THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer
 Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review

Citation for published version:
Broderick, P, Dobbins, SE, Chubb, D, Kinnersley, B, Dunlop, MG, Tomlinson, I \& Houlston, RS 2017, 'Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review', Gastroenterology. https://doi.org/10.1053/j.gastro.2016.09.041

Digital Object Identifier (DOI):
10.1053/j.gastro.2016.09.041

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Gastroenterology

Publisher Rights Statement:
This is the authors final peer-reviewed manuscript as accepted for publication.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients－a Systematic Review

Peter Broderick，Sara E．Dobbins，Daniel Chubb，Ben Kinnersley，Malcolm G．
Dunlop，Ian Tomlinson，Richard S．Houlston

PII：	S0016－5085（16）35138－1
DOI：	10．1053／j．gastro．2016．09．041
Reference：	YGAST 60735
To appear in：	Gastroenterology
Accepted Date：	27 September 2016

Please cite this article as：Broderick P，Dobbins SE，Chubb D，Kinnersley B，Dunlop MG，Tomlinson I，Houlston RS，Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients—a Systematic Review，Gastroenterology（2016），doi：10．1053／ j．gastro．2016．09．041．

This is a PDF file of an unedited manuscript that has been accepted for publication．As a service to our customers we are providing this early version of the manuscript．The manuscript will undergo copyediting，typesetting，and review of the resulting proof before it is published in its final form．Please note that during the production process errors may be discovered which could affect the content，and all legal disclaimers that apply to the journal pertain．

Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review

Peter Broderick ${ }^{1^{*}}$, Sara E Dobbins ${ }^{1^{*}}$, Daniel Chubb ${ }^{1^{*}}$, Ben Kinnersley ${ }^{1}$, Malcolm G Dunlop ${ }^{2}$, Ian Tomlinson ${ }^{3}$, Richard S Houlston ${ }^{1,4}$

1. Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK.
2. Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU
3. Molecular and Population Genetics Laboratory and NIHR Biomedical Research Centre, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
4. Division of Pathology, The Institute of Cancer Research, London SM2 5NG, UK

* These authors contributed equally to this work.

Correspondence to: Richard S Houlston, E-mail: richard.houlston@icr.ac.uk; Tel: +44 (0) 208722 4175; Fax: +44 (0) 7224365.

CONFLICT OF INTEREST

Peter Broderick, Sara E Dobbins, Daniel Chubb, Ben Kinnersley, Malcolm G Dunlop, Ian Tomlinson, Richard S Houlston: None to declare

ACKNOWLEDGEMENTS

This work was supported by Cancer Research UK Research (C1298/A8362, Bobby Moore Fund for Cancer Research UK) and the European Union (FP7/2007-2013) under Grant No. 258236, FP7 collaborative project SYSCOL. D.C. was funded by a grant from Bloodwise. Additional support was
provided by the National Cancer Research Network and the National Health Service (NHS). In Oxford, the work was funded by the Oxford Comprehensive Biomedical Research Centre core infrastructure support to the Wellcome Trust Centre for Human Genetics, Oxford (Wellcome Trust 090532/Z/09/Z). In Scotland, the work was funded by a Cancer Research UK (C348/A12076) and Medical Research Council Grant (MR/KO18647/1). This study makes use of the ICR1000 UK exome series data generated by Professor Nazneen Rahman's team at The Institute of Cancer Research, London. This work made use of samples generated by the 1958 Birth Cohort. Access to these resources was enabled via the 58READIE Project funded by Wellcome Trust and Medical Research Council (grant numbers WT095219MA and G1001799). This publication is supported by COST Action BM1206.

AUTHOR CONTRIBUTIONS

Conception and design: Peter Broderick, Daniel Chubb, Sara E Dobbins, Richard S. Houlston

Collection and assembly of data: Peter Broderick, Daniel Chubb, Sara E. Dobbins, Malcolm G Dunlop, Ian Tomlinson, Richard S. Houlston

Data analysis and interpretation: Peter Broderick, Daniel Chubb, Ben Kinnersley, Sara E. Dobbins, Richard S. Houlston

Manuscript writing: All authors

Final approval of manuscript: All authors

High-throughput sequencing analysis has accelerated searches for genes associated with risk for colorectal cancer (CRC); germline mutations in NTHL1, RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6, and PTPN12 have been recently proposed to increase CRC risk. We attempted to validate the association between variants in these genes and development of CRC in a systematic review of 11 publications, using sequence data from 863 familial CRC cases and 1604 individuals without CRC (controls). All cases were diagnosed at an age of 55 years or younger and did not carry mutations in an established CRC predisposition gene. We found sufficient evidence for NTHL1 to be considered a CRC predisposition gene-members of 3 unrelated Dutch families were homozygous for inactivating p.Gln90Ter mutations; a Canadian woman with polyposis, CRC, and multiple tumors was reported to be heterozygous for the inactivating NTHL1 p.Gln90Ter/c.709+1G>A mutations; and a man with polyposis was reported to carry p.Gln90Ter/p.Gln287Ter; whereas no inactivating homozygous or compound heterozygous mutations were detected in controls. Variants that disrupted RPS2O were detected in a Finnish family with early-onset CRC (p.Val50SerfsTer23), a 39-year old individual with metachronous CRC (p.Leu61GlufsTer11 mutation), and a 41-year-old individual with CRC (missense p.Val54Leu), but not in controls. We therefore found published evidence to support the association between variants in NTHL1 and RPS20 with CRC, but not of other recently reported CRC susceptibility variants. We urge the research community to adopt rigorous statistical and biological approaches coupled with independent replication before making claims of pathogenicity.

KEYWORDS

Colon cancer, inherited, Germline, Exome Sequencing

ARTICLE

Understanding the genetics of familial CRC is clinically important to discriminate between highand low-risk groups. Mutations in eleven genes are well-established to confer significant increases in CRC risk and testing for these is common in clinical practice. Despite this in many CRC families no genetic diagnosis can be made. While the availability of high-throughput-sequencing has
accelerated searches for new CRC genes there are challenges in assigning pathogenicity to identified variants.

Here we reviewed the data supporting recent assertions that NTHL1, RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6, and PTPN12 are CRC susceptibility genes using an evidence-based framework (Supplementary-Material) ${ }^{1-7}$. To search for independent evidence of a role in CRC risk we analyzed sequencing data on 863 familial CRC cases and 1,604 controls 8. All cases were diagnosed aged ≤ 55 and were mutation-negative for known CRC genes.

Evidence for variation in NTHL1, which like MUTYH performs base-excision-repair (BER), as a cause of recessive-CRC has been provided by three unrelated Dutch families homozygous for the rare inactivating p.GIn90Ter mutation (Supplementary-Material, Supplementary-Table 1) ${ }^{6}$. The tumor mutation spectrum was enriched for $C>T$ transitions, consistent with defective BER. Subsequently compound heterozygosity for inactivating NTHL1 p.GIn90Ter/c.709+1G>A mutations was identified in a Canadian woman diagnosed with polyposis, CRC and multiple tumors ${ }^{9}$. Tumors were again enriched for somatic $C>T$ transitions. While we found no p.GIn90Ter homozygotes amongst our WES cases, a 41-year old male case with co-incident polyposis harbored p.Gln90Ter/p.Gln287Ter. No inactivating homozygotes or compound heterozygotes were seen among our 1,604 controls.

Whole-exome sequencing (WES) of a Finnish Amsterdam-positive family demonstrated significant segregation of RPS20 p.Val50SerfsTer23 with early-onset CRC (LOD score=3.0; SupplementaryMaterial, Supplementary-Table 1$)^{3}$. No disruptive RPS2O variants have been catalogued by the Exome-Aggregation-Consortium (ExAC), which contains WES data for 60,706 individuals of diverse ancestries ${ }^{10}$ suggesting the gene is intolerant to mutation. Hence, it is notable that in our WES series we identified the disruptive p.Leu61GlufsTer11 mutation in a 39-year old with metachronous CRC. Furthermore we identified the deleterious missense p.Val54Leu in an Amsterdam-positive 41-year old case. No rare missense/disruptive mutations identified in the 1,604 controls.

Smith et al. identified FANCM p.Arg1931Ter in two sporadic CRC cases with cancers showing loss of the wild-type allele (LOH) ${ }^{5}$. p.Arg1931Ter has been shown to induce exon skipping resulting in
decreased DNA-repair (Supplementary-Material, Supplementary-Table 1). In our WES series we detected p.Arg1931Ter in four cases and one control ($P=0.02$; Supplementary-Table 3). To seek further evidence for an association between p.Arg1931Ter and CRC, we investigated the frequency of this specific variant in two additional UK series totaling 5,552 cases and 6,792 population controls (published Illumina-Exome-BeadChip data ${ }^{11}$; Supplementary-Material). Combining these data provided no evidence for an association (Meta-analysis $P=0.22$; Supplementary Figure 1).

FAN1 mutations have been reported as a cause of CRC in Amsterdam-positive families ${ }^{4}$, but evidence for segregation was weak ($P=0.125$) and the evidence for any functional effect of mutation was only shown in non-colonic tissue (Supplementary-Material, Supplementary-Table 1). In our WES series we found no significant increase in the burden of FAN1 mutations in cases (Table 1; Supplementary-Tables 2\&3).

Germline mutation of TP53, archetypically associated with Li-Fraumeni syndrome, has recently been suggested to cause familial CRC at a frequency comparable to $A P C^{7}$. The assertion was, however, based on the flawed assumption that all rare missense changes seen were diseasecausing with no consideration of mutation burden in controls (Supplementary-Material, Supplementary-Table 1). In our data no over-representation of TP53 mutation was seen in cases (Table 1, Supplementary-Tables 2\&3).

By WES small numbers of early-onset CRC, BUB1, BUB3, LRP6 and PTPN12 have been proposed as CRC predisposition genes ${ }^{1,2}$. The published evidence to support assertions is minimal (Supplementary-Material, Supplementary-Table 1) with no evidence of segregation or LOH. Moreover, of the two BUB1 mutation carriers, one also carried a MLH1 mutation which, unlike BUB1, segregated with colorectal tumors. Only for PTPN12 did the authors demonstrate an increase in the burden of mutation in cases versus controls ($P=0.039$; Supplementary-Material). While we also observed an enrichment of missense PTPN12 mutation in our WES cases ($P=0.039$; Table 1, Supplementary-Table 3), in light of the number of genes investigated, the evidence for a role in CRC predisposition remains weak.

