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Abstract	

	

The	 proneural	 gene,	 Atoh1,	 is	 necessary	 and	 in	 some	 contexts	 sufficient	 for	 early	 inner	 ear	 hair	 cell	

development.	Its	function	is	the	subject	of	intensive	research,	not	least	because	of	the	possibility	that	it	

could	 be	 used	 in	 therapeutic	 strategies	 to	 reverse	 hair	 cell	 loss	 in	 deafness.	 However,	 it	 is	 clear	 that	

Atoh1’s	 function	 is	 highly	 context	 dependent.	 During	 inner	 ear	 development,	 Atoh1	 is	 only	 able	 to	

promote	hair	cell	differentiation	at	specific	developmental	stages.	Outside	the	ear,	Atoh1	is	required	for	

differentiation	of	a	variety	of	other	cell	types,	for	example	in	the	intestine	and	cerebellum.	The	reasons	

for	this	context	dependence	are	poorly	understood.	So	far,	the	pathways	and	key	players	that	 instruct	

Atoh1	 to	 act	 as	 a	 mechanosensory	 cell	 fate	 determinant	 in	 the	 context	 of	 the	 inner	 ear	 are	 largely	

unknown.	 Here	 we	 review	 evidence	 that	 suggests	 that	 Atoh1	 function	 in	 hair	 cell	 differentiation	 is	

modulated	by	interaction	with	other	transcription	factors.	We	particularly	focus	on	the	possible	roles	of	

Gfi1	and	Pou4f3,	drawing	from	studies	in	mouse,	Drosophila	and	C.	elegans.	
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1.	Introduction	

	

The	conversion	of	mechanical	stimuli	into	neuronal	signals	is	achieved	by	mechanosensory	cells.	Senses	

like	 hearing,	 balance,	 proprioception	 and	 touch	 rely	 on	 these	 specialized	 mechanoreceptors,	 which	

display	unique	physiological	characteristics	not	observed	in	any	other	cell	type.	Despite	their	specialized	

function	 (1),	mechanosensory	 cells	 exhibit	 a	 great	diversity	 in	 terms	of	 shape,	 structure	 and	 cell	 type	

across	 animal	 phyla.	 The	 mechanoreceptors	 that	 have	 evolved	 to	 detect	 sound	 and	 proprioceptive	

movement	in	invertebrates	and	vertebrates	are	a	good	example	of	such	diversity.	In	Drosophila,	ciliated	

sensory	neurons	 found	 in	 chordotonal	organs	 (CHOs)	 such	as	 the	 Johnston’s	organ	 (the	 fly’s	 antennal	

hearing	 apparatus)	 detect	 sound	 and	 movement	 through	 a	 mechanotransduction	 unit	 located	 in	 its	

sensory	cilium	(2,	3).	In	contrast,	the	vertebrate’s	auditory	function	is	mediated	by	an	epithelial	sensory	

receptor	(known	as	the	hair	cell)	that	lacks	an	axon	and	is	innervated	by	non-mechanosensory	neurons.	

Additionally,	 the	 mechanotransduction	 machinery	 in	 vertebrate	 hair	 cells	 is	 located	 in	 actin-rich	

extensions	(modified	microvilli)	called	stereocilia	rather	than	the	true	cilia	of	the	fly	chordotonal	sensory	

neurons.	Hair	cells	are	located	in	the	inner	ear’s	vestibular	system	(for	proprioception)	and	cochlear	organ	

of	Corti	(for	auditory	function).	

	

Regardless	of	their	obvious	anatomical	differences,	these	fly	and	vertebrate	mechanosensory	cells	share	

striking	similarities	 in	the	pathways	that	regulate	their	development,	particularly	 in	the	deployment	of	

conserved	transcriptional	regulators	(see	Box	1).	The	Drosophila	bHLH	transcription	factor	Atonal	and	its	

vertebrate	 homolog	 Atoh1	 play	 a	 critical	 role	 in	 the	 commitment	 of	 progenitors	 towards	 these	

mechanosensory	 fates.	 The	 role	 of	 Atonal/Atoh1	 in	mechanosensory	 cell	 development	 has	 been	 the	

subject	 of	 several	 excellent	 reviews	 (4-7)	 and	 we	merely	 summarize	 here.	 Loss	 of	 Atonal	 and	 Atoh1	

function	leads	to	the	absence	of	CHO	neurons	and	hair	cells,	respectively,	(8-10)	while	ectopic	Atonal	and	

Atoh1	expression	causes	ectopic	CHO	and	hair	cell	 formation	(8,	11,	12).	 Importantly,	the	exchange	of	

Atonal	for	its	vertebrate	homolog	Atoh1	rescues	fly	CHOs	development	and	the	reverse	experiment	in	the	

mouse	shows	that	fly	Atonal	can	also	rescue	hair	cell	development	(13,	14).	This	remarkable	functional	

conservation	 raises	 the	possibility	 that	Atonal	and	Atoh1	 share	conserved	molecular	 interactions	with	

common	components	of	their	gene	regulatory	networks	as	they	drive	mechanosensory	differentiation.	

