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Subjunctive conditional probability

Wolfgang Schwarz
22 October 2016

Abstract. There seem to be two ways of supposing a proposition: supposing
“indicatively” that Shakespeare didn’t write Hamlet, it is likely that someone
else did; supposing “subjunctively” that Shakespeare hadn’t written Hamlet,
it is likely that nobody would have written the play. Let P (B//A) be
the probability of B on the subjunctive supposition that A. Is P (B//A)
equal to the probability of the corresponding counterfactual, A� B? I
review recent triviality arguments against this hypothesis and argue that
they do not succeed. On the other hand, I argue that even if we can equate
P (B//A) with P (A � B), we still need an account of how subjunctive
conditional probabilities are related to unconditional probabilities. The
triviality arguments reveal that the connection is not as straightforward as
one might have hoped.

1 Introduction

It has often been pointed out that there are two ways of supposing a proposition, typically
marked in English by the choice of the “indicative” or the “subjunctive” mood. Supposing
indicatively that Shakespeare didn’t write Hamlet, I am confident that the play was
written by someone else. Supposing subjunctively that Shakespeare hadn’t written
Hamlet, I am confident that the play would never have been written.

The two kinds of supposition serve different functions. Indicative supposition is central
to hypothesis testing and confirmation: evidence E supports hypothesis H to the extent
that E is more probable on the indicative supposition that H than on the supposition
that ¬H. Subjunctive supposition, on the other hand, has a variety of applications in
planning, decision-making, diagnostics, explanation, and the determination of liability.
In order to truly understand a physical system or a historical situation, we need to know
not only what actually happened but also what would or might have happened under
alternative circumstances. If we want to assign blame or liability for an unfortunate
outcome, we need to know how the outcome could have been avoided. If we want to
choose the best available option, we should ask what each of the options would be likely
to bring about.
I will use P (B/A) – and sometimes PA(B) – to denote the probability of B on the

indicative supposition that A, and P (B//A) for the probability of B on the subjunctive
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supposition that A, relative to some probability measure P . Indicative supposition is
well modelled by the ratio formula for conditional probability:

The ratio account of indicative supposition
P (B/A) = P (A ∧B)/P (A), if defined.

The ratio account doesn’t cover instances in which P (A) = 0, but at least it fixes P (B/A)
for a lot of ordinary cases.

Subjunctive supposition is not as easy to capture in a probabilistic framework. Three
superficially rather different proposals can be distinguished in the literature.1 The first
identifies P (B//A) with the expectation of the conditional chance Ch(B/A) of B given
A:

The expected-chance account of subjunctive supposition
P (B//A) =

∑
x P (Ch(B/A)=x)x, if defined.

The second proposal treats subjunctive supposition as a compartmentalized form of
indicative supposition. The basic assumption here is that for every suitable proposition A
and probability measure P , there is a partition {Ki} of propositions (called dependency
hypotheses) such that conditional on each Ki, indicatively and subjunctively supposing
A amount to the same thing. Given that P (B//A) =

∑
i P (Ki)PKi(B//A), this leads to

the following analysis.

The K-partition account of subjunctive supposition
P (B//A) =

∑
i P (Ki)P (B/A ∧Ki), if defined.

The third approach to subjunctive supposition appeals to an imaging function ι which
associates every possible world w with a conditional probability measure ιw on the space
of propositions. Informally, ιw(w′/A) can be understood as measuring how “close” w′ is
to w among A-worlds. P (B//A) is then identified with the expectation of ι(B/A):

The (generalized) imaging account of subjunctive supposition
P (B//A) =

∑
x P ({w : ιw(B/A)=x})x, if defined.

We will have a closer look at these proposals in section 2.

1 In hindsight, the first detailed investigations into subjunctive supposition took place in debates on
(“causal”) decision theory, where the three proposals were discussed e.g. in [Sobel 1978], [Lewis 1981a],
[Skyrms 1980], and [Skyrms 1984]. (A rare example of an earlier analysis, of a somewhat different
form than the ones here discussed, occurs in section 8 of [Lewis 1973b].) The idea that debates over
the best formulation of causal decision theory can be understood as debates over how to spell out
subjunctive conditional probability is emphasized in [Joyce 1999].
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A fourth idea is to identify the subjunctive conditional probability of B given A with
the probability of whatever proposition is expressed by the subjunctive conditional if A
were the case then B would be the case, for short A� B:2

The Subjunctive Equation
P (B//A) = P (A� B).

The suggestion is tempting. In most contexts, if A seems to be a mere stylistic variant
of on the supposition that A. More concretely, if you are confident that nobody would
have written Hamlet on the supposition that Shakespeare hadn’t written Hamlet, you
would plausibly assent to the claim that it is probable that if Shakespeare hadn’t written
Hamlet, then nobody would have written Hamlet. If you are unsure how a certain coin
would land on the supposition that it were tossed, we can say that you are unsure whether
the coin would land heads if it were tossed.3

The Subjunctive Equation has a famous sibling, linking indicative conditionals (A→ B)
and indicative supposition:

The Indicative Equation
P (A→ B) = P (B/A).

The Indicative Equation is supported by the same kind of evidence as the Subjunctive
Equation. For example, if you are 90 percent confident that Hamlet was written by
Christopher Marlowe on the indicative supposition that it wasn’t written by Shakespeare,
then it seems true that you are 90 percent confident that if Hamlet wasn’t written by
Shakespeare, then it was written by Marlowe.

In the 1970s, David Lewis launched a two-pronged attack against the Indicative
Equation. First, in [Lewis 1975], Lewis proposed an attractive theory of if -clauses –
generalized and defended in [Kratzer 1986] – which undermines most of the evidence in
favour of the Equation. Consider a statement such as (*).

(*) It is probable that if Hamlet wasn’t written by Shakespeare, then it was written by
Marlowe.

On the Lewis-Kratzer account, (*) does not attribute high probability to the proposition
expressed by if Hamlet wasn’t written by Shakespeare, then it was written by Marlowe.