In conclusion a role for NTHL1 as a bona fide CRC gene is supported by multiple lines of evidence. While compelling, the assertion that mutation of RPS2O causes CRC remains to be established as this observation is based on a single family and the mechanism by which ribosomal proteins might
predispose to CRC is unclear. In contrast, evidence to support other genes as risk factors is currently lacking.

Investigators must remember that private variants are common; of the 7,404,909 variants listed in ExAC, 54% are observed only once ${ }^{10}$, therefore novel variants should be considered benign until proved otherwise. A studies power to detect a statistically significant association with any rare variant is typically weak, therefore additional evidence must be considered including segregation of the genotype with disease in families, somatic mutation and functional studies with relevance to CRC biology. Critically, where multiple variants are considered within a gene, the burden of variation within controls must also be considered. Since the frequency of variants can be highly population-specific it is essential that controls used for comparison are well matched.

While there is a strong rationale for seeking to identify new CRC genes, well powered studies are required to mitigate against erroneous findings being asserted as causative and subsequently included in databases from which they are seldom deleted. The WES data we have generated represents the largest cohort of CRC exomes sequenced to date. The use of this dataset, which is publically available, to validate observations from small sequencing studies should act to limit the reporting of false positive results. Finally, the evidence framework we have implemented to assess the validity of proposed CRC genes, provides a robust strategy for establishing clinically actionable genes.

TABLES AND FIGURES

Table 1: Gene Burden analysis. Number of cases ($n=863$) and controls ($n=1,604$) with rare (MAF<1\%) mutations in postulated CRC genes. P-values calculated using Fishers exact test, P values <0.05 are emboldened.

REFERENCES

1. de Voer RM, Geurts van Kessel A, Weren RD, Ligtenberg MJ, et al. Gastroenterology 2013:145:544-7.
2. de Voer RM, Hahn MM, et al. PLoS Genet 2016:12:e1005880.
3. Nieminen TT, et al. Gastroenterology 2014:147:595-598 e5.
4. Segui N, Mina LB, et al. Gastroenterology 2015:149:563-6.
5. Smith CG, et al. Hum Mutat 2013:34:1026-34.
6. Weren RD, et al. Nat Genet 2015:47:668-71.
7. Yurgelun MB, et al. JAMA Oncol 2015:1:214-21.
8. Chubb D, Broderick P, Dobbins SE, et al. Nat Commun 2016:7:11883.
9. Rivera B, et al. N Engl J Med 2015:373:1985-6.
10. Lek M, et al. Nature 2016:536:285-91.
11. Timofeeva MN, Kinnersley B, et al. Sci Rep 2015:5:16286.

Author names in bold designate shared co-first authorship

Table 1: Gene Burden analysis. Number of cases ($n=863$) and controls ($n=1,604$) with rare (MAF<1\%) mutations in postulated CRC genes. P values calculated using Fishers exact test, P -values <0.05 are emboldened.

		Disruptive mutations (stop-gain, frameshift)			Damaging mutations (disruptive, predicted-damaging, splice acceptor/donors			All coding non-synonymous variants		
Gene	Previously Reported	Cases	Control	$\boldsymbol{P}_{\text {Fisher }}$	Cases	Control	$\boldsymbol{P}_{\text {Fisher }}$	Cases	Control	$\boldsymbol{P}_{\text {Fisher }}$
BUB1	Disruptive	0	4	0.31		8	0.17	18	30	0.76
BUB3	Missense	0	2	0.55	0	4	0.31	1	5	0.67
FAN1	Disruptive /Missense	0	2	0.55	15	17	0.19	32	$45^{\#}$	0.23
FANCM	Disruptive /Missense	5	1	0.02	23	33	0.33	$51^{\text {S }}$	$67^{\text {s }}$	0.06
LRP6 (BPD*)	Missense	0	0	-	6 (4)	17 (13)	0.51 (0.45)	17 (8)	37 (21)	0.67
PTPN12	Missense	0	1	1.00	6	5	0.21	12	9	0.04
RPS20	Disruptive	1	0	0.35	2	0	0.12	2	0	0.12
TP53	Missense	1	0	0.35	1	1	1.00	1	4	0.66

* Number of variants within β-Propellor domain. All 3 variants identified by de Voer et al were within BPD.
\# Total number of variants in controls $=46$; 1 sample has 2 FAN1 missense
$\$$ Totals number of variants in cases $=52$, in controls $=69 ; 3$ samples have 2 FANCM missense

SUPPLEMENTARY METHODS AND MATERIALS

METHODS

INDEPENDENT EVALUATION

Whole-exome sequencing data: To search for independent evidence and to contextualize the impact of each purported CRC gene we made use of recently published whole-exome sequencing (WES) data on 1,006 early-onset familial CRC cases and 1,609 healthy controls ${ }^{1}$. Cases were of European Ancestry recruited to the UK National Study of Colorectal Cancer Genetics (NSCCG) ${ }^{2}$. All cases were diagnosed with CRC aged ≤ 55 and had at least one firstdegree relative diagnosed with CRC. Controls were individuals with no history of malignancy selected from the 1958 Birth Cohort (1958BC), a longitudinal study following the lives of people born in England, Scotland and Wales during the week of 3-9 March 1958^{3}. Full details of WES have been published previously. Briefly, paired end fastq files were aligned to build 37 (hg19) of the human reference genome and alignments were processed using the Genome Analysis Tool Kit (GATKv3) pipeline according to best practices ${ }^{4}$. The Variant Effect Predictor ${ }^{5}$ was used to provide annotations on the predicted impact of each variant together with functional classifications and assessment of deleteriousness from the CONDEL ${ }^{6}$ algorithm. Samples (cases and controls) with a variant in an established highpenetrance CRC gene which was predicted to be disruptive (stop-gain, frameshift) or previously catalogued as being pathogenic or likely-pathogenic by InSiGHT (The International Society for Gastrointestinal Hereditary Tumours) were removed. Specifically: APC: 19 cases, 1 control; MLH1: 46 cases; MSH2: 46 cases; MSH6: 13 cases, 1 control; MUTYH: 9 cases; PMS2: 6 cases, 2 controls; POLD1: 1 case, 1 control; POLE: 3 cases; BMPR1A, SMAD4, STK11: 0 cases. Thus for the analysis presented in this manuscript we made use of whole-exome sequencing data on 863 cases and 1,604 controls.

Gene Burden Analysis: With currently attainable sample sizes, a studies power to detect a statistically significant association with any rare variant is typically weak. Here we use WES data described above, to look for an enrichment of variation in cases versus controls, for each postulated CRC gene as a whole. As the power of such comparison depends critically on the ability to distinguish between pathogenic and non-pathogenic variation, we defined and compared a number of variant classes: (1) Disruptive mutations (stop-gain, frameshift); (2) Disruptive and predicted damaging mutations (stop-gain, frameshift, missense predicted to be damaging by CONDEL, splice site acceptor/donors); (3) All coding non-synonymous variants. We assessed rare (minor allele frequency [MAF] <1\%) and very rare (MAF<0.1\%) mutations in each variant class. Comparisons were made using (a) all 863 cases (b) 159 cases with Amsterdam-II positive family histories (Amsterdam-I $n=146$). Thus in total we performed 12 comparisons for each gene.

Further analysis of the recurrent FANCM p.Arg1931Ter (rs144567652) variant: We studied the association of the recurrent variant FANCM p.Arg1931Ter (rs144567652) with CRC by analyzing published Illumina Infinium Human Exome BeadChip 12v1.0 or 12v1.1 exon array data ${ }^{7}$. Specifically, we made use of UK case/control data (excluding samples also included in our WES data) comprising: (i) 3,537 English CRC cases and 4,811 control patients; (ii) 2,015 Scottish CRC cases and 1,981 Scottish controls.

EVIDENCE FRAMEWORK

To assess the validity of purported CRC genes, accounting for varying study design, we collated the following evidence where appropriate (Supplementary Table 1):
(1) Where gene/variants were identified through the analysis of multiple members of a single family we evaluated the strength of segregation data - co-inheritance of the mutation with affection status (CRC or polyps) in the family. If not formally quantified in the published report we calculated non-parametric linkage (NPL) statistic P-values ${ }^{8}$ using the family information provided.
(2) Where a specific CRC risk variant was reported: we looked for reported evidence of a statistically significant enrichment in CRC cases versus controls. In conjunction with
our WES data we examined frequency data on the mutation in an ethnically appropriate subset of the Exome-Aggregation-Consortium (ExAC) database ${ }^{9}$; a catalog of exome sequencing data for 60,706 individuals of diverse ancestries (nonFinnish European (NFE) 33,370 exomes, East Asian (EAS) 4,327 exomes, Finnish (FIN) 3,307 exomes).
(3) Where numerous variants are identified in a specific gene: we looked for evidence of gene burden testing in cases versus controls, and if performed, evidence of statistically significant enrichment of mutation in cases.
(4) Where recessive inheritance was suspected or indicated: homozygosity or compound-heterozgosity for pathogenic mutations in the proposed CRC gene was assessed in cases and controls.
(5) Computational data on the presumptive effect of the variant.
(6) Functional data - demonstration that mutation has a functional effect and the relevance to CRC biology.
(7) Other information - evidence of a highly-specific phenotype associated with CRC, evidence of somatic mutation of the wild-type allele in cancers from carriers consistent with tumor suppressor gene function.

REVIEW OF EXISTING LITERATURE FOR EACH GENE ASSESSED

NTHL1

Evidence for variation in NTHL1 as a cause of recessive CRC has been provided by three unrelated Dutch families homozygous for the rare (ExAC NFE MAF=0.0023, homozygosity $\sim 1 / 75,000$) inactivating p.GIn90Ter mutation ${ }^{10}$. Multiple colorectal adenomas with or without CRC were diagnosed in all seven homozygotes. The tumor mutation spectrum was significantly enriched for $\mathrm{C}: \mathrm{G}>\mathrm{T}: A$ transitions, consistent with the mutation spectra observed in NTHL1 double-knockout mice. Subsequent to this report, compound heterozygosity for inactivating NTHL1 p.Gln90Ter/c.709+1G>A mutations was identified in a 41-year old Canadian woman diagnosed with polyposis, CRC and multiple tumors ${ }^{11}$. Tumors were again enriched for somatic $\mathrm{C}: \mathrm{G}>\mathrm{T}: \mathrm{A}$ transitions.