	

Not	all	mechanosensory	cells	are,	however,	specified	by	the	Atonal	family.	In	Drosophila,	the	generation	

of	 external	 sensory	 organs	 (bristles)	 responsible	 for	 touch,	 requires	 the	 activity	 of	 bHLH	 transcription	

factors	of	the	achaete-scute	complex	(15)	(see	Box	1).	In	vertebrates,	Atoh1’s	function	is	confined	to	two	

different	mechanosensory	cell	types:	I)	the	above-mentioned	hair	cells,	found	both	in	the	inner	ear	and	

in	some	animals	also	found	in	the	lateral	line	and	paratympanic	organ	(13,	16,	17);	II)	the	epidermal	Merkel	

cells	necessary	for	encoding	light	touch	responses	(18).	Thus,	Atonal/Atoh1	govern	the	formation	of	only	

a	subset	of	mechanosensory	cells,	but	seem	to	have	a	particularly	important	conserved	function	in	those	

cells	that	mediate	hearing	and	balance.	
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The	ability	of	Atoh1	to	induce	ectopic	hair	cell	formation	raises	the	hope	that	it	can	be	used	therapeutically	

to	replace	hair	cells	lost	in	sensorineural	deafness.	However,	there	are	caveats	to	this	approach.	Firstly,	

the	pro-differentiation	activity	of	Atoh1	appears	strictly	limited	to	early	stages	of	inner	ear	development.	

Secondly,	Atoh1	genes	are	expressed	in	other	tissues	such	as	the	cerebellum	and	the	intestine	where	they	

instruct	the	specification	and	differentiation	of	neuronal	and	secretory	cells	respectively	(Table	1).	It	is	not	

well	 understood	 how	 this	 same	 transcription	 factor	 can	 play	 an	 instructive	 role	 in	 generating	 these	

different	cell	types.	Here	we	review	what	is	known	of	the	context	dependent	activities	of	Atonal/Atoh1,	

and	consider	the	implications	for	understanding	the	molecular	mechanisms	of	hair	cell	differentiation.	

	

2.	Context	dependence	of	Atoh1	

	

Studies	in	a	variety	of	rodent	genetic	models	have	established	that	misexpression	of	Atoh1	can	induce	

formation	 of	 supernumerary	 hair	 cells	 in	 the	 inner	 ear.	 However,	 this	 ability	 is	 confined	 to	 early	

developmental	 stages,	with	 the	competence	of	 the	 inner	ear	epithelium	to	respond	to	Atoh1	strongly	

tapering	off	shortly	after	birth	(19,	20).	A	second	temporal	aspect	is	that	although	Atoh1	is	best	described	

for	its	role	in	early	hair	cell	specification,	temporally	controlled	knock-out	studies	have	suggested	that	it	

is	also	involved	in	later	aspects	of	hair	cell	differentiation	and	survival	(10,	21).	These	observations	imply	

that	 Atoh1	 has	 multiple	 roles	 at	 different	 stages	 of	 development,	 suggesting	 that	 its	 functions	 (and	

perhaps	target	genes)	change	over	time.	

	

Outside	of	the	inner	ear,	genetic	experiments	in	the	mouse	have	revealed	that	Atoh1	is	necessary,	and	in	

some	cases	sufficient,	for	the	specification	of	particular	neuronal	lineages,	including	dorsal	interneurons	

in	the	spinal	cord	and	granule	neurons	in	the	cerebellum,	plus	some	non-neural	cell	types	including	the	

secretory	cells	in	the	intestine	(Table	1).	Atoh1	is,	therefore,	a	master	regulator	of	distinct	lineage-specific	

differentiation	programs,	further	highlighting	the	fact	that	its	activity	and	target	genes	are	dependent	on	

the	developmental	context.	

	

The	idea	that	Atoh1	regulates	distinct	targets	in	different	cell	types	has	been	borne	out	in	recent	studies	

that	have	employed	ChIP-seq	to	determine	Atoh1	binding	sites	in	cerebellum	granule	neurons	(22)	and	

intestinal	 secretory	 cells	 (23).	 Both	 studies	 identified	 a	 similar	 Atoh1	 DNA	 binding	 motif	 (brain:	

(G/A)(C/A)CA(G/T)(C/A)TG(G/T)(C/T)	and	intestine:	CA(G/C)CTG(G/T)(C/T))	indicating	that	differences	in	

cellular	context	do	not	appear	to	strongly	affect	Atoh1	preference	for	its	unique	E-box	motif	(Fig.	1A).	This	

context-independent	binding	to	cognate	E-boxes	has	also	been	shown	for	the	Drosophila	Atonal	protein	