2 In decision theory (see the previous footnote), this corresponds to the proposal in [Stalnaker 1981]
and [Gibbard and Harper 1978]. Note that I use A� B to stand for a proposition, i.e. a member of
the algebra over which the probability measure P is defined. Throughout, I assume that this algebra
is atomic, so that propositions can be identified with sets of “possible worlds”, i.e. atoms of the
algebra. Some authors defend versions of the Subjunctive or Indicative Equation (see below) in which
P (A � B) or P (A → B) is meant to capture some graded attitude towards a sentence, without
assuming that the attitude satisfies the basic rules of the probability calculus. These proposals are
outside the scope of the present study.

3 See e.g. [Edgington 2008] and [Moss 2013] for arguments along these lines for the Subjunctive Equation.
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That conditional is not even a genuine syntactical part of (*). Instead, the if clause in
(*) functions as a restrictor of the modal it is probable that. If we assume that restricting
a probability measure by a hypothesis A here amounts to conditioning the measure on
A, then (*) attributes high probability to the Marlowe hypothesis conditional on the
not-Shakespeare hypothesis, without attributing any probability to a conditional. In
general, on the Lewis-Kratzer account judgements that appear to be about the probability
of conditionals are really judgements about conditional probability, and thus can’t support
the Indicative Equation.
Lewis’s second line of attack posed a more direct threat to the Equation. In [Lewis

1976], Lewis proved a famous “triviality result” which seems to show that no binary
operator → could possibly satisfy the Indicative Equation. A large number of further
results to this effect have since been proven, for example in [Lewis 1986], [Hájek and Hall
1994], [Hájek 1994], and [Milne 1997].

In the meantime, the Subjunctive Equation has been largely ignored. Do the arguments
against the Indicative Equation carry over to the Subjunctive Equation?

The Lewis-Kratzer theory of if -clauses as restrictors plausibly undermines the evidence
in favour of the Subjunctive Equation just as much as it undermines the evidence for the
Indicative Equation. To be sure, we need another type of restriction here, to capture the
difference between (*) and (**):

(**) It is probable that if Hamlet hadn’t been written by Shakespeare, then it would
have been written by Marlowe.

Here the relevant probability measure is restricted to not-Shakespeare possibilities not by
standard conditionalization, but by “subjunctive conditionalization”: we are considering
P (Marlowe//¬Shakespeare), not P (Marlowe/¬Shakespeare).4

Adapting the triviality results is less straightforward. Extant triviality proofs all seem
to rely on features of P (B/A) that do not hold for P (B//A). Can they nevertheless
be adjusted to the subjunctive case? Dorothy Edgington has long gestured towards
this possiblity, but to my knowledge the idea was not spelled out until around 2010,
when Rachael Briggs [Forthcoming], J. Robert G. Williams [2012] and Hannes Leitgeb
[2012] (in that order, but independently) presented formal triviality results against the
Subjunctive Equation.
In the present paper, I will have a closer look at these results. I will argue that none

of them succeeds in undermining the Subjunctive Equation. Nonetheless, each of them
teaches an important lesson. Together, they reveal that subjunctive supposition is harder
to analyze than one might have hoped.

4 Neither Lewis nor Kratzer actually explain how these interpretations of (*) and (**) are compositionally
derived. If that can’t be done we would have to reconsider the attractiveness of the Lewis-Kratzer
account.
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2 Background: Four accounts of subjunctive supposition

It would be pointless to ask whether P (B//A) equals P (A� B) if P (B//A) were defined
as P (A� B). We need an independent grip on subjunctive conditional probability.
This independent grip is provided by the concept of subjunctive supposition.

Let’s begin with Newcomb’s problem. You are confronted with two ordinary boxes,
one transparent, one opaque. The transparent box contains a thousand dollars. The
opaque box contains either nothing or a million dollars. Your choice is between taking
both boxes (two-boxing) or taking just the opaque box (one-boxing).

How much would you get on the subjunctive supposition that you take just the opaque
box? It depends on what’s in the box. If the box is in fact empty, you would get nothing;
if it contains the million, you would get a million. You certainly wouldn’t get, say, two
million. Thus when we entertain the subjunctive supposition that you one-box, we hold
fixed the actual content of the box. We don’t know how much you would get because
we don’t know what’s actually in the box. Similarly, of course, for the supposition that
you two-box. In that case, you would get either a thousand dollars (if the opaque box is
empty) or a million and a thousand (if it contains the million).

This suggests a simple model of subjunctive supposition, presented in [Lewis 1976]. The
model assumes that subjunctive uncertainty is always due to non-subjunctive uncertainty
about the actual world: if we knew all relevant facts about the world, we couldn’t be
uncertain about what would be the case under a given supposition. In other words, if
the probability function P is concentrated on a single world w, then P (·//A) is also
concentrated on a single world wA. Let’s pretend for simplicity that the number of
worlds is countable. Then every probability function P on the space of possible worlds
is a weighted average of probability functions that are concentrated on a single world:
P (·) =

∑
w P (w)P (·/w). So we can model the effect of supposing A as an operation that

shifts the probability of each world w to a corresponding world wA – the world on which
P (·//w) is concentrated when supposing A.
Let fA be the selection function that maps any world w to the corresponding world

wA, and let [[B]]w denote the truth-value of B at w. The present proposal can then be
expressed as follows.

The simple imaging account of subjunctive supposition
P (B//A) =

∑
w P (w)[[B]]fA(w).