Evidence Summary: Multiple reports associating homozygosity and compoundheterozygosity with CRC. Evidence of functional effect in CRC.

RPS20

In seven affected members (average age 52, range 24-75) of a four-generation Finnish Amsterdam-positive FCCTX family, Nieminen et al. identified a heterozygous 1-bp duplication, resulting in a frameshift and premature termination (p.Val5OSerfsTer23), in $R P S 20^{12}$. The mutation, identified through genetic linkage analysis and WES, showed full cosegregation with microsatellite-stable early-onset CRC thus providing statistically significant evidence (reported LOD score=3.0; calculated NPL=5.35, $P=0.0078$) for germline mutation in RPS20 as a cause of CRC. The mutation was absent in 292 population controls and is not reported in the ExAC database, which includes 3,307 Finnish individuals. Tumors from mutation carriers did not show loss of the wildtype allele ($\mathrm{LOH}^{\mathrm{WT}}$). Lymphoblastoid cells (LCLs) from cases carrying p.Val50SerfsTer23 mutation showed a marked increase in 21S pre-rRNAs compared to controls (P-value not calculated), consistent with a late pre-rRNA processing defect and suggestive of RPS20 haploinsufficiency. Germline RPS20 mutations were not found in 25 additional Finnish FCCTX families, 292 population controls or in tumor DNA from 50 primary CRC and 11 CRC cell lines.

Evidence Summary: Statistically significant evidence of segregation, absence of gene mutation in controls. Functional evidence in non-colon tissue. No evidence of somatic mutation or functional effect in CRC.

FANCM

By searching within tumorigenesis genes for rare/novel truncating mutations, which also showed $\mathrm{LOH}^{\mathrm{WT}}$ within the tumor, Smith et al. identified the FANCM mutation p.Arg1931Ter (rs144567652) in one of 50 sporadic UK CRC cases ${ }^{13}$. As FANCM is functionally linked to MSH2/MSH6 they sought further evidence for the role of this variant by genotyping an additional case-control series identifying the mutation in 1 of 2,207 CRC cases and 1 of 2,176 controls. The tumor of the additional case again showed $\mathrm{LOH}^{\mathrm{WT}}$. Combining discovery and replication samples showed no significant enrichment of the mutation in CRC (cases
$2 / 2,257$, controls $1 / 2,176, P=0.57)$. Smith et al. presented no segregation or functional data. However, a subsequent report by Peterlongo et al. proposing p.Arg1931Ter as a familial breast cancer risk factor showed that p.Arg1931Ter induces exon skipping resulting in decreased DNA repair activity in mouse embryonic fibroblast cells ${ }^{14}$.

Evidence Summary: Loss of wild-type allele in tumors. Functional evidence in non-colon tissue. No evidence of segregation or functional effect in CRC. No significant enrichment of the mutation in CRC.

FAN1

Through WES of three individuals from a Spanish MMR-proficient, Amsterdam-positive CRC family Sequi et al. identified a novel FAN1 truncating mutation p.Cys47Ter ${ }^{15}$. Evidence of segregation with CRC was limited (calculated NPL=0.95, $P=0.25$). Tumors developed by p.Cys47Ter mutation carrier showed no reduction in the expression of wild-type RNA or FAN1 protein. Screening an additional 247 Spanish Amsterdam/Bethesda positive cases for rare (MAF<0.01; dbSNP135) variants identified an additional truncating mutation (p.Arg952Ter) and three missense mutations (p.Asp140Thr and p.Arg591Trp - predicted to be damaging by SIFT and CONDEL algorithms; p.Pro340Ser - predicted to be benign). No FAN1 mutations were identified in 250 population individuals without CRC. Whilst suggestive of an enrichment in cases for the overall burden of variation in FAN1, the size of the control population is insufficient to provide statistically robust support (combined 5/248 cases, $0 / 250$ controls, $P=0.061$). Using all five families the calculated NPL segregation score was non-significant (NPL=1.05, $P=0.125$, Supplementary Table 1). There was no evidence of FAN1 LOH or somatic mutation in tumors from any of the five FAN1 mutation carriers. LCLs derived from p.Cys47Ter and p.Asp140Thr carriers showed greater sensitivity to high doses of mitomycin C (MMC) compared to cells from a wild-type individual (p.Cys47Ter: $P=0.01$ Wilcoxon rank sum test; p.Asp140Thr: P-value not calculated). Transfection of a FAN1 knockout human embryonic kidney cell line with p.Asp140Thr failed to reverse its MMC sensitivity.

Evidence Summary: Limited evidence of segregation and an increase in mutational burden in cases. Functional evidence for $2 / 4$ mutations in non-colon tissue. No evidence of somatic mutation, LOH or functional effect in CRC.

TP53

Yurgelun et al. examined the frequency of rare germline TP53 missense mutations in 457 patients with early-onset CRC (median age 36, range 15-40) and without a known hereditary cancer syndrome ${ }^{16}$. In six of the patients (1.3\%), they identified missense changes in TP53. No comparison was made to the burden of TP53 mutations in controls.

Based on this data they concluded that the frequency of TP53 mutations is comparable with the proportion of inherited CRC thought to be attributable to germline APC mutations. This is a false comparison:
(1) TP53 missense variant are assumed to be deleterious. However, of the six variants they identified only one was predicted to be damaging by both SIFT and PolyPhen-2, with three being predicted benign by both algorithms. There was no other evidence that mutations had deleterious functional effect.
(2) The proportion of inherited CRC thought to be attributable to germline $A P C$ mutations (1\%) is not the same as the frequency of samples with APC missense changes (in our original 1,006 cases, not screened for mutations in known genes, 94 [9.3\%] had rare [MAF<1\%] missense changes in $A P C$).

Evidence Summary: No comparison was made to mutational burden in controls. No evidence (even in silico) mutations have functional effect. No evidence of segregation or somatic mutation in CRC.

BUB1 and BUB3

BUB1: Disruptive mutations (p.Gln16Ter, p.Gln949Argfs) were identified in two of 23 Chinese early-onset (age at diagnosis ≤ 45) CRC cases; both variants were absent from 700 population controls but no comparison was made with the burden of mutations in controls ${ }^{17}$. No evidence of segregation was demonstrated and notably one of the mutation
carriers harbored a MLH1 mutation (InSiGHT Class4: likely pathogenic), which unlike the BUB1 variant was also carried by a sibling with polyps. The functional effect of mutations, LOH or somatic mutation within tumors was not assessed. No BUB1 mutations were identified among 184 Netherlands/German cases.

Evidence Summary: Absence of identified mutations in controls, but no comparison made to mutational burden in controls. No functional evidence. No evidence of segregation or somatic mutation in CRC.

BUB3: WES identified a novel damaging (as predicted by PolyPhen-2 SIFT, HOPE) missense mutation (p.Phe264Leu) in one of 10 Dutch early-onset (age at diagnosis ≤ 45) CRC cases (0/23 Chinese cases) ${ }^{17}$. Sequencing BUB3 in 174 Netherlands/German CRC cases identified two further missense variants (p.Lys21Asn, p.Arg149GIn) that were predicted (by at least one algorithm) to be damaging, although PolyPhen-2 and SIFT predicted p.Arg149GIn to be benign. All three variants were absent in 1,154 controls but no comparison was made with burden of mutations in controls. No evidence of segregation, LOH or somatic mutation. Lymphocytes and primary skin fibroblasts from p.Phe264Leu and p.Lys21Asn mutation carriers showed significant enrichment of aneuploidy and structural abnormalities versus controls (p.Arg149GIn was not assessed/presented).

Evidence Summary: Absence of identified mutations in controls, but no comparison made to mutational burden in controls. Functional evidence in non-colon tissue. No evidence of somatic mutation, LOH or functional effect in CRC.

LRP6 and PTPN12

Using WES de Voer et al. looked for genes recurrently affected by damaging missense mutations, assessed using a single prediction algorithm PhyloP, in 55 Dutch non-polyposis MMR-proficient early-onset (age at diagnosis ≤ 45) CRC cases ${ }^{18}$:

LRP6: Damaging LRP6 missense mutations (p.Trp239Leu, p.Asn789Ser, p.Thr867Ala) were identified in three cases. All three variants were within β-propeller domains. In mutation
carriers LRP6 protein showed no difference in protein expression or subcellular localization compared to wild-type. In Chinese Hamster Ovary cells p.Asn789Ser and p.Thr867Ala induced significant increases in WNT signaling activity ($P<0.001$). Analysis of 174 additional Netherlands/German CRC and 2,329 population controls identified no additional damaging missense mutations in cases, with 18 identified in controls including p.Thr867Ala in three controls. By using only the 55 original cases and the 2,329 controls, de Voer et al. reported significant increase in mutation burden in cases versus controls (cases $3 / 55$, controls $18 / 2,329, P=0.01$). However using all cases there was no significant enrichment of LRP6 mutation in cases versus controls (cases $3 / 229$, controls $18 / 2,329, P=0.43$).

Evidence Summary: No increase in mutational burden in cases. Functional evidence in noncolon tissue. No evidence of somatic mutation, LOH or functional effect in CRC.

PTPN12: WES identified two damaging missense mutations (p.Arg522Met, p.Ser684Leu) in three of the 55 cases. Analysis of 174 additional Netherlands/German CRC and 2,329 population controls identified a new variant (p.Ala105Val) in one case and 11 variants in controls including previously identified p.Arg522Met in two controls and p.Ser684Leu in three controls. The burden of mutation is cases was significantly enriched versus controls (cases $4 / 229$, controls $11 / 2329, P=0.039$) albeit non-significant after adjustment for multiple testing (three candidate genes, $P=0.12$).

Evidence Summary: Limited evidence of an increase in mutational burden in cases. Variants not absent from controls. No evidence of somatic mutation, LOH or functional effect in CRC.

SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure 1: Forest plot of allelic odds ratio associated with FANCM p.Arg1931Ter (rs144567652) genotype and CRC. Studies [SMITH: original publication (2,207 cases, 2,176 controls) ${ }^{13}$; WES: whole-exome sequencing analyzed in this manuscript (863 cases, 1,604 controls); ENG: English Illumina Exome-BeadChip replication series (3,537 cases, 4,811 controls); SCOT: Scottish Illumina Exome-BeadChip replication series (2,015 cases, 1,981 controls)] were weighted according to the inverse of the variance of the log of the odds ratio (OR) calculated by unconditional logistic regression. Meta-analysis under a fixed-effects model was conducted using standard methods. Cochran's Q statistic to test for heterogeneity and the l^{2} statistic to quantify the proportion of the total variation due to heterogeneity were calculated. Horizontal lines indicate 95% confidence intervals (CIs). Boxes indicate OR point estimate; its area is proportional to the weight of the study. Diamond (and broken line) indicates overall summary estimate, with Cl given by its width. Unbroken vertical line indicates null value ($O R=1.0$).

Supplementary Table 1: Evidence for genes and variants being associated with CRC risk. Analysis of the evidence presented in publications linking NTHL1, RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6 and PTPN12 with the risk of developing CRC

Abstract

Abbreviations: AOD: Age of CRC diagnosis; EAS: East Asian; FCCTX: Familial CRC Cancer Type X; FS: frameshift; Het: heterozygous; Hom: homozygous; LOH: loss of heterozygosity; MMC: Mitomycin C; MS: missense; MSS: lack of mismatch repair deficiency (MMR) tested through either microsatellite stability or no loss of MMR proteins; NFE: Non-Finnish European; NPL: non-parametric linkage; NT: Not tested; SG: stop-gain; TS: target sequencing; WES: whole exome sequencing; WT: wild-type

Supplementary Table 2: Gene Burden analysis. Number of WES cases ($\mathrm{n}=863$) and controls ($n=1,604$) with rare mutations in genes suggested to increase CRC risk. We considered three sets of variants: Class-1, disruptive mutations -stop-gain, frameshift; Class-2, predicted damaging -disruptive plus missense predicted to be damaging by CONDEL and splice site acceptor/donors; Class-3, all coding non-synonymous variants. Tables show -A all cases $\mathrm{n}=863$ and controls $-\mathrm{n}=1,604$ with very rare $-\mathrm{MAF}<0.1 \%$ mutations; -B Amsterdam-II positive cases $-\mathrm{n}=159$ and controls with rare -MAF<1\% mutations; -C Amsterdam-II positive cases and controls with very rare -MAF $<0.1 \%$ mutations. For each gene and variant class, numbers of cases and controls were compared and P-values calculated using Fishers exact test.

Supplementary Table 3: BUB1, BUB3, FAN1, FANCM, LRP6, PTPN12, RPS20 and TP53 variants $-\mathrm{MAF}<1 \%$ identified in 863 CRC cases and 1,604 controls. -See excel file

REFERENCES

1. Chubb D, Broderick P, Dobbins SE, et al. Nat Commun 2016:7:11883.
2. Penegar S, et al. Br J Cancer 2007:97:1305-9.
3. Power C, et al. Int J Epidemiol 2006:35:34-41.
4. McKenna A, et al. Genome Res 2010:20:1297-303.
5. McLaren W, et al. Bioinformatics 2010:26:2069-70.
6. Gonzalez-Perez A et al. Am J Hum Genet 2011:88:440-9.
7. Timofeeva MN, Kinnersley B, et al. Sci Rep 2015:5:16286.
8. Kruglyak L et al. Am J Hum Genet 1996:58:1347-63.
9. Lek M, et al. Nature 2016:536:285-91.
10. Weren RD, et al. Nat Genet 2015:47:668-71.
11. Rivera B, et al. N Engl J Med 2015:373:1985-6.
12. Nieminen TT, et al. Gastroenterology 2014:147:595-598 e5.
13. Smith CG, et al. Hum Mutat 2013:34:1026-34.
14. Peterlongo P et al. Hum Mol Genet 2015:24:5345-55.
15. Segui N, Mina LB, et al. Gastroenterology 2015:149:563-6.
16. Yurgelun MB et al. JAMA Oncol 2015:1:214-21.
17. de Voer RM, Geurts van Kessel A, Weren RD, Ligtenberg MJ, et al. Gastroenterology 2013:145:544-7.
18. de Voer RM, Hahn MM, et al. PLoS Genet 2016:12:e1005880

Author names in bold designate shared co-first authorship

Supplementary Table 1: Evidence for genes and variants being associated with CRC risk. Analysis of the evidence presented in publications linking NTHL1, RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6 and PTPN12 with the risk of developing CRC

 parametric linkage; NT: Not tested; SG: stop-gain; TS: target sequencing; WES: whole exome sequencing; WT: wild-type

Gene	CRC Gene Burden	Contro Gene Burden	Gene Functional Data	Chr	Position (GRCh37)	c.DNA Change	Protein Change	Class	dbSNP	Segregation	Variant Case Frequency	Variant Control Frequency	ExAC Allele Frequency	Other Information
NTHL1	WES Hom 3/51 APC-MUTYH mutationnegative polyposis patients	$\begin{aligned} & \hline 17 \mathrm{Het} / \\ & 2329 \end{aligned}$		16	2096239	c.268C> ${ }^{\text {T }}$	p.GIn90Ter		$\begin{aligned} & \text { rs1507 } \\ & 66139 \end{aligned}$	Family1:2/2 Family2:3/3 Family3:2/2		$\begin{aligned} & 17 \text { Het/ } \\ & 2329 \end{aligned}$	NFE: 0.0023	Tumors significantly enriched for C:G>T:A transitions
RPS20	WES 4 individuals Finnish FCCTX family; TS 0/25 Finnish FCCTX	NT	RPS20 depletion in HeLA cells and LCLs from patients carrying c.147dupA showed increase in 21S pre-rRNA vs controls	8	56986283	c.147dupA	$\begin{aligned} & \text { Val50Serfs } \\ & \text { Ter23 } \end{aligned}$	FS		$\begin{aligned} & \text { NPL=5.35, } \\ & P=0.0078 \end{aligned}$	$\begin{aligned} & \hline 1 / 26 \text { FCCTX } \\ & \text { Family } \end{aligned}$	0/584	Absent	No LOH (0/2)
FANCM	WES 1/50	NT		14	45667921	$c .5791 C>T$	p.Arg1931Ter	SG	$\begin{aligned} & \hline \text { rs1445 } \\ & 67652 \end{aligned}$	NT	2/2,258	1/2176	NFE: 0.0009	LOH WT 2/2
FAN1	WES 3 individuals Spanish FCCTX family. TS 4/247 Spanish FCCTX cases	0/250	LCL from p.C47Ter and p.Asp140Tyr carriers showed greater sensitivity to high doses of MMC. Transfection of HEK293T (Human Embryonic Kidney) FAN1 with p.Asp140Tyr failed to reverse its MMC sensitivity	15	31197007	c. $141 \mathrm{C}>\mathrm{A}$	p.Cys47Ter	SG	$\begin{aligned} & \hline \text { rs1444 } \\ & 69584 \end{aligned}$	$\begin{aligned} & \text { NPL=0.94, } \\ & P=0.25 \end{aligned}$	$\begin{aligned} & \text { 1/248 FCXX } \\ & \text { Family } \end{aligned}$	0/538	Absent	No LOH/somatic mutation. No reduction in FAN1 RNA or protein.
				15	31197284	c.418G>T	p.Asp140Tyr	MS	$\begin{aligned} & \text { rs7617 } \\ & 76412 \end{aligned}$	$\begin{aligned} & \text { P/C, NPL=0, } \\ & P=1 \end{aligned}$	$\begin{aligned} & \text { 1/248 FCXX } \\ & \text { Family } \end{aligned}$	0/250	NFE: 1.50E-5	Predicted to be damaging by SIFT/CONDEL. No LOH/somatic mutation.
				15	31197884	c.1018C>T	p.Pro340Ser	MS	$\begin{aligned} & \text { rs7712 } \\ & 06220 \end{aligned}$	$\begin{aligned} & \text { NPL=1.05, } \\ & P=0.125 \end{aligned}$	$\begin{aligned} & \text { 1/248 FCXX } \\ & \text { Family } \end{aligned}$	0/250	NFE: 1.50E-5	Predicted to be benign by SIFT/CONDEL

Gene	CRC Gene Burden	Control Gene Burden	Gene Functional Data	Chr	Position (GRCh37)	c.DNA Change	Protein Change	Class	dbSNP	Segregation	Variant Case Frequency	Variant Control Frequency	ExAC Allele Frequency	Other Information
FAN1 (cont'd)				15	31206254	c.1771C>T	p.Arg591Trp	MS	$\begin{aligned} & \text { rs3774 } \\ & 18523 \end{aligned}$	NT	$\begin{aligned} & \text { 1/248 FCXX } \\ & \text { Family } \end{aligned}$	0/250	NFE: 1.50E-5	Predicted to be damaging by PolyPhen2/SIFT/CONDEL
				15	31222812	c. $2854 \mathrm{C}>$ T	p.Arg952Ter	SG	$\begin{aligned} & \text { rs1847 } \\ & 45027 \end{aligned}$	$\begin{aligned} & \text { NPL=0.70, } \\ & P=0.25 \end{aligned}$	$\begin{aligned} & \text { 1/248 FCXX } \\ & \text { Family } \end{aligned}$	0/250	NFE: 9.02E-5	
TP53	TS 6/457 NorthAmerican, Australian, New Zealand nonpolyposis, AOD ≤ 40	NT		17	7572973	c.1136G>A	p.Arg379His	MS		NT	1/457	NT	Absent	Predicted to be benign by PolyPhen2/SIFT
				17	7577069	c. $869 \mathrm{G}>\mathrm{A}$	p.Arg290His	MS	$\begin{aligned} & \text { rs5581 } \\ & 9519 \end{aligned}$	NT	1/457	NT	NFE: 0.0002	Predicted to be benign by PolyPhen2/SIFT
				17	7577088	c.850A>T	p.Thr284Ser	MS	$\begin{aligned} & \text { s14434 } \\ & 0710 \end{aligned}$	NT	1/457	NT	Absent	Predicted to be possibly damaging by PolyPhen-2, benign by SIFT
				17	7577091	c. $847 \mathrm{C}>$ T	p.Arg283Cys	MS	$\begin{aligned} & \text { rs1496 } \\ & 33775 \end{aligned}$	NT	1/457	NT	NFE: 0.0002	Predicted to be benign by PolyPhen2, possibly damaging by SIFT
				17	7577577	c.704A>G	p.Asn235Ser	MS	$\begin{aligned} & \text { rs1443 } \\ & 40710 \end{aligned}$	NT	1/457	NT	NFE: 0.0003	Predicted to be benign by PolyPhen2/SIFT
				17	7578475	$55 C>T$	p.Pro152Leu	MS	$\begin{aligned} & \text { rs5877 } \\ & 82705 \end{aligned}$	NT	1/457	NT	NFE: 4.50E-5	Predicted to be damaging by PolyPhen-2/SIFT
BUB1	WES 2/23 Han Chinese ≤ 40; WES 0/10 Dutch non-polyposis MSS ≤ 40; TS 0/174 nonpolyposis MSS Dutch/German CRC	NT	Disruption of BUB1 exon 1 in HCT- 116 (MSI human CRC) caused chromosomal segregation defects	2	111398721	c.2844delC	pGln949Argfs	FS		NT	$1 / 23$ Chinese; $0 / 184$ European	0/700	Absent	
				2	111431923	c. $46 \mathrm{C}>\mathrm{T}$	p.GIn16Ter	SG		No	$1 / 23$ Chinese; $0 / 184$ European	0/700	Absent	Carries MLH1 splice donor mutation which segregates with colorectal tumors