(24).	Despite	this,	the	Atoh1	binding	sites	found	in	intestinal	secretory	cells	show	only	a	small	overlap	with	

those	found	in	cerebellum	granule	neurons	(951	out	of	8729	detected	in	the	gut)	(23).	So	far,	there	are	

no	 data	 on	 Atoh1	 binding	 sites	 in	 hair	 cells	 or	 dorsal	 interneurons:	 Atoh1	 ChIP-seq	 experiments	 are	

problematic	 due	 to	 the	 very	 small	 numbers	 of	 these	 cell	 types	 (25,	 26).	 Nonetheless,	 the	 studies	 in	
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intestine	 and	 cerebellum	 provide	 a	 good	 example	 of	 how	 cellular	 context	 is	 able	 to	 induce	 dramatic	

changes	in	Atoh1	DNA-binding	site	occupancy.	This	leads	us	to	an	important	question:	what	modulates	

Atoh1	 DNA-binding	 preferences	 in	 these	 different	 contexts?	 	We	 do	 not	 yet	 have	 an	 answer	 to	 this	

question,	although	there	may	be	much	to	learn	from	our	understanding	of	the	context-dependent	activity	

of	 related	proneural	 bHLH	 transcription	 factors	 (27).	 Below,	we	 review	 the	possible	mechanisms	 that	

could	explain	context-dependent	activity	of	Atoh1.	

	

3.	Potential	mechanisms	underlying	Atoh1’s	context	dependence	

	

3.	1	Chromatin	landscape	and	epigenetic	modifications	

	

Some	critical	regulators	of	cell	differentiation	have	the	capacity	to	bind	closed	chromatin	and	to	promote	

chromatin	 accessibility,	 and	 these	 are	 often	 referred	 to	 as	 ‘pioneer	 factors’.	 The	 proneural	 bHLH	

transcription	factor	Ascl1	(closely	related	to	Atoh1)	is	known	to	be	a	pioneer	factor,	capable	of	binding	to	

nucleosomal-occluded	DNA	(28,	29)	and	promoting	chromatin	accessibility	at	the	regulatory	regions	of	its	

targets	(29).	However,	pioneer	activity	remains	to	be	determined	for	Atoh1.	To	identify	active	and	poised	

enhancers	as	well	as	tissue-specific	chromatin	access,	techniques	for	genome-wide	chromatin	profiling,	

such	 as	DNase1	hypersensitivity,	 have	been	applied	 to	 intestinal	 crypt	progenitors	 in	 the	presence	or	

absence	 of	 Atoh1	 (23).	 Enhancers	 normally	 bound	 by	 Atoh1	 showed	 the	 same	 chromatin	 access	 and	

histone	activation	pattern	in	Atoh1	depleted	crypt	progenitors	(23),	indicating	that	Atoh1	does	not	control	

the	initiation	and	maintenance	of	chromatin	accessibility	and	epigenetic	modification	changes	in	intestinal	

progenitors.	 It	 therefore	 seems	 likely	 that	 chromatin	 remodeling	 precedes	 Atoh1	 binding,	 raising	 the	

possibility	that	the	chromatin	landscape	may	have	a	prominent	role	in	controlling	Atoh1	activity.	If	this	

also	applies	to	the	inner	ear,	a	temporally	changing	chromatin	environment	may	govern	the	competence	

of	 the	 ear	 to	 respond	 to	Atoh1	 expression.	 It	 is	 also	 tempting	 to	 speculate	 that	 the	 cell	 type-specific	

chromatin	 environment	 determines	 Atoh1´s	 target	 specificity.	 However,	 pioneer	 activity	 can	 also	 be	

context-specific	(30)	(31),	and	so	it	remains	possible	that	Atoh1	is	a	pioneer	factor	in	the	inner	ear.	

	

Another	possibility	is	that	pioneer	factor	function	in	hair	cell	specification	is	provided	by	Sox2.	This	factor	

functions	 upstream	 of	 Atoh1	 in	 prosensory	 progenitor	 specification	 (7,	 32,	 33).	 It	 is	 known	 to	 affect	

epigenetic	 priming	 in	 B	 cell	 development	 (34)	 and	 it	 has	 pioneer	 activity	 during	 reprogramming	 of	

fibroblasts	to	pluripotency	(35).	In	hair	cell	specification,	Sox2	may	not	only	activate	Atoh1	expression,	

but	also	prime	chromatin	to	direct	Atoh1	binding	to	hair	cell	target	genes.	

	

3.2	Protein	levels	and	post-translational	modifications	

	

Posttranslational	modifications	have	been	shown	to	regulate	proneural	activity,	DNA-binding	specificity	

and	protein	 stability	 of	 several	 bHLH	proteins	 (27,	 36,	 37).	 In	 the	 case	 of	Atoh1,	 recent	 studies	 of	 its	
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function	 in	 neurogenesis	 found	 that	 serine	phosphorylations	 are	 responsible	 for	 the	 control	 of	Atoh1	

activity	and	protein	stability:	phosphorylations	outside	the	bHLH	domain	in	the	C-terminus	of	the	Atoh1	

protein	mediate	interaction	with	HUWE1	(an	E3	ubiquitin	ligase),	which	targets	Atoh1	for	proteasomal	

degradation	(38).	In	the	bHLH	domain,	a	highly	conserved	serine	phosphorylation	was	recently	revealed	

to	be	a	binary	switch	for	proneural	activity	by	preventing	DNA	binding	(39).	While	these	modifications	

affect	 activity,	 at	 present	 there	 is	 no	 evidence	 that	 they	 affect	 target	 specificity.	 Neither	 is	 it	 known	

whether	they	are	relevant	to	the	inner	ear.	

