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Abstract

Word embedding, which is a dense and low-dimensional vector
representation of word, is recently used to replace of the con-
ventional prosodic context as an input feature to the acoustic
model of a TTS system. However, these word vectors trained
from text data may encode insufficient information related to
speech. This paper presents a post-filtering approach to enhance
the raw word vectors with prosodic information for the TTS
task. Based on a publicly available speech corpus with manual
prosodic annotation, a post-filter can be trained to transform the
raw word vectors. Experiment shows that using the enhanced
word vectors as an input to the neural network-based acous-
tic model improves the accuracy of the predicted FO trajectory.
Besides, we also show that the enhanced vectors provide better
initial values than the raw vectors for error back-propagation of
the network, which results in further improvement.

Index Terms: Text-to-speech, word embeddings, neural net-
work, prosodic labeling

1. Introduction

A text-to-speech (TTS) system converts text strings into speech
waveforms. In order to model the non-linear relationships be-
tween text and speech, a TTS system can generally be decom-
posed into the front- and the back-end. The front-end derives
linguistic representations that contain the pronunciation of in-
dividual words and the prosody of the input text. Based on the
intermediate representations, the back-end acoustic model pre-
dicts acoustic features and synthesizes speech waveforms.

In the back-end, the hidden Markov model (HMM) is the
classical model for acoustic modeling. However, its limitation-
s such as data fragmentation caused by decision-trees [1] and
limited capabilities of Gaussian distributions in HMM states [2]
have motivated researchers to use neural networks (NNs) to ei-
ther complement [2] or replace the HMM-based framework[1,
3, 4]. In the front-end, modules based on decision-trees or oth-
er relatively simple models are widely used for grapheme-to-
phoneme conversion, part-of-speech (POS) tagging, and sym-
bolic prosodic label prediction [5]. Leveraging NN for these
sub-modules may further improve TTS systems [6].

NN models usually require a large amount of manually an-
notated data for supervised training. Because data annotation
such as the prosodic annotation on a speech corpus can be time
consuming, combining unsupervised or semi-supervised train-
ing schemes with NN models may be more practical. For ex-
ample, Wang et al. took an unsupervised approach and replaced
the conventional prosodic context in TTS systems with vector
representations of words learned by NN language models [7].
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Although word vectors are shown to be effective in various
natural language processing tasks [8], implicit linguistic reg-
ularity encoded in these vectors may still be insufficient and
noisy for the TTS task. Typically, our previous experiments
implied that, at least on the utilized speech corpus, word vec-
tors were not significantly better than the automatically derived
prosodic symbols for TTS systems with a acoustic model based
on either the recurrent neural network (RNN) or the deep feed-
forward neural network (DNN) [9].

Thus, as presented in this paper, we investigated a new
semi-supervised approach to find whether task-specific infor-
mation could improve word vectors for TTS. This approach
used a post-filter to transform the raw word vectors into en-
hanced ones that were expected to encode more ‘prosodic’ in-
formation. The post-filter was implemented as a neural network
and trained on a small publicly available corpus with manually
annotated prosodic tags. The training scheme, similar to the
joint-embedding framework [10], aimed at learning the non-
linear relationship between the raw word vector and a prosod-
ic feature vector. This prosodic feature vector was extracted
from the hidden layer of another prosodic labeling model that
predicted the prosodic tag of a word according to its acoustic
features. The experimental results revealed that, enhanced vec-
tors as the input the NN-based acoustic model increased the ac-
curacy of the predicted FO trajectories. Besides, by updating
enhanced vectors as part of the acoustic model through error
back-propagation on the large speech synthesis corpus without
prosodic annotation, the enhanced vectors could further be im-
proved. However, the improvement on objective measure didn’t
lead to significant difference in perception tests.

In the rest of this paper, section 2 briefly introduces existing
work using the (raw) word vectors for TTS systems. Section 3
explains the proposed approaches to enhance word vectors, in-
cluding the prosodic labeling model to extract prosodic feature
vectors, the post-filter that tunes the word vectors, and the use
of enhanced vectors in TTS systems. Section 4 shows the ex-
periments and results, and Section 5 summarizes this work.