Gene	CRC Gene Burden	Control Gene Burden	Gene Functional Data	Chr	Position (GRCh37)	c.DNA Change	Protein Change	Class	dbSNP	Segregation	Variant Case Frequency	Variant Control Frequency	ExAC Allele Frequency	Other Information
BUB3	WES 0/23 Han Chinese ≤ 40; WES 1/10 Dutch nonpolyposis MSS <40; TS 2/174 non-polyposis MSS Dutch/German CRC	NT		10	124914496	c.63G>C	plys21Asn	MS		NT	$0 / 23$ Chinese; $1 / 184$ European	0/1154		Predicted to be damaging by PolyPhen2/SIFT/HOPE
				10	124919951	c. $446 \mathrm{G}>\mathrm{A}$	Arg149GIn	MS	rs3715		0/23 Chinese; 1/184 European	0/1154	NFE: 7.52E-5 EAS: Absent	Predicted to be damaging by HOPE, benign by PolyPhen2/SIFT/HOPE
				10	124922163	c.790T>C	p.Phe264Leu	MS		NT	0/23 Chinese; 1/184 European	0/1154	Absent	Predicted to be damaging by PolyPhen2/SIFT/HOPE
	WES 3/55 Dutch non-polyposis MSS AOD ≤ 45; TS 0/174 nonpolyposis MSS Dutch/German CRC	$\begin{aligned} & 18 / \\ & 2,329 \end{aligned}$	In Chinese Hamster Ovary cells: no effect on LRP6 protein expression or localization; overexpression of p.Asn789Ser and p.Thr867Ala induced increased WNT signaling vs WT	12	12311955	c.2599A>G	p.Thr867Ala		$\begin{aligned} & \text { rs1414 } \\ & 58215 \end{aligned}$	NT	WES: 1/55; TS: 0/174	3/2329	NFE: 0.0002	Predicted to be damaging by PhyloP
				12	12312812	c. $2366 \mathrm{~A}>\mathrm{G}$	p.Asn789Ser	MS		NT	$\begin{aligned} & \text { WES: } 1 / 55 \text {; } \\ & \text { TS: 0/174 } \end{aligned}$	0/2329	Absent	Predicted to be damaging by PhyloP
				12	12339985	c. $716 \mathrm{G}>\mathrm{T}$	p.Trp239Leu	MS		NT	WES: 1/55; TS: 0/174	0/2329	Absent	Predicted to be damaging by PhyloP
PTPN12	WES 3/55 Dutch non-polyposis MSS ≤ 45; TS 1/174 non-polyposis MSS Dutch/German CRC	$\begin{aligned} & \hline 11 / \\ & 2,329 \end{aligned}$		7	77212900	c.314C>T	p.Ala105Val	MS		NT	WES: 0/55; TS: 1/174	0/2329	Absent	Predicted to be damaging by PhyloP
				7	77256561	c.1565G>T	p.Arg522Met	MS	$\begin{aligned} & \text { rs5375 } \\ & 62368 \end{aligned}$	NT	$\begin{aligned} & \text { WES: 1/55; } \\ & \text { TS: 0/174 } \end{aligned}$	2/2329	NFE: 1.50E-5	Predicted to be damaging by PhyloP
				7	77261719	$\text { c. } 2051 C>T$	p.Ser684Leu	MS	$\begin{aligned} & \text { rs2010 } \\ & 01953 \end{aligned}$	NT	$\begin{aligned} & \text { WES: 2/55; } \\ & \text { TS: 0/174 } \end{aligned}$	3/2329	NFE: 0.0012	Predicted to be damaging by PhyloP

ACCEPTED MANUSCRIPT

Supplementary Table 2: Gene Burden analysis. Number of WES cases ($n=863$) and controls ($\mathrm{n}=1,604$) with rare mutations in genes suggested to increase CRC risk. We considered three sets of variants: Class-1, disruptive mutations -stop-gain, frameshift; Class-2, predicted damaging -disruptive plus missense predicted to be damaging by CONDEL and splice site acceptor/donors; Class-3, all coding non-synonymous variants. Tables show -A all cases $\mathrm{n}=863$ and controls $-\mathrm{n}=1,604$ with very rare $-\mathrm{MAF}<0.1 \%$ mutations; -B Amsterdam-II positive cases $-\mathrm{n}=159$ and controls with rare -MAF<1\% mutations; -C Amsterdam-II positive cases and controls with very rare $-\mathrm{MAF}<0.1 \%$ mutations. For each gene and variant class, numbers of cases and controls were compared and P-values calculated using Fishers exact test.

A

	Class-1			Class-2			Class-3		
Gene	Cases	Controls	$\boldsymbol{P}_{\text {fisher }}$	Cases	Controls	$\boldsymbol{P}_{\text {Fisher }}$	Cases	Controls	$\boldsymbol{P}_{\text {fisher }}$
BUB1	0	4	0.31	1	8	0.17	5	16	0.36
BUB3	0	2	0.55	0	4	0.31	1	5	0.67
FAN1	0	2	0.55	3	5	1.00	7	$10^{\#}$	0.62
FANCM	1	0	0.35	7	8	0.42	14^{5}	21	0.59
LRP6-BPD*	0	0	-	3-1	9-6	0.56	8-2	20-11	0.55
PTPN12	0	1	1.00	3	3	0.43	8	7	0.17
RPS20	1	0	0.35	2	0	0.12	2	0	0.12
TP53	1	0	0.35	1	1	1.00	1	3	1.00

*Number of variants within β-Propellor domain
\# Total number of variants in controls = 11; 1 sample has 2 FAN1 missense
\$ Total number of variants in cases = 15; 1 sample has 2 FANCM missense

B

	Class-1			Class-2			Class-3		
Gene	Cases	Controls	$\boldsymbol{P}_{\text {fisher }}$	Case	Control	$\boldsymbol{P}_{\text {Fisher }}$	Case	Control	$\boldsymbol{P}_{\text {fisher }}$
BUB1	0	4	1.00	1	8	0.58	4	30	0.54
BUB3	0	2	1.00	0	4	1.00	0	5	1.00
FAN1	0	2	1.00	2	17	0.69	6	45	0.46
FANCM	0	1	1.00	1	33	0.36	$7{ }^{\text {S }}$	$67^{\text {S }}$	0.84
LRP6-BPD*	0	0	-	1-1	17-13	1.00	2-2	37-21	0.57
PTPN12	0	1	1.00	1	5	0.44	3	9	0.09
RPS20	0	0	-	1	0	0.09	1	0	0.09
TP53	0	0	-	0	1	1.00	0	4	1.00

*Number of variants within β-Propellor domain
$\$$ Total number of variants in cases $=8$ in controls $=69 ; 3$ samples have 2 FANCM missense
C

	Class-1			Class-2			Class-3		
Gene	Cases	Controls	$\boldsymbol{P}_{\text {Fisher }}$	Cases	Controls	$\boldsymbol{P}_{\text {Fisher }}$	Cases	Controls	$\boldsymbol{P}_{\text {Fisher }}$
BUB1	0	4	1.00	1	8	0.58	1	16	1.00
BUB3	0	2	1.00	0	4	1.00	0	5	1.00
FAN1	0	2	1.00	0	5	1.00	2	10	0.30
FANCM	0	0	-	0	8	1.00	2^{ξ}	21	1.00
LRP6-BPD*	0	0	-	0	$9-6$	1.00	0	$20-11$	0.25
PTPN12	0	1	1.00	0	3	1.00	1	7	0.53
RPS20	0	0	-	1	0	0.09	1	0	0.09
TP53	0	0	-	0	1	1.00	0	3	1.00