	

3.3	Interactions	between	transcription	factors	

	

At	any	given	time	and	place	during	development,	diverse	intrinsic	and	extrinsic	signals	are	integrated	to	

result	 in	 a	 specific	 combinatorial	 expression	 of	 transcription	 factors.	 These	 ‘combinatorial	 codes’	 of	

transcription	factors	help	to	explain	context-dependence	of	transcription	factor	binding	in	many	different	

cell	types	(40,	41).	Therefore,	the	cell-type-specific	cooperation	between	transcription	factors	at	enhancer	

regions	 could	 explain,	 at	 least	 in	 part,	 why	 Atoh1	 exhibits	 a	 distinct	 DNA-binding	 profile	 in	 neurons	

compared	with	intestinal	cells.	For	hair	cells,	analysis	of	motifs	in	the	enhancers	of	Atoh1	target	genes	

supports	the	possibility	of	it	working	in	combination	with	other	transcription	factors	to	define	target	gene	

specificity	(42).	Heterodimerisation	partners	also	play	a	role.	Class	II	bHLH	proteins	such	as	Atoh1	typically	

bind	to	DNA	as	heterodimers	with	members	of	the	class	I	family	of	bHLH	factors	known	collectively	as	E	

proteins.	For	the	generation	of	the	hindbrain’s	pontine	nucleus,	it	appears	that	Atoh1	must	interact	with	

a	specific	E	protein,	Tcf4	(43).	The	mechanism	by	which	Atoh1/Tcf4	heterodimers	promote	this	specific	

cell	 fate	 is	 currently	 unknown,	 although	 specific	 heterodimer	 interactions	 have	 been	 shown	 to	 cause	

differences	in	DNA-binding	preferences	in	the	context	of	Drosophila	mesoderm	formation	(44).	

	

Recently,	Gfi1	and	Pou4f3,	two	transcription	factors	of	known	importance	in	hair	cell	differentiation	(45-

47)	have	emerged	as	possible	candidates	for	interaction	with	Atoh1	to	promote	hair	cell	development.	In	

a	mouse	embryonic	stem	cell	model,	forced	Atoh1	expression	induces	neuronal	differentiation.	In	striking	

contrast,	forced	expression	of	Atoh1	in	combination	with	Gfi1	and	Pou4f3	instructs	the	cells	to	commit	

towards	a	hair	cell	fate	(48).	Atoh1	is	vital	to	this	programming	process:	Gfi1	and	Pou4f3	are	not	alone	

able	to	drive	differentiation	(AC,	unpublished	data).	The	presence	of	Gfi1	and/or	Pou4f3	appears	able	to	

switch	Atoh1’s	activity	from	a	neuronal	cell	fate	determinant	to	a	hair	cell	determinant.	Thus,	Atoh1,	Gfi1	

and	Pou4f3	appear	to	be	central	players	in	the	genetic	network	that	drives	hair	cell	formation.	Since	these	

three	factors	have	not	been	discussed	together	before	 in	the	context	of	specificity,	we	review	what	 is	

known	about	Gfi1	and	Pou4f3	 in	mechanosensory	 cell	development	and	 in	development	of	other	 cell	

types	in	order	to	ascertain	how	these	factors	might	be	connected	to	each	other.	

	

4.	Gfi1	and	the	GPS	family	of	transcription	factors	
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Growth	Factor	Independence	1	(Gfi1)	is	the	vertebrate	member	of	the	GPS	(Gfi1/PAG-3/SENS)	family	of	

zinc	finger	transcription	factors.	GPS	proteins	are	characterized	by	the	presence	of	zinc	finger	domains	

frequently	found	at	their	C-terminus	(Fig.	1B).	The	N-terminus	of	Gfi1	harbours	a	SNAG	transcriptional	

repressor	domain	also	fund	in	Snail/Slug	zinc	finger	proteins	(49).	

	

In	vertebrates,	Gfi1	is	best	known	as	a	major	regulator	of	hematopoiesis,	playing	a	prominent	role	in	the	

development	of	the	myeloid	and	lymphoid	cell	lineages	(Table	1).	Here	it	controls	diverse	developmental	

processes,	such	as	cell	fate	determination,	differentiation,	proliferation	and	cell	survival	(for	review,	see	

(50-54)).	 Outside	 the	 hematopoietic	 system,	 Gfi1	mRNA	 has	 been	 detected	 in	 a	wide	 range	 of	 other	

tissues,	but	expression	of	Gfi1	protein	seems	to	be	restricted	to	mechanoreceptors	cells	(hair	cells	and	

Merkel	cells),	neurons	of	the	cerebellum	and	retina,	and	specialized	epithelial	cells	 in	the	gut	and	lung	

(Table	1).	Gfi1	plays	a	key	role	in	the	differentiation	or	survival	of	these	non-hematopoietic	cell	types.	