2. TTS systems using raw word vectors

Word vectors are dense and low-dimensional continuous repre-
sentations of words. They can be derived from plain text with-
out task-specific annotation while encode syntactic and seman-
tic regularities of language [12]. It has been shown that word
vectors can be plugged into natural language processing (NLP)
systems and improve their performance in various tasks includ-
ing sentence chunking and name entity recognition [8].
Similarly to the NLP approach, word vectors have been

http://dx.doi.org/10.21437/Interspeech.2016-390
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Figure 1: Steps to build the TTS system with enhanced word vectors. A post-filter is trained and used to enhance raw vectors. Enhanced
vectors are then used in acoustic modeling. These vectors can be further updated in acoustic modeling (indicated by the dashed arrow).
M,, € RP*IVI is the vector matrix, where |V'| is vocabulary size of M, and D is vector’s dimension. The secondary speech corpus
contains manually annotated Tones and Break Indices (ToBI) tags while the large primary corpus for acoustic modeling does not [11].

used in the TTS system to replace the the conventional prosod-
ic context [7]. The motivation is to reduce manual-annotation
costs in building prosodic models for TTS systems in a new lan-
guage or domain. With word vectors as the input to the acoustic
model based on a bi-directional recurrent neural network with
long-short term memory units (for short, DBLSTM-RNN [13]),
this TTS system was reported to outperform other systems with-
out POS tags nor prosodic context as input information [7].

We have also investigated the effectiveness of word vec-
tors in TTS systems with acoustic models based on DBLSTM-
RNN and DNN [9]. Further, we used vector representations of
phonemes, syllables and phrases as the input to the NN-based
acoustic models. These vectors can be learned in the same man-
ner as word vectors can be learned from plain text using the RN-
N [14] and other log linear models [15]. However, the subjec-
tive evaluation revealed insignificant differences in DBLSTM-
RNN-based systems with different types of input vectors. On-
ly phrase vectors achieved significant improvements when they
were used together with the conventional prosodic context as
the inputs to the acoustic model based on DNN.

3. Proposed method
3.1. Motivation

Although word vectors can encode linguistic regularities, the
encoded information is somehow limited. For example, while
word vectors performed well in predicting the taxonomic prop-
erties of words (e.g., an apple is a fruit), their performance in
predicting other properties was much worse [16]. One reason
for this is that the learning algorithms of word vectors assume
similar vectors to be assigned to words that share similar neigh-
boring words. This linear-context assumption is effective to de-
rive the association or topical similarity between words, but not
other semantic relationships [17].

To enrich the word vector with other kinds of semantic
knowledge, the distance between words in a semantic lexicon
can be integrated into the optimization function for learning
new word vectors [18, 19, 20] or refining the raw word vectors
[21]. These approaches increase the similarity between words
of similar word types. Another method is to utilize the origi-
nal algorithm to learn word vectors based on syntactic context
[22], which results in word vectors with better syntactic regu-
larities. All the previous work has indicated that it is beneficial
to enhance the word vectors with task-related information.
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3.2. Word vectors enhanced with prosodic information

For the TTS task, we present the post-filtering approach to
enhance the word vector with prosodic information, which is
shown in Figure 1. In the post-filter training stage, a prosodic
feature vector is extract from a prosodic labeling model for each
word in the speech corpus with annotated prosodic tags. Then,
the post-filter model is trained given the prosodic feature vector
and the corresponding raw word vector. This trained post-filter
model can be used to enhance any input raw word vectors. Af-
ter that, the enhanced vectors can be plugged into the acoustic
model of a TTS system.