To flesh this out, we would need to say a lot more about the selection function fA. For
example, we need to explain why the information that the opaque box is empty entails
that one-boxing would get you $0 and thus why the selection function maps worlds in
which the box is empty to other worlds where it is empty. I will return to this problem
in section 6.
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Another well-known problem with the simple imaging account is that it entails a kind
of subjunctive determinacy that many find implausible. Suppose I had tossed one of the
coins in my pocket. What would have happened? Intuitively, both outcomes are possible:
the coin could have landed heads, or it could have landed tails. Moreover, since I did
not actually toss a coin, there is no information about the world that would resolve the
issue. It wouldn’t help to carefully investigate each coin in my pocket, or to study the
physics of coin tosses. Even if we knew the entire physical state of the universe, at all
times, together with all the physical laws, and if we had infinite cognitive resources, we
still couldn’t know whether the coin would have landed heads or tails. This suggests that
even if P is concentrated on a single world w, sometimes P (·//A) should give positive
probability to a whole range of worlds. P (·//Toss) should give roughly equal probability
to Heads worlds and Tails worlds, and a lot less to worlds where the coin lands on its
edge.
Subjunctive determinacy is avoided by the generalized imaging account presented

in [Gärdenfors 1982]. We simply replace the deterministic selection function fA by a
probabilistic function that assigns to each world w a probability measure over A-worlds.
This leads to the imaging account from the previous section, on which

P (B//A) =
∑
w

P (w)ιw(B/A).

Assuming that ιw is a conditional probability measure (in some minimal sense) ensures
that P (·//A) is itself a probability measure, and that P (A//A) = 1. (On the supposition
that A is the case, one may be certain that A is the case.) We might also assume that
whenever A is true at w, then ιw(w/A) = 1, so that supposing a proposition that is
already believed with certainty has no effect. Generalized imaging then satisfies the basic
requirements of constrained probability revision, as discussed e.g. in [Gärdenfors 1988]
and [Joyce 1999: 183–185].5

The conservativity condition just mentioned, that P (·//A) = P whenever P (A) =
1, entails that PA(B//A) = PA(B) = P (B/A), which reveals a possibly interesting
connection between subjunctive and indicative supposition: P (B//A) and P (B/A)
coincide if and only if P (B//A) is probabilistically independent of A, in the sense that
PA(B//A) = P (B//A).
At least for cases where independence fails, we still need to give more information

about ι to deliver concrete predictions. Here a natural strategy (suggested e.g. in [Joyce
1999]) is to re-use the similarity orderings on possible worlds that have proved successful
in the analysis of subjunctive conditionals (see e.g. [Lewis 1973a], [Lewis 1979], [Lewis
1981b], [Bennett 2003]).6 Thus if A describes a specific event at a particular time t, and

5 Setting aside cases where the supposed proposition A is a contradiction.
6 On a roughly Lewisian account of subjunctive conditionals, this connection entails a weaker version of
the Subjunctive Equation: P (A� B) ≤ P (B//A), as shown in [Joyce 1999: 197–199].
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we consider what would have happened under the supposition A at a given world w (i.e.,
on the indicative supposition that w is the actual world), the relevant A worlds usually
seem to be worlds whose history matches that of w up to shortly before t, then diverge
to allow for A (or not diverge at all if A is the case at w) and otherwise continue to obey
the general laws of w. If the laws are chancy or A is unspecific, this will yield a large
class of worlds, which ιw(·/A) may rank by the objective chance of the relevant outcomes,
or by the a priori probability of the different realizations of A.

The expected chance account offers a more streamlined way to fill in the missing details.
Recall that on this account, the probability of B on the subjunctive supposition that A
equals the expected chance of B given A. Letting Chw stand for the conditional chance
function at world w, this can be expressed as follows.

P (B//A) =
∑
w

P (w)Chw(B/A).

So the expected chance account is actually an instance of the imaging account, identifying
the imaging function ι with the chance function Ch.
The chance account looks especially plausible for precise, dated suppositions on the

background assumption that the dynamical laws of physics are stochastic. Let Toss be
the hypothesis that a coin is tossed in a specific way at some time t. Suppose the laws
of physics assign a certain probability x to Heads given Toss. Knowing this, we should
plausibly assign credence x to Heads on the subjunctive supposition of Toss.

This link between objective chance and rational credence brings to mind the Principal
Principle from [Lewis 1980]. In a simplified form, the Principle says that any rational
credence function P , conditional on the hypothesis that the chance of A equals x, should
assign x to A.

Simple Principal Principle (SPP)
P (A/Ch(A)=x) = x, provided P (Ch(A)=x) > 0.

The principle is naturally extended to conditional chance and (indicative) conditional
credence (compare [Skyrms 1988]):

Simple Conditional Principal Principle (SCPP)
PCh(B/A)=x(B/A) = x, provided P (A ∧ Ch(B/A)=x) > 0.

The expected chance account postulates essentially the same connection between sub-
junctive conditional credence and hypotheses about chance: if P (B//A) systematically
equals the expectation of Ch(B/A), this is presumably because PCh(B/A)=x(B//A) = x.

This still allows indicative and subjunctive supposition to come apart, as long as P is
not absolutely certain about the chances. In Newcomb’s problem, we can assume that
Ch($0/One-box) = 1 if the opaque box is empty and Ch($0/One-box) = 0 if the box
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contains the million. Conditional on the chance hypothesis Ch($0/One-box) = 1, you are
therefore certain to get nothing on the supposition that you one-box, no matter whether
the supposition is indicative or subjunctive. But if you are uncertain about the content of
the box, then P ($0/One-box) might be high because you regard one-boxing as evidence
that the box contains $1M, while P ($0//One-box) is low because you are confident that
in fact the box is empty and you are going to two-box.

On some conceptions of chance, the chance function Ch should be relative not only to
a world, but also to a time. In that case, we should plausibly let the time index vary
with the supposed proposition A: if A is about a specific time t, the chance should be
relativized to shortly before t. I will not dwell on the problem of how to make that
precise, and what to say about undated suppositions.

One might also worry that the objective chance function is undefined for many of the
propositions we want to suppose. Is there a well-defined physical chance that Christopher
Marlowe wrote Hamlet given that Shakespeare didn’t? Was there such a chance in 1599?
Arguably not. The hypothesis that Shakespeare didn’t write Hamlet is too unspecific from
a physical perspective to plug into the formalisms of quantum mechanics or statistical
mechanics.