	

Research	on	the	mechanism	of	transcription	regulation	mediated	by	Gfi1	has	been	largely	restricted	to	

hematopoietic	development.	These	studies	revealed	that	Gfi1	acts	mainly	as	a	transcriptional	repressor	

by	 recruiting	 chromatin	 regulatory	 complexes	 such	 as	 histone	 demethylase	 complex	 (LSD1/CoRest),	

histone	deacetylases	(HDACs	1-3)	and	histone	methyltransferase	(G9a)	(55-57).	At	Gfi1	DNA	target	sites,	

these	 corepressors	 and	 enzymes	 remove	 active	 histone	modifications	 and	 apply	 repressive	marks	 to	

prevent	 transcription	 and	 potentiate	 long-term	 changes	 in	 chromatin	 structure.	 The	 SNAG	 domain	 is	

necessary	 for	 the	 recruitment	 of	 the	 LSD1/CoRest	 complex	 whilst	 interactions	 with	 other	 histone-

modifying	enzymes	(HDACs	and	G9a)	are	mediated	via	the	intermediary	and	zinc-finger	regions	of	the	Gfi1	

protein	(56,	57).	Despite	these	varied	interactions,	a	single	mutation	in	the	SNAG	domain,	which	disrupts	

the	 interactions	 with	 the	 LSD1/CoRest	 complex,	 leads	 to	 a	 phenotype	 apparently	 identical	 to	 that	

observed	 in	 Gfi1	 null	 mice	 in	 both	 hematopoietic	 and	 non-hematopoietic	 systems	 (57,	 58).	 Further	

support	 for	 this	 mode	 of	 Gfi1	 function	 comes	 from	 a	 recent	 study	 showing	 that	 LSD1	 deficiency	

phenocopies	the	developmental	arrest	of	the	haematopoietic	stem	cells	observed	in	Gfi1	null	mice	(59).	

In	summary,	the	suppression	of	gene	expression	through	LSD1/CoRest	appears	to	be	vital	for	Gfi1	function	

regardless	of	the	tissue	and	developmental	context.	

	

4.1	Gfi1	in	the	vertebrate	inner	ear	

	

Mouse	genetic	studies	have	shown	that	Gfi1	is	required	for	hair	cell	development.	The	loss	of	Gfi1	seems	

not	to	disrupt	hair	cell	specification	grossly	as	hair	cells	are	formed	and	express	early	hair	cell	markers,	

such	as	Myo7a	and	Myo6	(47,	60,	61).	However,	these	hair	cells	have	defects	that	become	increasingly	

apparent	as	differentiation	progresses.	In	the	cochlea,	hair	cells	at	E16.5	are	already	disorganized,	and	by	

E18.5	the	outer	hair	cells	show	signs	of	apoptosis.	In	addition,	inner	and	outer	hair	cells	show	stereociliary	

bundle	defects,	being	shortened	and	poorly	organized.	Eventually,	 first	outer	hair	cells	 then	 inner	hair	
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cells	are	lost	by	apoptosis.	By	P14,	all	cochlear	hair	cells	are	lost	(47,	60).	In	the	vestibular	apparatus,	hair	

cells	are	morphologically	abnormal	from	the	earliest	stages	(E14.5)	onwards,	but	are	not	lost	by	apoptosis.	

	

It	will	be	important	to	explore	whether	Gfi1	functions	in	the	inner	ear	by	recruiting	LSD1/CoRest,	as	in	the	

hematopoietic	 system.	 In	 addition,	 studies	 on	 a	 second	 family	member,	Gfi1b,	 indirectly	 suggest	 that	

Gfi1’s	 intermediary	domain	may	be	 important	 for	 its	 function	 in	 the	context	of	 the	 inner	ear.	Gfi1b	 is	

important	 in	hematopoiesis	but	 is	not	required	in	hair	cell	development.	 Interestingly,	when	the	Gfi1b	

coding	 region	 is	 knocked-in	 to	 the	 mutated	 Gfi1	 locus,	 it	 can	 completely	 restore	 the	 defects	 in	

hematopoiesis,	but	not	the	defects	in	hair	cell	differentiation	(58).	Gfi1b	shares	high	identity	with	Gfi1	in	

its	SNAG	and	zinc	finger	domains	and	they	are	able	to	recognize	the	same	DNA	motif	(62).	This	suggests	

that	the	functional	difference	arises	from	recruitment	of	proteins	mediated	by	the	intermediary	region	of	

the	Gfi1	protein	in	the	context	of	the	inner	ear.	

