typed lambda calculus based on coercions. Siek et al. (2015) propose the gradual guarantee as a new criteria for gradual typing, characterizing how changes in the precision of type annotations may change a program’s static and dynamic semantics. Wadler (2015) surveys work on the blame calculus.

7. Conclusion
Findler and Felleisen (2002) introduced higher-order contracts, setting up a foundation for gradual typing; but they observed a problem with space efficiency. Herman et al. (2007, 2010) restored space efficiency; but required an evaluator to reassociate parentheses. Siek and Wadler (2010) gave a recursive definition of composition that is easy to compute; but the correctness of their definition is not transparent. Here we provide composition that is easy to compute and transparent. At last, we are in a position to implement space-efficient contracts and test them in practice.

When Siek and Wadler (2010) was published we thought we had discovered a solution that was easy to implement and easy to understand. Only later did we realise that it was not quite so easy as we thought! We believe this next step is a significant improvement. For us, the lesson is clear: no matter how simple your theory, strive to make it simpler still!

Acknowledgments
Thanks to Shayan Najd, Michael Greenberg, and the PLDI referees for comments. Siek acknowledges NSF Grant 1360694. Wadler acknowledges EPSRC Programme Grant EP/K034413/1 and a Microsoft Research PhD Scholarship.

References