In response, we might invoke the SCPP to enrich the chance function. Let {Ki} be a
partition that divides the space of possible worlds into chance hypotheses, so that w and
w′ belong to the same cell of the partition iff they match with respect to the relevant
chances. If each chance hypothesis Ki assigns a conditional chance Chi(B/A) to B given
A, then by the expected chance account,

P (B//A) =
∑

i

Chi(B/A)P (Ki). (EC1)

By the SCPP, P (B/A ∧Ki) = Chi(B/A). Substituting in (EC1), we get

P (B//A) =
∑

i

P (B/A ∧Ki)P (Ki). (EC2)

Unlike (EC1), we can use (EC2) even if Ki does not directly assign a chance to B given
A (as long as P (A ∧Ki) > 0). In effect, P (·/ · ∧Ki) here serves as the extended chance
function.
(EC2) is an instance of the K-partition account of subjunctive supposition. In other

presentations of the account, {Ki} divides the possible worlds into subjunctive conditionals
of the form A� Ch(B) = x, or into hypotheses about causal structure and the value of
variables that are causally independent of A.

Note that we can rewrite the K-partition formula (EC2) as

P (B//A) =
∑
w

P (w)P (B/A ∧Kw),
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where Kw is the cell of the K-partition containing w. Thus like the expected chance
account, the K-partition account is an instance of the imaging account, with the imaging
function ι defined by

ιw(B/A) = P (B/A ∧Kw).

This is good news, for it shows that the three accounts of subjunctive supposition
are closely related. One might even hope that they are just different ways of expressing
essentially the same idea.7

Now that we have a rough idea of how P (B//A) may be defined, let us return to the
connection between P (B//A) and P (A� B).

3 Lesson One: Leitgeb

Leitgeb [2012] presents a simple argument against the Subjunctive Equation.8 Let P
be a rational credence function and w a possible world with P (w) > 0. Applying the
Subjunctive Equation to the credence function Pw = P (·/w), we get

Pw(A� B) = Pw(B//A). (L1)

If there is a conditional chance of B given A at w, then by the expected chance account,

Pw(B//A) = Chw(B/A), (L2)

However, since the probability function Pw is concentrated on a single world w, Pw(A�
B) must be 1 or 0, depending on whether the conditional is true or false at w. I.e.,

P (A� B/w) ∈ {0, 1}. (L3)

It follows that
Chw(B/A) ∈ {0, 1}. (L4)

So P cannot assign positive probability to worlds with non-trivial conditional chance.
Let’s grant that this conclusion is unacceptable.9 Leitgeb’s argument thus shows that

there is no propositional connective� such that for all credence functions P ,

P (A� B) =
∑

x

P (Ch(B/A)=x) · x. (L5)

7 This sentiment is widespread in decision theory, see e.g. [Lewis 1981a], [Skyrms 1984] and [Joyce
1999].

8 Leitgeb’s argument is related to an observation of Lewis’s in the final section of [Lewis 1976], to which
I will turn in section 6.

9 One might object that individual worlds should never have positive credence. But the argument also
goes through if we replace the worlds with less specific propositions as long as they agree on the
chance of B given A and on the truth-value of A� B.
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But (L5) is a combination of the Subjunctive Equation and the expected chance account.
Is Leitgeb right when he puts the blame on the Subjunctive Equation?
Arguably not. The problem lies in the expected chance account – specifically, in

Leitgeb’s assumption (L2) that the expected chance account is valid for highly opinionated
probability functions Pw. To see why this is problematic, set aside conditionals for a
moment and consider some cases where an agent has information about the world that
goes beyond information about chance.
One such case is Morgenbesser’s coin. A fair coin has been tossed and landed heads.

What would have happened if you had bet on heads? Plausibly, you would have won –
at least if the betting would have been sufficiently isolated from the coin toss. That is,
the probability that you would have won on the subjunctive supposition that you had
bet on heads is high. On the other hand, the chance of winning conditional on this bet,
at the relevant time before the coin was tossed, was presumably 1/2. So the subjunctive
conditional probability does not equal the expected conditional chance.
For another example, consider a decision problem in which you have the opportunity

to toss a fair coin, which will score 1 util on heads and -1 on tails. (If you don’t toss, you
get 0 utils.) You are confident that you will toss the coin, and you optimistically (but
rationally) assign higher credence to worlds where the coin lands heads than to worlds
where it lands tails.10 In that case, you should toss the coin. On the supposition that
you toss, you should be more confident that you’d get 1 util than that you’d get -1, even
though you know that both outcomes have equal chance.
Third, consider the following situation. A cat has slipped into a laboratory where it

spent the night either in room 1 or room 2. In both rooms, there is a high chance that
fatal doses of radiation are emitted in the course of the night: the chance is 0.99 in room
1 and 0.98 in room 2. The next morning, the cat emerges unharmed. How confident are
you that the cat survived on the subjunctive supposition that it stayed in room 2? More
colloquially, should you be confident that the cat would have died if it had stayed in
room 2? Arguably not. Your subjunctive credence in the survival hypothesis should be
significantly greater than the conditional chance of 0.02.11

Finally, consider a case in which an agent has full information about a chance event A
and its outcome B. By the conservativity condition mentioned in the previous section,
supposing a proposition with probability 1 should not affect a probability function. So
P (A) = P (B) = 1 entails that P (B//A) = 1, even if there is a non-trivial chance of B

10 That kind of situation can easily arise if the chanciness of the coin is the chanciness of statistical
mechanics and you happen to have precise control over the microconditions of the toss. See [Schwarz
2015] for how the situation can arise even if the coin toss is a fundamental stochastic process and you
don’t have a crystal ball.

11 A similar case is discussed in [Adams 1976] as a problem for the hypothesis (L5) that the probability
of A� B always equals the expected chance of B given A.
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given A. So P (B//A) , Ch(B/A).12

Direct intuition is a little more elusive in this last case. You just tossed a fair coin,
which landed heads. Given these facts, what is your credence in the hypothesis that the
coin landed heads on the subjunctive supposition that it had been tossed? The question
sounds silly. If we know that the coin has been tossed, it seems absurd to ask what you
believe on the supposition that it had been tossed. But in a way, this actually supports
the conservativity assumption. The assumption implies that it is indeed pointless to
suppose A if A is already known. On the expected chance account, it is unclear why the
question should be inappropriate.13

These examples in which the expected chance account seems to go wrong have something
in common: they also falsify the Simple Conditional Principal Principle SCPP. From our
discussion in the previous section, this connection is not too surprising. If the conditional
chances are known and conservativity holds, then the SCPP and the expected chance
account coincide. If one fails, the other must fail as well.