	

4.2	How	might	Atoh1	and	Gfi1	interact?	

	

It	 is	notable	that	Gfi1	and	Atoh1	both	function	 in	hair	cells,	Merkel	cells,	and	gut	neurosecretory	cells	

(Table	1).	In	hair	cells,	Gfi1	is	a	downstream	target	gene	of	Atoh1	(47).	It	could	be	that	their	interaction	is	

simply	one	in	which	Atoh1	activates	Gfi1	transcription,	with	Gfi1	subsequently	functioning	independently	

of	Atoh1.	Another	possibility	is	that	once	activated	Gfi1	enhances	Atoh1	function	by	antagonising	HUWE1-

dependent	degradation.	In	addition	to	these	possibilities,	work	in	flies	suggests	the	intriguing	possibility	

that	the	two	proteins	work	together	directly	during	hair	cell	development.		

	

The	Drosophila	 orthologue	of	Gfi1	–	 Senseless	 (Sens)	–	 is	 expressed	 in	 several	 cell	 types,	 including	all	

sensory	neurons.	In	the	peripheral	nervous	system	the	mutant	phenotype	of	Sens	resembles	that	of	Gfi1	

in	 the	 vertebrate	 inner	 ear	 in	 that	 sensory	 cells	 are	 specified,	 but	 fail	 to	 differentiate	 properly	 and	

eventually	die	(63).	Like	Gfi1,	Sens	acts	as	a	DNA-binding-dependent	transcriptional	repressor	(63,	64),	

but	 there	 is	 also	 strong	 evidence	 that	 Sens	 can	 activate	 transcription	 by	 promoting	 the	 activity	 of	

proneural	bHLH	transcription	factors	(Fig.	2).	Sens	directly	binds	to	proneural	proteins,	including	Atonal,	

via	its	Zn-finger	domains	(24,	64-66).	This	interaction	enhances	the	activity	of	the	bHLH	factor	at	its	target	

genes.	 One	 of	 the	 affected	 targets	 appears	 to	 be	 bHLH	 gene	 autoregulation	 itself.	 Sens	 is	 therefore	

thought	to	be	an	important	regulatory	switch	for	proneural	bHLH	expression	and	function	during	sensory	

precursor	 specification,	 on	 the	one	hand	 acting	 as	 a	 repressor,	 but	 also	 able	 to	 act	 as	 a	 co-activator.	

Conversely,	 the	 Atonal-Sens	 interaction	 also	modulates	 the	 transcriptional	 repressor	 activity	 of	 Sens:	

during	sensory	precursor	development,	Atonal	binding	to	Sens	prevents	it	from	repressing	its	target	gene	

rhomboid	(67).	

	

Sens	differs	from	Gfi1	in	several	aspects:	it	lacks	a	SNAG	domain	and	only	has	four	Zn-fingers	(Fig.	1B).	

Nevertheless,	 it	 is	 possible	 that	 the	 protein	 interactions	 demonstrated	 in	Drosophila	 sensory	 neuron	
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development	are	conserved	 in	hair	 cell	development.	The	ability	of	Atonal	and	Atoh1	 to	 replace	each	

other	 has	 already	 been	mentioned.	Moreover,	mouse	 Atoh1	misexpressed	 in	Drosophila	 can	 interact	

genetically	with	Sens,	whereas	a	related	vertebrate	bHLH	family	transcription	factor	Neurogenin	cannot,	

indicating	some	specificity	for	this	interaction	(68).	Our	unpublished	experiments	also	suggest	that	Gfi1	

can	enhance	Atoh1	transcriptional	activity	in	a	cell	culture	system	(LP,	unpublished).	

	

More	generally,	mouse	Gfi1	is	known	to	interact	with	other	transcription	factors	in	a	variety	of	ways.	It	

can	synergistically	associate	with	transcription	factors	through	binding	to	adjacent	DNA	sites	(69)	or	bind	

directly	 to	 particular	 transcription	 factors	 thereby	 inhibiting	 their	 activity	 (70,	 71).	 Whilst	 these	

mechanisms	 are	 most	 commonly	 associated	 with	 repression,	 some	 reports	 have	 shown	 that	 such	

interactions	can	lead	to	transcriptional	activation	(72-74),	and	thus	Gfi1	might	be	a	context-dependent	

repressor	or	activator	like	Sens.	Understanding	whether	transcription	activation	is	an	important	aspect	of	

Gfi1	function	in	its	different	contexts	and	what	mechanisms	control	the	switch	between	activation	and	

repression	will	constitute	the	basis	for	inner	ear	future	studies.	Similarly	to	Sens,	there	is	in	vitro	evidence	

that	transcriptional	activation	by	Gfi1	could	be	dependent	on	promoter	sequence,	concentration	of	Gfi1	

protein	and	cellular	context	(75).	