This method is semi-supervised because the speech corpus
used in the post-filter training stage contains annotated prosodic
tags. However, this corpus is small and different from the main
large speech synthesis corpus to train the acoustic model. Typ-
ically, the main large corpus contains no prosodic annotation.
For brevity, we call the small corpus the secondary corpus and
the larger one the primary corpus [11]. The secondary corpus
can be a subset of the primary corpus if manual prosodic anno-
tation can be conducted for this subset. Or, in our case, it can
be another corpus released with prosodic annotation. The risk
of the latter approach is that the prosodic patterns of the two
corpora may be different.

3.2.1. Prosodic feature extraction

Among possible ways to extract the prosodic features, we
present one approach with an auxiliary task for prosodic label-
ing. Prosodic labeling aims at predicting symbolic prosodic tags
based on the acoustic features of a linguistic unit (e.g., a word or
syllable). Research on this topic suggests that statistical prosod-
ic labeling models can learn meaningful relationships between
prosodic tags and acoustic features [23, 24]. Thus, we assume
that useful features can be extracted by these models.

The utilized prosodic labeling model predicts prosodic tags
at the word level. The output targets are the pitch accents de-
fined in Tones and Break Indices (ToBI), a prosody annotation
protocol for American English [25, 26]. However, the full set
of pitch accents is merged into 5 categories due to the limited
size of the secondary speech corpus: the H*, !H* and L* form
the first three categories, bitonal accents the forth category, and
other symbols the fifth category [27]. The input to the prosodic
labeling model is a set of acoustic features extracted from the
waveform of a word, including the continuous wavelet trans-
forms of the FO trajectory [28] and the root mean square (RMS)



level of each speech frame.

The neural network in the prosodic labeling model includes
a convolutional neural network (CNN) that extracts a com-
pact representation from the input acoustic features and a feed-
forward network that transforms the compact representation in-
to the target prosodic tags. Because the neural network is ex-
pected to extract structural features from the input data, we as-
sume that the vector exported by the last hidden layer encodes
abstract acoustic information optimized for the prosodic label-
ing task. This prosodic feature vector can be extracted for each
word in the secondary speech corpus after the prosodic labeling
model is trained on this corpus. Details on the configuration and
hyper-parameters will be provided in Section 4.1.

3.2.2. Post-filter training

The post-filter part is based on a feed-forward neural network.
The target feature is the extracted prosodic feature vector from
the prosodic labeling model while the input is the raw word
vector. To train the model, the triplet ranking loss [10] below is
utilized as an objective function E:

E = max [0, 1= Sim(pw, F(muw)) + Sim(pw, F(m,,-))].

M
Here, F is the post-filter model, m,, is the raw vector of word
w, Py 18 the prosodic feature of w given by the prosodic label-
ing model, and sim(x, y) = 1, is the similarity between
vectors. This criterion also involves the word vector m,,— of a
wrong word w™ . This wrong word is currently randomly sam-
pled from the corpus.

The way to train the post-filter model is similar to the joint
embedding approach [10]. There, the triplet ranking loss is used
to train a NN model that enhances the letter-based word repre-
sentation with the acoustic information. The main difference is
that the acoustic information in their case is the segmental in-
formation associated with the word. In our case, we assume the
suprasegmental information would be encoded.

3.3. Usage of enhanced word vectors in TTS systems

The enhanced word vectors can be used as input features to the
acoustic model in a TTS system, as shown in Figure 1. Because
the prosody of a word and its acoustic realization depend on
the context beyond the current word [29], the DBLSTM-RNN-
based acoustic model is used so that the dependency between
the input vectors over a large segment can be learned.

The word vector m,,,, of a word w,, can be written as
My, = My,vy,, where v, is the one-hot representation
of wy,. In this sense, M,, can be regarded as the parameter of
one layer of the NN-based acoustic model. Thus, M., can be
further updated during the acoustic model training stage by er-
ror back-propagation. Although a similar strategy can be used
to update the raw word vectors [7], the difference is the initial
condition. Due to the difficulties in optimizing the parameters
of the lower layer of a deep neural work [30], the word vec-
tors enhanced with prosodic features may be better than the raw
vectors as the initial value for back-propagation.