It is well-known that the Simple Principal Principle SPP and the conditional SCPP do
not hold universally. Lewis [1980] suggests that SPP holds for ultimate priors, rational
credence functions that have not incorporated any information about the world. Skyrms
[1984] similarly restricts the expected chance account to ultimate priors. We might hope
that the two principles also hold for posterior credence functions as long as the agent
doesn’t have “inadmissible information” about the outcome of a relevant chance process.
This condition is plausibly satisfied in most cases in which the supposition A is either false
or concerns the future: if a chance process hasn’t yet taken place, or doesn’t take place
at all, it is hard to have inadmissible evidence about its outcome. The restriction would
therefore often be satisfied when we have reason to appeal to subjunctive suppositions.
On the other hand, Leitgeb’s credence functions that are concentrated on a single world
w can hardly be expected to have no inadmissible information.
In sum, Leitgeb’s argument does not refute the Subjunctive Equation, but rather

12 By clashing with conservativity, the expected chance account not only falsifies the Subjunctive
Equation, but also the Subjunctive Inequality mentioned in footnote 6 (and discussed in [Williams
2012]): if you know A∧B∧Ch(B/A) < 1, then P (A� B) > P (B//A). An analogue of conservativity
for conditionals is the centring principle A ∧B |= A� B. If centring holds for conditionals, then
by the Subjunctive Equation conservativity must hold for supposition: if P (A ∧ B) = 1 entails
P (A� B) = 1, and P (B//A) = P (A� B), then P (A ∧B) = 1 must entail P (B//A) = 1.

13 One might be tempted to explain the infelicity by suggesting that the point of subjunctive supposition
is to explore genuinely counterfactual possibilities, i.e. possibilities that are known to be false. But
that isn’t true. A puzzling event can be explained by pointing out that it would be very likely on
the supposition that such-and-such earlier things had happened. This does not presuppose that the
earlier things didn’t actually happen. Similarly, in decision contexts an agent may wonder what would
happen if she were to choose an option even if she isn’t certain that she won’t actually choose it. We
need a concept of subjunctive supposition that allows for cases in which the supposed proposition A

has significant positive probability.
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illustrates that the expected chance account of subjunctive supposition must be restricted
to credence functions without inadmissible information.

4 Lesson Two: Williams

Williams [2012] presents another argument against the Subjunctive Equation. Like
Leitgeb, he assumes the expected chance account, but this time we will only need
instances that pass the restrictions introduced in the previous section.
Williams’s argument proceeds in two stages. First we show that the Subjunctive

Equation entails an analogue of the Indicative Equation for the chance function; then we
apply the triviality argument from [Lewis 1976] to refute this consequence.
Here is stage 1. Let P be an ultimate prior credence function. Let A,B be any

propositions and w a world such that Chw(B/A) and Chw(A� B) are defined. Let
P ′ be P conditioned on the information that Ch(B/A) and Ch(A � B) have the
values they have at w. (That is, P ′ = P (·/Ch(B/A) = x ∧ Ch(A� B) = y), where
x = Chw(B/A) and y = Chw(A� B).) Since P ′ has no inadmissible information about
the outcome of chance events, we can apply the restricted expected chance account, which
yields:

P ′(B//A) = Chw(B/A). (W1)

By the Subjunctive Equation,

P ′(A� B) = P ′(B//A). (W2)

So P ′(A� B) = Chw(B/A). Moreover, by the unconditional Principal Principle (for
ultimate priors)

P ′(A� B) = Chw(A� B). (W3)

Hence
Chw(A� B) = Chw(B/A). (W4)

(W4) is the analogue of the Indicative Equation for the chance function.
For stage 2, we need some assumptions about chance. First, we assume that chance

functions can sometimes result from other chance functions by conditionalization, as
argued in [Lewis 1980]. More specifically, we assume that there are chance functions Ch0,
ChB, Ch¬B such that ChB and Ch¬B come from Ch0 by conditionalizing on B and ¬B,
respectively.14 Call this assumption 1.

14 The argument generalizes to richer partitions {B, B′, B′′, . . .} in place of {B,¬B}.
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Assumption 2 is that the chance function Ch0 satisfies the following conditions.

Ch0(A� B) = Ch0(A� B/B)Ch0(B) + Ch0(A� B/¬B)Ch0(¬B) (Ch1)
Ch0(B/A ∧B) = 1 (Ch2)
Ch0(B/A ∧ ¬B) = 0 (Ch3)

These are familiar theorems of the probability calculus, provided that Ch0(A ∧B) and
Ch0(A ∧ ¬B) are not zero.

Given assumptions 1 and 2, we can now reason as follows. Assuming that (W4) holds
for all B-worlds, we have

ChB(A� B) = ChB(B/A). (W5)

By (Ch2), ChB(B/A) = Ch0(B/A ∧B) = 1. So by (W5),

ChB(A� B) = Ch0(A� B/B) = 1. (W6)

Parallel reasoning with Ch¬B shows that

Ch0(A� B/¬B) = 0. (W7)

By (Ch1), it follows that
Ch0(A� B) = Ch0(B). (W8)

Following [Lewis 1976], we can further derive that Ch0 takes at most four different
values. Moreover, if P ′ is an ultimate prior conditional on the information that Ch0
is the chance function, then by the Principal Principle, P ′(A� B) = P ′(B), and so
by the Subjunctive Equation, P ′(B//A) = P ′(B). These consequences are implausible
enough to conclude that one of our premises must be false.15

Interestingly, we can run a variant of Williams’s reductio to refute one of the main
rivals to the Subjunctive Equation, the hypothesis that A� B is true iff the conditional
chance of B given A equals 1 (see e.g. [Skyrms 1984], [Leitgeb 2012]). Let’s call this the
strict interpretation of A� B.