*Number of variants within β-Propellor domain
\$ Total number of variants in cases = 3; 1 sample has 2 FANCM missense

	crrp	（16CC37）	aticonssuence		Protien Conage		Csematal	${ }_{\text {atr Control }}$	TCases ${ }^{\text {a }}$	｜atr＿Ams	xac．Freal	Exac． N EfI	006，．all 10	E．EVFCCondel	CCAOO Prinegasil				cosmic＿lo	｜cosmic＿ols		ClinVar＿DIS Hereditary＿cancer－predisposing＿syndrome；Hereditary＿cancer－predisposing＿syndrome
trps	17	7573964 C	mis misensevarant	3 3．10368¢	${ }^{\text {p．A．a35shr }}$	${ }^{\text {0．0004 }}$	0	1	－					neutral（0．064）	${ }^{13,36}$	0.040	${ }^{0.0038}$					
${ }_{\text {TP533 }}$	17	75771066 7579956	Amsensevara	$\substack{\text { 2c．8320 } \\ 16.2026 \times T}$			0.0005	${ }^{1}$	0 1					deleterious（0．75）	31 15.2	0．08 ${ }^{0.78}$			COSM1646810；C	3（ovary）；6（large＿intestin．		
${ }_{\text {LPPF }}$	${ }^{12}$	${ }^{122771026}$				0.003	0.0005	0	${ }^{1}$			0001				－	${ }_{\text {a }}^{0.9970}$	${ }^{11389024588}$				
${ }_{\text {Lex }}^{\text {Lepa }}$	${ }^{12}$	22	misensevevarant			${ }^{0.00033}$	\bigcirc	1	！			0．0003．		deleterius 0.688	366 1656 185	${ }^{0.177}$	0．999					
	${ }_{12}^{12}$	23096	Amin misense varant			${ }_{\substack{0.00036}}^{0.0003}$	：	S	－		${ }_{4}^{4.138025}$	7．512：05．		neleteriousio． 08321	（12，	${ }_{0}^{0.255}$	0．999					
14896	12	1279692 A	missensevarant	$3 \mathrm{Cc} 4295 \mathrm{~s} \times$	p．Leel14335er	${ }_{0} 0.0007$	。	2	。		1.65	3．00－．05．		neutral（0．013）	${ }_{13.62}$	0.78 T	${ }_{0}^{0.557}$ P					
LPP6	12	1227973 T	misensezevariant	उс．212AADT	p．Asplassal	0.0006	0.0005	2	1		3．300．05	5．996．0．		neutra（0．0．34）	12.54	0.05 D	$0^{0.3438}$					
${ }_{\text {Lex }}^{\text {LRPP6 }}$	${ }_{12}^{12}$		Amsessevarant	${ }^{3} \times 2.4 .446 \rightarrow 7$		${ }_{\substack{0.0003 \\ 0.0003}}^{0.0003}$	${ }^{0.0017}$	1	${ }^{3}$		${ }_{1}^{1.666095}$	${ }_{\text {a }}$	0.0012	$0^{0.001}$ neturalio．044）	${ }_{23,1}^{15}$	${ }^{0.217}$	${ }^{0.09488}$					
LRP6	12	237733 T	sense＿variant	$3 \mathrm{ca015a} \times$	p．lve1339leu	0.0003	0		0					neutral（0．29）	${ }^{15.58}$	0.03 D	0.05					
${ }^{\text {LRPP6 }}$	${ }^{12}$	2383046 6	misense varant			${ }^{0} 003$	0.0005	\％	$\stackrel{1}{0}$		¢	（1951－05：		dele	${ }^{22,4}$	${ }_{\substack{0.020 \\ 0.58}}^{0.0}$	${ }_{0}^{0.0538}$	［ 5372223132				
${ }_{\text {LRPP }}$	${ }_{12}^{12}$	12288855 1228821 C	隹 misesesevarant		P．asp1302Asn		0.0006	\％	1					neutral（0．07） neutral．a61）	${ }_{32}^{10.9}$	${ }_{\substack{0.52 T \\ 0.38 T}}^{0.0}$	${ }^{0.0538}{ }_{0}^{0.799}$					
LPP6	12	12289944	missense varant	${ }^{2} \mathbf{2} 38116 \times 8$	p．aspi2714．sn	\bigcirc	0.0005	。	${ }^{1}$					terious（0．855	${ }_{35}$	0.095	${ }^{10}$					
	${ }_{12}^{12}$	12288266 122939 T	隹 missensevarant			0	0.0001	$\frac{1}{1}$	$\stackrel{1}{2}$		${ }^{4.12 .005}$	（0．002．			${ }_{124.56}^{22.1}$	${ }_{0}^{0.058}$	${ }_{0}^{0.90968}$					
	12	12301951 T	missense variant		p．asproatval	0.0003	0	1	\bigcirc		${ }^{8.24-06}$	1500：05．	2008	erious0．543）	20.9	0.03 D	${ }_{0}^{0.338 ~}$					
${ }_{\text {Lex }}^{\text {Lepo }}$	${ }_{12}^{12}$	$\xrightarrow{12320006} 1$	misersevarant	${ }^{2}$		${ }_{0}^{0.00003}$	－	${ }_{1}$	\bigcirc		${ }_{1}^{1.056005}$		0.0008.	deleerous．889）	${ }_{12,25}^{23,5}$	${ }_{0}^{0.38{ }^{\text {O }} \text { T }}$	0．30 ${ }^{\text {10 }}$			lendometrumizilarge．		
	12	1230381 C	missense varant	3．22036＞A	P．ARE888im	${ }_{0} 0.0003$	0	1			244.06			neutral（0．313）	${ }^{36}$	0.63 T						
	12	12311938 c	missersevaraint	2 C 2244168	p．valisylle	${ }^{0.0003}$		1	0		244.06	1．50：0．05．		terious（0．790）		0.54 T			cosM1561792	1 1central＿nerous＿ssste．		
${ }^{\text {LRPP6 }}$	${ }^{12}$	${ }^{123112559}$	misessevevarant	源	P．Princiriala	${ }^{0.0003}$	0.0006	1	${ }^{1}$		${ }^{0.00001}$	（0．0022．	$0.002{ }^{\circ}$	（terios（0．47）	${ }^{18.01}$	－ 0.37 T	0.85	（1514as52］				
	${ }_{12}^{12}$	${ }_{123515310 \mathrm{~A}}^{12}$	Imisemeverant	${ }_{2}^{2}$			：	1	！					${ }^{0.000}$（eeteerous．0．557）	${ }_{25,4}^{36}$	${ }_{0}^{0.31}$	${ }_{10}^{10}$					
	12	${ }^{123173226}$	misserse varant		P．Seerfactrys	0.0003			0					aserios（0．801）	${ }^{19.86}$	0.040	10					
	${ }^{12}$		misesese varant		P．Metersule	\％	${ }_{\text {a }}^{\substack{0.0005 \\ .0005}}$	：	$\stackrel{1}{1}$		24E：05			neutral（0．060）	18.58 $\substack{261}$ 1.85	${ }_{\text {a }}^{0.137}$	${ }_{\text {a }}^{0.0888}$					
14896	12	12332822 C	misense	3 c．1477 2 A	p．valas3le	0.0003	${ }^{\text {a }}$	1	1		${ }_{0}^{0.0162}$	${ }_{0}^{0.0002}$	0.053°	0.001 neutrala（2．25）	${ }_{1725}^{22.15}$	${ }_{0}^{0.365}$	${ }^{0.0138}$	${ }_{5159775614}$				
${ }_{\text {L }}^{1 \times 2 \times 6}$	${ }_{12}^{12}$	－	missense evariant			\bigcirc	${ }^{0.0006}$ 0．005	：	${ }_{1}^{1}$		$2477-05$	4．50－． 0 S		neturalo．03）	13.7 10.52 10，	${ }_{\substack{0.34 T \\ 0.07}}^{0.0}$	－ 0.0918	is397515473			pathogenic	V＿ater＿diseasel
LPP6	12	12334128 T	missense varant	3． 121224×6	p．l．eeosval	0.0003	。	1	。					neutral（0．261）	14.16	0.14 T	0.876 P					
	${ }_{12}^{12}$		missensevarant	${ }_{\text {2 }}^{2}$		${ }_{\substack{0}}^{0.00003}$ 0．003	0.0001	1	$\stackrel{1}{1}$		${ }^{8.824-060} 0$	（1．00－05 0			${ }_{3}^{27.6}$	${ }_{0.13 T}^{0.010}$	${ }^{0.9960} 10$	is141212743			athogent	oonav＿grter＿diseseselkc＿autosoma＿domininat＿2
	12	1233925 C	missense varant	3 c 7766 A	PAAB239HIS	0.0003					4．12－05	3．00：05．		neutral0，383）	18.13	0.13 T	0．983 ${ }^{\text {D }}$					
${ }_{\text {cter }}^{\text {LPP6 }}$	${ }_{12}^{12}$		missense varant			（0．0003	：	1	：		${ }_{8}^{8.24605}$		0.006 ．	neutrat（0．00） neutral0．02）		0.735 0.74	0.098 0					
${ }_{\text {LPP }} 6$	12	1239750 C	missense varant	$2 \mathrm{c}, 956 \mathrm{~A}$	P．AAB32GIn	0.0003		1	\bigcirc		－	－		deleterous 5 O．70）	${ }^{25,2}$	0.077	${ }^{0.9990}$	629	cosm93649	1endometrium）		
${ }_{\text {fan }}$	${ }_{15}^{15}$	${ }_{31196964}$ C	missensevarant	3c．00¢A	p．serentyr	0.0003	${ }_{0}$	1	${ }_{0}^{1}$		${ }^{\text {8．36－0．06 }}$				${ }_{1}^{18423}$	${ }_{0}^{0.050} 0$	${ }_{0.018}$					
	${ }^{15}$		misserse varant		p．Sererzeu	${ }^{0.00066}$					3．30－05	Soot．05．		atral（2，26］		${ }^{0.010}$	0.76 P					
${ }_{\text {can }}^{\text {fand }}$	15 15	${ }_{\substack{31197015 \\ 3119266}}$	missense－varant			${ }_{\text {coin }}^{0.00031}$	${ }^{0.0061}$	＋10	${ }^{10}$		${ }_{4.13 \text { 2302 }}^{0.05}$	${ }_{\text {7．51205 }}^{0.005}$	${ }^{0.00018}$		${ }_{\substack{2.959}}^{\substack{228 \\ \hline .95}}$	${ }_{\substack{0.027}}^{0.020}$	${ }^{0.94990}$					
	${ }^{15}$	$31192921 T$	misesersearaint		p．teun12Pro		${ }^{0.0005}$		${ }^{1}$					neutral0．0．35）								
${ }_{\text {tan }}^{\text {tan }}$	${ }^{15}$	311973006 31975846	misensevarant			${ }_{0}^{0.0019} 0$	${ }^{0.0002}$	${ }_{15}{ }^{6}$	${ }_{9}^{9}$		${ }_{0}^{0.0035}$	${ }_{0}^{0.0052}$	${ }_{0}^{0.0012}$	$0^{0.0001}$ neutral（0．027）	${ }_{11}^{10.99}$	¢，						