	

What	are	the	opportunities	for	direct	interaction	between	Atoh1	and	Gfi1	in	the	inner	ear?	In	one	report	

that	examines	both	proteins,	Atoh1	and	Gfi1	were	found	to	be	co-expressed	in	cochlear	inner	hair	cells	as	

early	as	E15.0,	and	in	outer	hair	cells	by	E15.5	(76).	Transcriptome	analyses	also	support	their	coexpression	

during	later	stages	of	differentiation	(77).	The	earliest	expression	of	Atoh1	in	the	cochlea	is	around	E13.5,	

a	 time	when	Gfi1	 is	not	yet	detectable	 (10).	There	 is	 thus	scope	for	Gfi1	 to	alter	Atoh1’s	 later	activity	

and/or	specificity,	providing	temporal	context.	 In	particular,	Atoh1	activity	between	E13.5	and	E15.5	is	

crucial	for	hair	cell	survival	(10,	78).	Given	that	Gfi1	is	also	required	for	hair	cell	survival	at	these	stages	

(see	above),	one	might	speculate	that	Atoh1	prevents	cell	death	by	regulating	Gfi1	expression	at	these	

stages,	 or	 alternatively	 that	 Atoh1	 and	 Gfi1	 cooperate	 in	 regulating	 survival.	 The	 time	 course	 of	

Atoh1/Gfi1’s	 co-expression	 in	 hair	 cell	 development	 remains	 to	 be	 determined	 completely.	 Finally,	 it	

should	be	noted	that	in	addition	to	differentiation	and	survival	defects,	the	Gfi1	mutant	mouse	seemed	

to	develop	fewer	outer	hair	cells	(47),	suggesting	that	perhaps	an	early	interaction	between	Atoh1	and	

Gfi1	in	hair	cell	specification	should	not	be	ruled	out.	

	

5.	The	vertebrate	POU-IV	transcription	factors	

	

Pou4f3	is	required	for	development	of	functional	hair	cells	(45,	46,	79).	Pou4f3	protein	is	a	member	of	the	

POU-IV	class	of	transcription	factors.	The	POU-domain	is	essential	for	DNA-binding	and	is	characterized	

by	two	distinct	sub-domains	separated	by	a	non-conserved	variable	linker	(Fig.	1C).	All	three	members	of	

the	mammalian	POU-IV	class	 (Pou4f1,	Pou4f2	and	Pou4f3)	 share	a	high	degree	of	 sequence	 similarity	

between	their	POU	domains	and	are	able	to	bind	to	the	same	consensus	DNA	motif	(80-82).	The	POU-IV	



10	

factors	are	expressed	in	overlapping	patterns	predominantly	confined	to	sensory	systems	and	the	central	

nervous	system	(79,	80,	83,	84).	Pou4f3	itself	is	expressed	in	several	neuronal	types,	including	dorsal	spinal	

cord,	dorsal	root	ganglia,	retinal	ganglion	neurons,	and	it	is	the	only	POU-IV	factor	to	be	present	in	hair	

cells	(85)	(Table	1).	

	

5.1	Pou4f3	expression	and	function	in	the	vertebrate	inner	ear	

	

Pou4f3	expression	in	the	vertebrate	inner	ear	appears	to	be	mainly	confined	to	hair	cells.	In	the	cochlea,	

the	onset	of	Pou4f3	expression	occurs	at	E14.5,	prior	to	Gfi1	but	in	a	similar	basal-to-apical	gradient	(21,	

46,	 76).	 Moreover,	Gfi1	 expression	 is	 affected	 in	 Pou4f3	 mutant	 mice	 (60).	 Therefore,	 some	 effects	

observed	upon	deletion	of	Pou4f3	could	result	directly	from	the	consequent	loss	of	Gfi1	expression.	There	

are	indeed	similarities	between	the	Pou4f3	and	Gfi1	mouse	phenotypes.	 In	both	cases,	hair	cells	show	

morphological	defects,	aberrant	or	absent	stereocilia-like	structures,	abnormal	localization	of	vestibular	

hair	cells	in	the	supporting	cell	layer,	and	hair	cell	degeneration	(46,	47,	60).	The	severity	of	the	phenotype	

caused	by	 the	 loss	 of	Pou4f3,	 however,	 is	more	pronounced:	 unlike	Gfi1,	 deletion	of	Pou4f3	 leads	 to	

apoptosis	 not	 only	 of	 cochlear	 hair	 cells	 but	 also	 of	 vestibular	 hair	 cells	 (45,	 46).	Moreover,	 signs	 of	

apoptosis	appear	earlier,	being	more	prominent	already	at	embryonic	stages,	and	those	stereocilia-like	

structures	that	do	form	have	more	pronounced	morphological	defects	than	those	in	the	Gfi1	knockout	

mouse	(60).	