To refute the strict interpretation, let Ch0, ChB, Ch¬B be as before, and let PH be
the prior credence P conditional on the hypothesis H that ChB is the chance function.
Since ChB(B/A) = Ch0(B/A∧B) = 1, H entails that the conditional chance of B given
A is 1, and thus (on the strict interpretation) that A� B is true. So PH(A� B) = 1.
However, by the Principle Principle, PH(A� B) = ChB(A� B). It follows that

15 As Williams notes, if the Subjunctive Equation is replaced by the Subjunctive Inequality from footnote
6, the conclusion (W8) turns into Ch(A � B) ≤ Ch(B). This does not strike me as nearly as
problematic as (W8), given the assumptions of the proof. Note that it seems OK if we read A� B

as saying that A nomically necessitates B.
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ChB(A� B) = 1. Parallel reasoning with Ch¬B shows that Ch¬B(A� B) = 0. By
(Ch1), we can infer (W8), that Ch0(A� B) = Ch0(B).

We can go further. Assume, as suggested by (Ch2) and (Ch3), that 0 < Ch0(B/A) < 1.
On the strict interpretation of A � B, the hypothesis H ′ that Ch0 is the chance
function then entails that A� B is false. So PH′(A� B) = 0. By the Principal
Principle, PH′(A� B) = Ch0(A� B). So Ch0(A� B) = 0. But Ch0(B) > 0, since
Ch0(B/A) > 0. It follows that

Ch(A� B) , Ch(B). (W9)

So we can derive not only the implausible (W8), but also its negation (W9)!
What’s odd about this apparent refutation of the strict interpretation is that it doesn’t

involve any further assumptions about A� B. The proof goes through just as well if
we stipulatively define A� B as Ch(B/A) = 1, in which case the strict interpretation
is trivially true.

So we can’t blame the strict interpretation. Nor can we blame the Subjunctive Equation,
which we never used, or the expected chance account, which never used either. All we
needed to derive the contradiction are assumptions 1 and 2 about chance and the Principal
Principle for ultimate priors.
What we have found is an inconsistency between the Principal Principle and the

assumption that a chance function can come from another chance function by conditional-
ization. Intuitively, the problem is this. The Principal Principle renders candidate chance
functions self-aware in the sense that if H is the hypothesis that Chw is the chance
function, then Chw(H) = 1. For by the Principal Principle, P (H/H) = Chw(H), and by
probability theory P (H/H) = 1. But if chance functions evolve by conditionalization,
they cannot be self-aware. For suppose ChB comes from Ch0 by conditionalizing on B,
with 0 < Ch0(B) < 1. Conditionalization leaves certainties untouched, so if Ch0(H) = 1,
then ChB(H) = 1. But if ChB is self-aware, then ChB(H) must be 0.
There is a well-known alternative to the Principal Principle that allows for chance

functions without self-awareness: the New Principle of [Lewis 1994] and [Hall 1994] (see
also [Hall 2004]). The New Principle says that if P0 is an ultimate prior credence, and H
is the hypothesis that Chw is the chance function, then

P0(A/H) = Chw(A/H).

The Principle was originally motivated by difficulties for accommodating the old Principle
in a Humean metaphysics. We have now seen that there is a rather different motivation:
the old Principle can’t be right if chances may evolve by conditionalization. (In other
words, the picture of chance presented in [Lewis 1980] is inconsistent.)

Given assumptions 1 and 2 about chance, we have to use the New Principle: the
old Principle is incompatible with these assumptions. Our refutation of the strict
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interpretation is then blocked. But so is Williams’s triviality proof against the Subjunctive
Equation.16

In sum, Williams’s argument does not refute the Subjunctive Equation, but rather
reveals an inconsistency between the Principal Principle and some popular assumptions
about chance. The inconsistency is avoided by replacing the Principal Principle with the
New Principle, and consequently adjusting the expected chance account so that if {fi}
are all possible chance functions, then

P (B//A) =
∑

i

P (Ch=fi)fi(B/A ∧ Ch=fi).

5 Lesson Three: Briggs

The third and last triviality result I want to discuss is due to Briggs [Forthcoming].
Briggs’s target is not actually the Subjunctive Equation, but a related hypothesis she
calls Kaufmann’s Thesis. Kaufmann’s Thesis says that

P (A⇒ B) =
∑

i

P (Ki)P (B/A ∧Ki),

where A⇒ B is a conditional of a certain kind, and Ki ranges over some contextually
relevant partition. If we read A ⇒ B as A� B, and adopt the K-partition account
of subjunctive supposition, then Kaufmann’s Thesis is equivalent to the Subjunctive
Equation.
Briggs’s argument follows a similar two-stage pattern as Williams’s. First, let P be

any credence function that is concentrated on a single member Ki of the K-partition.
By the K-partition account, P (B//A) = P (B/A ∧Ki) = P (B/A), so subjunctive and
indicative supposition coincide:

P (B//A) = P (B/A). (B1)

And so the Subjunctive Equation reduces to the Indicative Equation:

P (A� B) = P (B//A) = P (B/A). (B2)

16 In conversation (2014), Williams suggests that instead of moving to the New Principle, one could
stick to the original Principal Principle and modify assumption 1 to say that only the “first-order”
restriction of a chance function can evolve by conditionalization, i.e. the part of it that does not
concern chance. To make this work, one presumably has to reject the Humean assumption that the
“first-order” facts determine the chances. Moreover, once we have exempted chances of chance facts
from conditionalization, why couldn’t a friend of the Subjunctive Equation also exempt chances of
counterfactuals? In addition, the proposed restriction to assumption 1 arguably does not resolve the
more basic worry about applying the simple Principal Principle to propositions about chance: there is
simply no good reason to think that chances must be self-aware – especially if we use something like
the enrichment technique from section 2 to get around the fact that actual, physical chance functions
may well be undefined for hypotheses about chance.