${ }_{\text {fan } 1}$	15	3119723 C	missense varant	$3 \mathrm{c}, 75706$	p．teun33val		0.0005	0	${ }^{1}$					neutral（0．032	${ }^{13.21}$	$0.92 T$	0.9860					
	${ }_{15}^{15}$	${ }_{\substack{31200366 C \\ 31200368 ~}}$	missese varant				0.0005	$\frac{1}{2}$	$\stackrel{1}{1}$		SE－55	3006．05：	0.012		cintind	${ }_{0}^{0.355}$						
${ }_{\text {fan }}$	15	312061236	missense varant	2 c .164008 A		0.0003		1	。		$8.25-06$	1．50－．05．		deleterious0．082）	33	0.940	10					
${ }_{\text {can }}^{\text {fan }}$	15 15	$\substack { 31210489 \\ \begin{subarray}{c}{121275{ 3 1 2 1 0 4 8 9 \\ \begin{subarray} { c } { 1 2 1 2 7 5 } } \\{\text { c }} \end{subarray}$	missense varant			0.0006	${ }^{0.0007} \begin{aligned} & 0.0011 \\ & 0\end{aligned}$	$\stackrel{0}{0}$	$\frac{1}{2}$		0.0002.	0.0004 ：			（1，92	－ 0.35	－	is140081093				
	15	31214480 T	missense varant	2 c 2.295776	p．TVrge9asp		0.0012	0	$\stackrel{2}{2}$			15605		deleterouso．0．861）	${ }^{22} 7$	0.02 D						
${ }_{\text {chan }}^{\text {fan }}$	${ }^{15}$		a sopsened			${ }_{\text {0．0．0007 }}^{0.003}$	\％	${ }_{1}$	。					deleeriouso． 8433	${ }_{42}$		10	ז119884594				
fanl	15	312215996	missense varant	3 c 229668 A	PAAB8996in	0.0004	0.0006	1	0		$2.47 \mathrm{E}-5$	4．50：05．		neutral（0．0．0）	2.205	0.64 T	0.2778					
${ }_{\text {fanl }}^{\text {fand }}$	${ }_{15}^{15}$	${ }_{3}^{31212268060}$	misensevarant			－	${ }^{0.0006}$	$\stackrel{1}{0}$	1		${ }_{\text {l }}^{\text {8，27e－06 }}$	S．	${ }^{0.0002}$	$0^{0.001}$ deeletreriousus（0．506）	${ }_{20,5}^{1209}$	0.15 T	${ }^{0.1076} \begin{aligned} & 0.997 \\ & 0.0\end{aligned}$	${ }_{\text {r1417846615 }}$				
fancm	14	45605322 C	misensezevariant	3．688CA	p．PPro363in		0.0005	0	1		1.69 －05	3．096．05．		tral（0．03）	15.42	0.27	0.929	rs37031191				
	${ }^{14}$	${ }_{4}^{45503336 C} 4$				0.0003 0.0005	$0.000{ }^{\circ}$	$\frac{1}{2}$	$\stackrel{0}{2}$			0.0008.		neutral（174）	${ }^{20.5}$			rs148017562	378474	14upeer＿eroridiestive．t．		
	14	45655956	missense varant	${ }^{3} \mathrm{C}, 1716 \mathrm{C}$	p．leus ${ }^{\text {Phe }}$	0.0029	0.0064	9	10		0.0016	0.0225	0.0004	0.002 neutral0．414）	${ }^{15.37}$	$0.16{ }^{\text {T }}$	0.078					
$\underset{\substack{\text { FAANCCM } \\ \text { FANM }}}{ }$	${ }_{14}^{14}$	${ }_{4}^{45565053930} \mathrm{C}$	missens vevant			${ }_{\substack{0}}^{0.0013} \mathbf{0 . 0 0 3 2}$	${ }^{0.00091}$	${ }_{10} 10$	，		$\xrightarrow{0.0002}$	${ }_{\text {a }}^{0.00055}$ ．	${ }^{0.0014}$	0.005 neutrala（0．050）	${ }_{10.31}^{29.1}$	0.22 T	${ }_{0}^{0.9009}$ B					
fancm	14	456181999	missense variant	${ }^{\text {3c．} 86977}$	P．1．e2097r		${ }^{0.0005}$	0	$\stackrel{1}{1}$		$4.977-05$	9．03E－05．		neutral（0．499）	${ }_{15,03}^{15}$	0.040	${ }^{0.1478}$	1337303550				
${ }_{\text {fanch }}$	${ }_{14}^{14}$	${ }_{45518181616}$	Imsensevarant			0.0003	${ }^{0.0006}$	1	$\frac{1}{0}$					deemeresus．747）	cis．	${ }_{0}^{0.020}$						
fancm	14	45623933 T	misense＿variant	2 2．1237＞C	P．TV4．13H5	0.0023	0.0005	7	1		0.0008	012	S02．	deleterious0，789）	18.7	0.05 D	0.9660	703				
$\underset{\substack{\text { Fanccm } \\ \text { FANCM }}}{ }$	${ }_{14}^{14}$	${ }_{4}^{4552426396}$	atis misesevevarant			0.0006	${ }^{0.0005}$	${ }_{2}^{1}$	$\stackrel{1}{0}$		2.56 －0，	4．69E－05：		dele	${ }_{24}^{28}$			ris74988842				
$\underset{\substack{\text { fanccm } \\ \text { FANCM }}}{ }$	${ }_{14}^{14}$	${ }_{4}^{45628452}$ C	missens evariant			0.0003	${ }^{0.0006}$0．006	$\frac{1}{0}$	${ }_{1}^{1}$		3，38．05	4．5se．05．	1	neutral（0．04）	10.89 27.9	${ }_{0}^{0.295}$	0.1958 0.9910	${ }_{\text {r144613135 }}$	cosM121918	2（SS）		
fancm	14	458336166	misensevevarant	2.128685 A	p．G．lysasser		0.0005	。	1		4.955 .05	Sol：0s．		deleteriusus（0．35）	${ }_{36}$	0.010	10					
${ }_{\text {chancm }}^{\text {Fancm }}$	${ }_{14}^{14}$	${ }_{4}^{456363377}$	misensevarant			（0．0．000	\bigcirc	${ }_{1}^{1}$	：						16.19 11.11 1	0．35	${ }^{0.9449}{ }_{0}^{0.985}$					
$\underset{\substack{\text { fanccm } \\ \text { FANCM } \\ \text { den }}}{ }$	14 14	${ }_{4}^{455623333838}$	missense variant	${ }_{\text {2 }}^{2}$		0.0003	0．0005	$\stackrel{1}{1}$	$\stackrel{1}{0}$			1．j0E－0．	0.0002 ：	deleterioss．0．58）	－14．09	${ }_{0}^{0.099}$		r552926568				
	${ }_{14}^{14}$	${ }_{4}^{45643436458} \mathrm{C}$	missensevariant			（0．0003	0.0005	$\frac{1}{2}$	${ }_{1}^{1}$		${ }^{8.26 E-06}$	1．50－05．		neutral（0．02）	${ }_{\substack{0.056 \\ 1472}}$	0．77 0.010	${ }^{0.0318} \begin{aligned} & \text { 0．979 } \\ & 0\end{aligned}$	${ }^{\text {s144771929 }}$				
fancm	${ }^{14}$	${ }^{456477799}$ A	missense varant		p．lvselvciulu	${ }^{0.00033}$	1	1	\bigcirc		2488 －05	4512－05．		neutral．0．00）	0	0．865	O8	n37				
${ }_{\text {fancm }}$	${ }_{14}^{14}$	456455144	Imisensevarant	${ }_{3}^{2 . c 3187 A \gg 6}$		${ }_{0}^{0.00031}$	0.0	1	${ }^{5}$					（e）	${ }_{7.373}^{14.35}$	${ }_{0}^{0.1 .17}$	${ }^{0} 0.9218$					
fancm	14	${ }^{45564555307}$	misserse varaint	${ }^{3} \mathbf{3} \cdot 3.39397 \times 6$		${ }^{0.00033}$	\bigcirc	1	\bigcirc				0.0002 ．	neutral（0301）	${ }_{2}^{2.886}$	${ }^{0.030}$	${ }^{0.26778}$	201186469				
${ }_{\text {fancen }}^{\text {fancm }}$	${ }_{14}^{14}$	${ }_{4}^{4564595616}$	Imisensevarant			${ }^{0.0003}$	0.0005	\bigcirc	1		${ }^{8.300 .06}$	1．151－05：			－ 18.009	O．4．	－010	4908				
$\underset{\substack{\text { FAANCCM } \\ \text { FANCM }}}{ }$	${ }_{14}^{14}$		missese varant			${ }^{0.0003}$	0.0005	$\stackrel{1}{0}$	0 1		6．70：05	4．54E．05．		neutal（0．00）	${ }_{0}^{0.004}$	${ }_{0}^{0.917}$	0．008 ${ }^{0.8}$			${ }^{1 \text { Ilunge }}$（lage intestine）		
	${ }_{14}^{14}$	45643826 c 45655556	miserse veriant			0.0003	$0.00{ }^{\circ}$	${ }_{0}^{1}$	$\stackrel{0}{1}$		2488 －05	4．512－05．		neutral（0．056）	${ }_{\substack{3.123 \\ 1264}}^{1.26}$	－ 0.27 T	0.0028					
fancm	${ }_{14}^{14}$	45645849	Smisense＿varant	3 C 39070 ¢	p．Gin3034，	0.0003		1	－					neutral（0．09）	${ }_{2,981}^{12.64}$	${ }_{0}^{0.387}$						
	${ }^{14}$	${ }_{4}^{45645999}{ }^{\text {che }}$	missense variant	3c．3920¢		$0.00{ }^{\circ}$	（0．0005	$\stackrel{1}{2}$	${ }_{1}^{1}$		（0．0001			$\pm \begin{aligned} & \text { netrata（0．20）} \\ & \text { neutral0．038）}\end{aligned}$	${ }_{252}^{1132}$							
fancm	14	45654598 C	missense varant	$3 \mathrm{c}, 422106$	p．leun394Val		0.0005	0	${ }^{1}$					neutral（0．33）	${ }^{20.39}$	${ }_{0.35}$	${ }^{0.92960}$					
${ }_{\text {FPanch }}^{\text {FAACM }}$	${ }_{14}^{14}$	${ }_{4}^{45556589888} \mathrm{C}$	missensevevarat	－		0	0.0005	${ }_{1}^{1}$	${ }_{1}^{1}$		${ }_{\text {a }}^{0} 0.0002$	${ }^{0.0002}$ 0．003：				${ }_{0}^{0.455}$	${ }^{0.9159}{ }_{0}^{0.328}$					
	${ }_{14}^{14}$	${ }_{4}^{455585342}$ A				003		1	${ }_{1}^{1}$		${ }_{4}^{2}$	3001－05．		$\pm \begin{aligned} & \text { neutral（0．033）} \\ & \text { netralalo } 021\end{aligned}$	¢，		${ }^{0.0088} \begin{aligned} & 0.0098 \\ & 0.038\end{aligned}$					
fancm		456656036	missense varant	2 C．55998a	p，Val1857Met	${ }_{0} 0.0006$	0.0017	2	3		0.0004	${ }_{0}^{0.0005}$	0.0008	0.001 deleterious（0．935）	19.52	00	10	is140008003				