4. Experiments
4.1. Prosodic feature extraction and post-filter training

The Boston University Radio News Corpus (BURNC) [31] was
used as the secondary corpus to train the post-filter. The speech
data of speaker f2b was used because of the manual ToBI an-
notation provided. This data set contained 148 utterances with

2858

11211 words, among which 6074 words were annotated with
pitch accents.

The frame width for acoustic feature extraction was 20 ms
and the frame shift was 5 ms. The FO trajectory was extract-
ed by merging the outputs from multiple FO extractors; then, it
was transformed into a continuous wavelet representation with
five sub-components [28]. The root mean square (RMS) of
the waveform was calculated using the SPTK toolkit [32], and
then normalized [24]. Given the time alignment information in
BURNC, the acoustic feature matrix of a word was composed
based on the wavelet representation of FO and the RMS per
frame. Finally, the zero padding strategy was used to ensure
that each word had 160 frames (only 1.7% of words are longer
than 160 frames). Thus, the size of the acoustic feature matrix
for one word was 160 x 6. The acoustic matrices of the central
word and its two neighbors were fed as inputs into the prosodic
labeling model.

The CNN layer at the bottom of the prosodic labeling mod-
el contained 10 feature filters with a receptive field size of 5 X 6;
the max pooling stride was (10, 1). This configuration ensured
that the five FO wavelet components and the RMS trajectory
were separately transformed by the CNN layer. Feed-forward
layers with the size of (500, 320, 80) were added after the CN-
N layer. The output layer was the softmax layer. This network
structure was selected based on experiments on prosodic label-
ing tasks. If we change the targets and train the model to pre-
dict the presence/absence of accent and boundary tone, we can
get the results comparable to existing work [23, 24] as Table 1
shows. Thus, this network can be expected to extract useful fea-
ture for our task. The size of the last hidden layer was 80, which
ensured that the dimension of the extracted prosodic vector was
compatible with the word vectors to be enhanced.

After training the prosodic labeling model, we extracted the
feature vectors for all words in f2b. These vectors were used as
the target of the vector post-filter. Then, we used the same vec-
tor set in Wang et al. [7] as the input raw word vectors. This
vector set contained 80-dim vectors for 82390 words. We addi-
tionally calculated the average of the word vectors to represent
unseen words. Through experiments on f2b data, we selected
the network with 2 hidden layers of size (160, 160) as the vector
post-filter. The input and output dimension was 80. The post-
filter was trained by stochastic gradient descent with respect to
the triplet-ranking loss for 1000 epochs, which increased the
average similarity score between the input and output vectors
from 0.091 to 0.467. Both the prosodic labeling model and the
post-filter were implemented using the Theano library [33].

Note that, out of the 82390 word types covered by the word
vector set, only 2792 of them existed in the f2b data. We as-
sumed that the post-filter learned from the f2b data could be
generalized to other words in the word vector set. A related
idea dealing with “out-of-vocabulary (OOV)” words has been p-
resented by Tafforeau et al. [34]. Different from their approach
based on linear interpolation, we utilized the non-linear regres-
sion provided by the neural network to derive the representation
for OOV words.

Table 1: Performance of the prosodic labeling model in speaker-
dependent (f2b) task that predicts presence/absence of accent
and intonational phrase boundary (IPB) on word-level.

Precision Recall fi-score  Accuracy
Accent 0.901 0.863 0.882 0.869
IPB 0.701 0.805 0.749 0.895




Table 2: Lists of experimental systems

Input to the acoustic model besides the quin-phone

No prosodic context or word vectors
» Prosodic context given by Flite
Raw word vectors