15



We can now apply standard arguments such as Lewis’s against (B2). This time, the
details of the second step will matter, so let’s go through Lewis’s argument. Assume P
assigns positive probability to A ∧B as well as A ∧ ¬B. By probability theory, it follows
that

P (A� B) = P (A� B/B)P (B) + P (A� B/¬B)P (¬B). (B3)

Let PB be P conditional on B. Since PB still assigns probability 1 to Ki, (B2) entails
that

PB(A� B) = PB(B/A) = 1. (B4)

Parallel reasoning with ¬B shows that P¬B(A� B) = 0. So by (B3),

P (A� B) = P (B). (B5)

And by one more application of (B2),

P (B//A) = P (B/A) = P (B). (B6)

Briggs calls this a local triviality result, since it only holds for credence functions that
assign probability 1 to a particular dependency hypothesis Ki. But we can globalize the
conclusion. Let P be a credence function that isn’t concentrated on a single dependency
hypothesis. By the K-partition account,

P (B//A) =
∑

i

P (Ki)PKi(B/A). (B7)

By (B6), PKi(B/A) = PKi(B). It follows that

P (B//A) =
∑

i

P (Ki)PKi(B) = P (B). (B8)

Here we assume that for each Ki, PKi assigns positive probability to both A ∧B and
A ∧ ¬B. That is, no dependency hypothesis settles that A ⊃ B or A ⊃ ¬B. This may
not hold in all cases. In a deterministic Newcomb problem, the dependency hypothesis
K1 that the opaque box contains $1M presumably entails that you won’t get $0. So if
B is Get $0 and A is Take 1 Box, then we can’t take for granted that conditional on
K1 ∧A ∧B (which is impossible!), B has probability 1.
So let’s focus on cases with subjunctive indeterminacy. As mentioned in section 2,

here it is often tempting to identify the dependency hypotheses with hypotheses about
conditional chance. Given the SCPP, the K-partition account is then equivalent to
the expected chance account. In particular, if ChKi(B/A) is the chance of B given A
according to Ki, then by the expected chance account, PKi(B//A) = ChKi(B/A), and
by the SCPP, PKi(B//A) = PKi(B/A). This way, Briggs’s proof can be adapted to the
expected chance account.
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However, it is clear where that proof would go wrong. As we saw, both the SCPP and
the expected chance account are only plausible for a restricted class of credence functions
– intuitively, for credence functions that do not have “inadmissible information” about
the outcome of a relevant chance process. The credence functions PB and P¬B used in
Briggs’s proof certainly don’t pass that condition.

TheK-partition account needs a similar restriction, even if we don’t identify dependency
hypotheses with chance hypotheses. The equation PKi(B//A) = PKi(B/A) can easily
fail if an agent has information about A and B that goes beyond Ki. For example, if
P (B) = 1 and P (A) < 1, then P (B/A) = 1, but P (B//A) should be less than 1 as
long as P assigns positive probability to indeterministic dependency hypotheses or to
deterministic hypotheses that entail A ⊃ ¬B.17 Again, this blocks the application to PB

in Briggs’s argument.
Can we repair the K-partition account if we want it to hold in full generality? One

might suggest using ultimate priors P0(B/A ∧Ki) instead of the posterior P (B/A ∧Ki):

P (B//A) =
∑

i

P (Ki)P0(B/A ∧Ki). (B9)

Briggs’s argument against the Subjunctive Equation no longer works with (B9) in place
of the original K-partition account. But we could still reason as follows. Let Ki be
some indeterministic dependency hypothesis, so that 0 < P0(B/A ∧Ki) < 1. By (B9),
0 < PKi(B//A) < 1, and by the Subjunctive Equation, 0 < PKi(A� B) < 1. Let P1
be P0 conditional on Ki ∧ (A� B), and let P2 be P0 conditional on Ki ∧ ¬(A� B).
By (B9) and the Subjunctive Equation, P1(A� B) = 1 = P0(B/A ∧Ki) and P2(A�
B) = 0 = P0(B/A ∧Ki) – contradiction.
But how plausible is (B9) as a general account of subjunctive supposition? Note

that if we identify dependency hypotheses with hypotheses about conditional chance,
then (B9) runs into the same problems as the simple expected chance account from
section 2. To illustrate, consider the case of the cat in the lab, from section 3. Since
we know that the cat survived and it is quite likely that she stayed in room 2, we want
P (Survive//Room 2) > 1/2, despite the high chance of fatal radioactivity in room 2. The
prior probability for Survive conditional on Room 2 ∧K, where K gives the chances, is
very low.

So we can’t use hypotheses about chance as dependency hypotheses in (B9). But what
else could we use? The problem is that no information K about the physical state of the
world up until last night would raise the prior probability of Survive given Room 2 ∧K
above 1/2. Should our dependency hypotheses specify the outcome of the chance process:
the absence of radiation in room 2, or the survival of the cat?

17Moreover, we want PKi (B//A) to be defined even if PK1 (A) = 0, in which case PKi (B/A) may be
undefined.

17



In sum, Briggs’s argument does not refute the Subjunctive Equation, but rather shows
that the problems we encountered in section 3 for the conditional chance account carry
over to the K-partition account. With respect to decision theory, these observations
support Lewis’s remark that cases in which an agent thinks she may have foreknowledge
about the outcome of a chance process are ‘much more problematic for decision theory
than the Newcomb problems’ [1981a: 321]. The problem – which Lewis doesn’t explain –
is that in such cases the K-partition account as spelled out by Lewis does not yield the
right kind of subjunctive conditional probabilities for the evaluation of a decision maker’s
options, and it is hard to see how else the account should be spelled out.

What about the third of the proposals in section 2, the imaging account? Does it avoid
the problems for the other proposals? Sadly, the answer is no. The problem cases from
section 3 spell trouble not only for the expected chance account and the K-partition
account, but also for similarity-based imaging accounts: in cases of indeterminism, how
does the imaging function distribute the probability of a world w among the “closest”
A-worlds, if not by objective chance or relevant prior probability – which would yield the
wrong result for the cases from section 3?