		mismene	${ }_{\text {Casasc.ona Change }}$		Contro. Mancas	-mafal	\|alt_Control	IAlT_Cases	Salt_Amst	2atcreal	Eexac.	G_all	Ogevel		[CAOO_PHREgSI	scorgsif						\|cinvar_	INva_ols
${ }_{\text {FANCM }}{ }^{14}$	${ }_{4}^{45656537 \times{ }^{\text {a }} \text { A }}$	missense vevarant	2 2.5.503 ${ }^{\text {a }}$		0	${ }^{0.0005}$		$1{ }^{1}$	1	1.655	1.500.05.	0006	\%	deleterious(0.752)	16.99	${ }^{\circ} \mathrm{O}$		0.9990					
${ }_{\substack{\text { Pancm } \\ \text { FANCM } \\ 14 \\ 14 \\ \hline}}$	${ }_{\substack{45669212) \\ 456927}}^{4}$	stop.gated			${ }_{0}^{0.0003}$	(0.0021		1						netural(043)									
${ }_{\text {RPP22O }}$	55988271 C	misense var	$2 \mathrm{c} 1.100 \times 2 \times$	p.valateu		0.0005		\%		${ }_{8,240-06}$	6.ãe:0.				10.92 198 1	OD		0,990					
PTTN	7720033 A	missense varant	$3 \cdot 911 \times 6$	p.HH309AAIG	0	0.0005				0.0001	0.0002			neutral(0.03)	10.98			${ }^{08}$	ri200288133				
PTPN12	177 A	misense_.e.	181N/ 6	p.HH399AAE	003			10						deleereious0.799)		$0.78{ }^{\text {¢ }}$							
${ }_{\text {Pronn }}$	${ }^{77256334} 5$	misesese varant	3c.1238NT	P.Thati3le	:	${ }_{\substack{0.0005 \\ 0.001}}^{0.005}$:		1.66 -05	3011-05				${ }^{9} 1721$	${ }_{\text {a }}^{0.0010^{0.09}}$		${ }_{\substack{0.0948 \\ 0.90 \\ 0}}^{0.08}$	[14533029				
${ }_{\text {Proniz }} 7$	$\xrightarrow{725563354} \times$	missense varant		${ }_{\text {p.Alsfatars }}$	0.0003	\%		1							${ }_{\text {172 }}^{17.25}$								
prpNi2	7256433 A		$3 \mathrm{c} .1457 \times \times 6$	p.assabsser	0.0003	0		1						netural(0.001)	0.003	${ }_{0}^{0.89 T}$		0.00					
PTPN12	7725552 A	misense_	3 Cc 1.506 NT T	p.Ghn5orils		0.0011		0		3.300:05	6.006.05.			neutral(2, 299)	3.617	${ }^{0.35}$							
PrpN12	77256588 C	missense varanat		p.prosilleu	0.0003	${ }^{\circ}$		1						neutrala0.0.25)	0.64	0.677							
PTPN12 PTPN12	772555626 7725600	missenseveraint			:	${ }^{0.0005}$:	$\frac{1}{1}$	${ }^{\text {824-06 }}$	1.50:.05.				co. 19.04	0.17 0.23			r3374516234				
${ }_{\text {PTPN12 }}$	77256672	missense varant	$3 \mathrm{c} .16787 \times 6$	p.AAs55959r		0.0005		0		3,300.05	1.50:-5.			neutral(0.011)	0.015	${ }^{0.855}$		0.0018	56175751				
		missensevarant	${ }_{2}^{2}$		${ }^{0.00006}$	0.0015	$\frac{1}{2}$	$\frac{1}{2}$	3	${ }^{\text {8, }}$ 0.0.006	(1)				${ }_{26,8}^{20,5}$	${ }^{0.010} 0$		${ }^{0.999}$	$\mathrm{r}_{52010009933}$				
	77267946 C 77256590 cro c	misense varant		p.P.orizala	${ }^{0.00003}$	\%		$\frac{1}{1}$:					neutral(0.01)	${ }_{1}^{1.838}$	0.97 T		0.0048					
${ }_{\text {BUBE1 }}$	$111393737{ }^{1} \times 6$	misserseveranat			0.003	0.0005		\%	1.						1439 1863 1	- 0.697		0.0268					
busi	1113988700 A ${ }^{\text {a }}$	missense varanat	2 c 2886 trc	p.pheossleu	${ }^{0.0003}$	\bigcirc		$\frac{1}{1}$							29, ${ }^{295}$	-		10					
${ }_{\text {Bugi }}^{\text {guel }}$						0.0005		$\stackrel{\text { ? }}{ }$		(1.5EE05	30,	(0.0002	0.001	neutral0.005				0.0368				untested	Malignantmelanoma
BU31	1112065904 A	misense varant	$2 \mathrm{C}, 23547 \mathrm{C}$	p.Seris3Pro	${ }^{0.0003}$	-		1	\%	${ }^{8.265065}$	1.50:.0.5.			deleererous0.892)	19.64	0.17 T							
${ }_{\text {BuE1 }}^{\text {Bug }}$		missensevevarant			${ }^{0.0003}$	0.0005		$\frac{1}{2}$	1		1.50e.			neutral(0.0.5) neutral0.020)		$\begin{array}{r}0.77 \\ 0.24 \\ \hline\end{array}$			${ }^{15376146753}$				
subi $^{\text {a }}$	$111416221 \mathrm{~A} T$	missense varant	2.12375 A		-	${ }^{0.0005}$:	1	- 1.6550 .5	Si.abes.	0.002		deleterious(0.919	26.2	${ }^{0.375}$			5				
${ }_{\text {BuB1 }}^{\text {Bub1 }}$	${ }^{11141422929} \times$	missensevarant	${ }^{3}$		0.0003	Soos		${ }_{1}$							(16.19	${ }_{0}^{0.358}$		${ }_{\substack{0.8189 \\ 0.970}}^{0.90}$					
${ }_{\text {Bugid }}^{\text {bug }}$		missenseveranat			coion	0.006	${ }_{14}^{2}$	2 14 12	\%	$\underset{\substack{24880.05 \\ 0.0019}}{ }$	3.0.1-05.	0.0012		neutral(0.01)	${ }_{\text {cheren }}$	- $0.79{ }^{0.795}$			r61730706				
sub1	111258502 A -	missense varant		p.Serisprio	0.0003	-		1.						neutral(0.059)	${ }^{1233}$	${ }_{0}^{0.33 T}$							
${ }_{\text {buex }}^{\text {bubi }}$		missensevarant			${ }^{0.0003}$	0.0006		!	。	4.95E-05	9.00e:05:			${ }_{\text {neutral(0.033 }}^{\text {netulo }}$	(0.008	${ }^{0.5887}$		${ }_{\substack{0.12888 \\ 0.058}}^{0.088}$	is36972330				
${ }_{\text {BUE3 }}^{\text {bug }}$		missensevarant			${ }^{0.0003}$			$\frac{1}{1}$		8.25E-05	3.00:05	0.0002		neutral(0.05)	6.817 ${ }^{63}$	1.1T			${ }^{\text {r3376901351 }}$				
(8)33		missensevevariat		pesmer	${ }^{\text {coun }}$:		$\frac{1}{2}$:					deleeremus.0.50)	${ }_{26}^{26.6}$	OTO		10					
${ }_{\text {BUU3 }}$	1249292242 c	Stissensevaranat	3c.689 T	dither		0.0005		?	1	${ }^{1.65-055}$				neutral(0.029	8.721	0.27		${ }^{0.0088}$	${ }_{\text {r1515202304 }}$				
${ }_{\text {RPS32 }}^{\text {BUB3 }}$		missens vevarint			0.0003	0.0005		${ }_{0}^{1}$	1		4.500.0.5.			neutral0.034)	5.416				${ }^{\text {r140277834 }}$				
${ }_{\substack{\text { BUEB1 }}}^{\text {BUB1 }}$					${ }^{0.0003}{ }_{0}^{0.0003}$:		${ }_{1}^{1}$!	8.24E-06	0			:	- $\begin{array}{r}37 \\ 22\end{array}$								

```
Gene
Chr
Position (GRCh37)
Ref
Alt
CONSEQUENCE
Class
c.DNA Change
Protein Change
Control_MAF
Case_MAF
ALT_Control
ALT_Cases
ALT_Ams
ExAC_Freq
ExAC_NFE
1000G_ALL
1000G_EUR
Condel
CADD_PHRED
SIFT_score
SIFT_pred
Polyphen2_HDIV_score
Polyphen2_HDIV_pred
dbSNP
COSMIC_ID
COSMIC_DIS
ClinVar_SIG
ClinVar_DIS
```


ACCEPTED MANUSCRIPT

Supplementary Figure 1: Forest plot of allelic odds ratio associated with FANCM p.Arg1931Ter (rs144567652) genotype and CRC. Studies [SMITH: original publication (2,207 cases, 2,176 controls ${ }^{1}$; WES: whole-exome sequencing analyzed in this manuscript (863 cases, 1,604 controls); ENG: English Illumina Exome-BeadChip replication series (3,537 cases, 4,811 controls); SCOT: Scottish Illumina Exome-BeadChip replication series (2,015 cases, 1,981 controls)] were weighted according to the inverse of the variance of the log of the odds ratio (OR) calculated by unconditional logistic regression. Meta-analysis under a fixed-effects model was conducted using standard methods. Cochran's Q statistic to test for heterogeneity and the l^{2} statistic to quantify the proportion of the total variation due to heterogeneity were calculated. Horizontal lines indicate 95% confidence intervals (CIs). Boxes indicate OR point estimate; its area is proportional to the weight of the study. Diamond (and broken line) indicates overall summary estimate, with Cl given by its width. Unbroken vertical line indicates null value ($O R=1.0$).