Raw word vectors after back-propagation in R,

R

R

Rye Enhanced word vectors

R

R Enhanced vectors after back-propagation in R

4.2. Experiments on TTS task

We carried out experiments on the TTS task based on enhanced
word vectors. Here, we use we and wr to denote the enhanced
and raw word vectors. The database for the acoustic model
training contained 12072 English utterances (16 hours) by a
female speaker in a neutral news reading style. Both the test
and validation set contained 500 randomly selected utterances.
Mel-generalized cepstral coefficients (MGC) of order 60, a
one-dimensional continuous FO trajectory, the voiced/unvoiced
(V/U) condition, and band aperiodicity of order 25 were ex-
tracted for each speech frame by the STRAIGHT vocoder [35].
The FO trajectory was further converted to Mel-scale according
to m = 1127 % log(1 + f/700). Delta and delta-delta com-
ponents of the acoustic features were used for all the systems.
The Flite toolkit [36] conducted the grapheme-to-phoneme con-
version for both the training and test sets. The phonemic infor-
mation given by the Flite only contained the phoneme identity
(quin-phone), without other numerical information such as the
position of the current phoneme.

The experimental systems are listed in Table 2. All the ex-
perimental systems only took FO as the output feature. They all
adopted the neural network with two feed-forward and two D-
BLSTM layers with the layer size as (512,512,256,64). Another
DBLSTM-based system was trained to predict spectral features
from all the experimental systems. This experiment setup was
motivated by our observation that word vectors can not increase
the accuracy of predicted spectral features significantly on the
same corpus [9]. Another concern is that, with spectral and FO
as the target features, the neural network may devote most of
its capability to modelling the spectral features [37]. Thus, with
FO as the sole output feature, the usefulness of enhanced word
vectors can be reflected better. All the acoustic models were
implemented based on a revised CURRENNT toolkit [38] '

Objective measures included the root mean square error
(RMSE) and correlation against the natural FO trajectory. The
duration were copied from the natural data (at the phoneme lev-
el). The results on the test set are presented in Figure 2. As
R and R, achieve better objective measure than Ry, this
indicates word vectors contain useful information for FO mod-
elling. Moreover, R, is better than R,,,, which suggests that
enhanced word vectors contain more task-related information.
Ry, and Ruye,, can further increase the accuracy of predic-
tion by updating word vectors through back-propagation. How-
ever, Rue,, results in higher accuracy than R, possibly due
to the better initial condition provided by enhanced vectors. All
results indicate that enhanced vectors are more suitable for the
TTS task. Note that R, is worse than R,,. and R, due to the
noisy prosodic context automatically generated by Flite.

Subjective A/B preference tests with 20 native English s-
peakers were conducted for the three pairs of systems shown in
Figure 3, where each test contained 40 pairs of synthetic sam-

IToolkit and speech samples available on http://tonywangx.github.io
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Figure 2: Average objective results on FO prediction. Each sys-
tem was trained twice with random initialization, and the mod-
els given by the last five training epochs of each trial were used
to predict FO. The error bar shows the standard deviation of the
ten sets of results for each system.
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Figure 3: Subjective preference test. The p-value using two-

tailed binomial test are 0.097, 0.071, 0.972. The p-value using
one-sample t-test are 0.089, 0.066, 0.944.

ples. Although the difference is trivial, the system Rue,, is
judged to be better that R,. Comparisons between R, and
R.e and between R, and Rwebp indicate that the main con-
tribution to the performance of R, comes from the prosodic
information encoded in the vectors. However, further updating
the enhanced vectors based on back-propagation may not lead
to further perceptible improvement on synthetic speech. Note
that the difference between Ry and R, is not significantly dif-
ferent based on our previous work [9].

5. Conclusion

This paper presented one way of enhancing the word vectors
through pushing the raw word vectors towards the prosodic fea-
ture vectors extracted by a CNN-based prosodic labeling model.
The enhanced word vectors can be directly fed into the acous-
tic model or further tuned in the acoustic model training stage.
The experiments demonstrated that the enhanced word vector
increased the accuracy of the predicted FO trajectory. Howev-
er, the improvement does not lead to significant difference in
subjective evaluation test.

As one reviewer points out, the prosodic patterns can be
speaker dependent. One future work is to annotate part of the
primary corpus with prosodic tags and then test the proposed
method. Another possible work is to train the post-filter in an
speaker-independent way.
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