6 Lesson Four: Lewis

In the final sections of [Lewis 1976], Lewis discusses what he calls Stalnaker conditionals.
These are conditionals ⇒ for which one can find a selection function f : 2W ×W →W

so that
[[A⇒ B]]w = [[B]]fA(w). (L1)

Stalnaker argued that subjunctive (as well as indicative) conditionals are in fact Stalnaker
conditionals. Lewis observes that if this proposal is combined with the simple imaging
account of subjunctive supposition, using the same selection function f , so that

P (B//A) =
∑
w

P (w)[[B]]fA(w), (L2)

then the Subjunctive Equation comes out valid:

P (A� B) = P (B//A). (L3)

The proof is simple: by (L2), P (B//A) =
∑

w:fA(w)∈B P (w); but by (L1) (with� for
⇒), {w : fA(w) ∈ B} is the set of worlds at which A� B is true.
This is an important possibility result. No matter if Stalnaker is right about the

semantics of conditionals. As long as the simple imaging account is correct, we can define
an operator� that validates the Subjunctive Equation. Any general triviality result
against the Subjunctive Equation must therefore either establish or presuppose the falsity
of the simple imaging account.
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Lewis goes on to prove a partial converse. Assume P (·//·) satisfies the following
conditions, which are validated for example by the generalized imaging account:

1. P (A//A) = 1.
2. If P (A) = 1 then P (·//A) = P .
3. If P (B//A) = P (A//B) = 1, then P (·//A) = P (·//B).

Then any conditional� that validates the Subjunctive Equation (for all P and A and
B) is a Stalnaker conditional, in which case P (B//A) can be analyzed by the simple
imaging account.

In outline, the proof goes as follows. Suppose the Subjunctive Equation holds for�.
Let Pw be a probability function P conditional on a single world w. Then Pw(·//A) must
also be concentrated on a single world w′: if there were any B with 0 < Pw(B//A) < 1,
then 0 < Pw(A� B) < 1, which is impossible because Pw is concentrated on w. So we
can define a selection function f by stipulating that

fA(w) = w′ iff Pw(w′//A) = 1.

And then we can use this function to analyze both A� B by (L1) and P (B//A) by
(L2).

Lewis’s observations show that the Subjunctive Equation is tied to subjunctive deter-
minacy, the assumption that enough information H about the world will always drive
PH(B//A) to either 1 or 0. If subjunctive determinacy is true, we can define an operator
� that satisfies the Subjunctive Equation; the only remaining question is whether
A� B matches our ordinary subjunctive conditional. On the other hand, if subjunctive
determinacy is false, then no operator� can satisfy the Subjunctive Equation, given
some plausible structural assumptions about P (·//·).

So let’s have another look at subjunctive determinacy. In section 2 I claimed that if a
counterfactual supposition A is unspecific or chancy, then even complete knowledge of all
facts about the world could not settle what would be the case under the supposition that
A were true. No empirical investigation into the world could tell us what would have
happened if I had tossed one of the coins in my pocket. Even if you were omniscient
about the exact micro-state of the universe, the laws of nature, and everything else, you
still wouldn’t know.
But what if the molinists are right and omniscience requires “middle knowledge”?

That is, what if there are irreducible conditional facts about what would have happened
if I had tossed a coin? Suppose there is a primitive truth about the actual world to the
effect that if I had tossed a coin then it would have landed heads. Given this information,
your credence in Heads on the subjunctive supposition that I had tossed a coin should
plausibly be 1.
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Setting aside theological arguments for molinism, why should we believe in such
primitive conditional truths? One reason comes from model-theoretic semantics: the
assumption has been argued to explain certain phenomena involving quantified condition-
als (see e.g. [Klinedinst 2011]). I won’t get into these matter here. Another reason, of
course, is that the assumption would allow us to hold on to the Subjunctive Equation.18

I personally do not find the alleged evidence for the Subjunctive Equation very convinc-
ing – especially given Lewis’s and Kratzer’s observations about if -clauses. Nonetheless, we
may grant that subjunctive determinacy allows for a more elegant, streamlined semantics
that turns out to validate the Subjunctive Equation. As Lewis showed, there are no
formal obstacles to this approach: we simply have to assume an algebra of propositions
that includes primitive conditionals.19

But a deeper problem remains. Suppose we allow for primitive conditionals. Formally,
the proposition that you would get a million if you were to one-box is then independent of
ordinary, non-conditional propositions, but epistemically (and, arguably, metaphysically)
it is not. The information (call it H) that the opaque box contains a million dollars
entails that you would get a million if you were to take it. So either there are no worlds
at all where H ∧ (One-box� Get $0) is true (why not?), or such worlds must be given
zero credence (why?).

Similarly for the case where you know that a coin is fair and hasn’t been tossed. Your
credence in heads on the subjunctive supposition that the coin had been tossed should
then equal 1/2. But why should information about the chance of Heads given Toss fix
your credence in the primitive proposition Heads� Toss, a proposition that is logically
independent of facts about chance and other non-conditional matters?
The problem is that subjunctive conditional probability is highly constrained by

non-subjunctive information. Whenever two rational credence functions agree on non-
subjunctive matters, they must arguably also agree under all subjunctive suppositions. In
that sense, there seem to be no primitive conditionals in the space of epistemic possibility.

In conclusion, then, there are no serious formal obstacles to the Subjunctive Equation.
The triviality arguments we have studied all go wrong in one way or another. However,
they reveal that the connection between subjunctive conditional probability and con-
ditional chance or Lewis-type similarity between worlds is not as simple as one might
have hoped. We know that subjunctive conditional probability is highly constrained by
non-subjunctive information, but we do not know how.

18 As shown e.g. in [McGee 1989], [Jeffrey and Stalnaker 1994], and [Bradley 2012], primitive conditional
facts might even allow us to maintain the Indicative Equation, despite the triviality results.

19 See [Schulz 2014] for an especially transparent implementation of the present strategy.
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