	

In	the	vestibular	sensory	epithelium	(the	earliest	site	of	hair	cell	formation	in	the	inner	ear)	Pou4f3	and	

Gfi1	are	both	present	in	incipient	hair	cells	as	early	as	E12.5,	which	precedes	the	expression	of	other	early	

hair	 cells	markers	 (46,	 47).	Given	 this	 early	 co-expression	 in	 vestibular	 hair	 cell	 precursors	 one	might	

speculate	that	Pou4f3	(and	Gfi1)	cooperates	with	Atoh1	to	promote	hair	cell	formation	in	addition	to	later	

roles	in	hair	cell	differentiation	and	maintenance.	However,	just	as	in	the	Gfi1	knockout	mice,	hair	cells	

do	undergo	 initial	differentiation	upon	Pou4f3	deletion	(45,	46,	79),	suggesting	that	any	early	hair	cell	

function	must	be	subject	to	compensatory	mechanisms.	

	

It	seems	plausible	that	Pou4f3	may	also	interact	with	Atoh1.	Of	note	is	the	observation	that	the	related	

POU-III	class	factor,	Pou3f2	cooperates	with	the	bHLH	factor	Ascl1	to	activate	transcription	of	the	Notch	

ligand	Dll1	during	neurogenesis	(86).	Moreover,	evidence	from	C.	elegans	shows	a	regulatory	interaction	

between	Atonal-like	and	Pou4f3-like	factors	in	mechanosensory	cells,	although	a	physical	interaction	has	

not	been	demonstrated.	The	Atonal-like	bHLH	protein,	Lin-32,	is	necessary	to	activate	expression	of	the	

Pou-IV	factor,	Unc-86,	in	most	touch	neuroblasts,	which	is	consistent	with	the	function	of	its	vertebrate	

homologue	in	hair	cells	(Fig.	1C)	(87).	In	addition	Unc-86	collaborates	(indirectly)	with	the	Gfi1	homologue,	

Pag-3,	in	the	differentiation	of	BDU	neurons	(88).	In	contrast	to	C.	elegans,	the	Drosophila	Pou-IV	factor,	

Acj6	is	exclusively	expressed	in	the	sensory	and	nervous	systems	but	it	appears	not	to	be	required	during	

mechanosensory	development	(89-91).	
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In	 addition	 to	 these	 interactions,	Unc-86	 interacts	with	 the	 Lim	 homeodomain	 (Lim-HD)	 transcription	

factor	 Mec-3	 to	 synergistically	 co-regulate	 downstream	 targets	 necessary	 for	 touch	 receptor	

differentiation	 (92,	93).	 In	vertebrates,	cooperative	 interactions	between	POU-IV	 (Pou4f1)	and	Lim-HD	

(Islet1)	factors	have	been	shown	to	be	important	for	differentiation	of	retinal	ganglion,	trigeminal,	and	

dorsal	root	ganglion	neurons	(94,	95).	For	hair	cells,	the	Lim-HD	factor	Lhx3	is	specifically	expressed	at	

their	early	stages	of	differentiation,	leading	to	the	possibility	that	it	interacts	with	Pou4f3	in	this	context.	

Lhx3	null	mice	show	no	phenotype	in	the	inner	ear	(61),	but	there	is	the	possibility	of	redundancy	with	

other	Lim-HD	factors	that	are	known	to	be	present	in	hair	cells,	although	their	function	during	inner	ear	

development	has	never	been	studied	(96).	

	

6.	Conclusions	

	

Atoh1,	Gfi1	and	Pou4f3	play	critical	roles	 in	hair	cell	development,	but	the	mechanisms	by	which	they	

cooperate	remain	to	be	explored.	The	expression	pattern	and	the	loss-of-function	phenotype	of	Atoh1	

suggest	that	it	initially	acts	upstream	of	Gfi1	and	Pou4f3	in	the	genetic	network	of	hair	cell	differentiation.	

However,	 once	 all	 three	 factors	 are	 expressed	 together,	 there	 is	 abundant	 opportunity	 for	 them	 to	

interact	and	modulate	each	other’s	function,	perhaps	generating	context	specificity.		

	

It	is	attractive	to	suggest	that	cooperation	with	Gfi1	and	Pou4f3	at	later	stages	of	hair	cell	differentiation	

might	explain	how	Atoh1	can	be	required	for	temporally	distinct	functions	in	hair	cell	specification	and	

differentiation.	Moreover,	despite	differences	in	their	mouse	mutant	phenotypes,	it	should	perhaps	not	

be	ruled	out	that	the	factors	interact	during	hair	cell	specification.	This	idea	is	strongly	supported	by	the	

remarkable	observation	that	Gfi1	and	Pou4f3	appear	to	confer	specificity	on	Atoh1	for	driving	hair	cell	

differentiation	from	pluripotent	cells	(48).	 It	will	be	of	great	interest	to	explore	how	this	relates	to	the	

interactions	between	these	three	factors	during	development	in	vivo.	It	is	notable	that	in	the	Gfi1	knock	

out	mouse,	 neuronal	markers	 were	 aberrantly	 expressed	 in	 the	 outer	 hair	 cells	 (47).	 This	 is	 strongly	

reminiscent	of	 the	observation	 that	 in	ES	 cells	Atoh1	 in	 the	absence	of	Gfi1/Pou4f3	 induces	neuronal	

differentiation,	supporting	the	idea	that	at	least	Gfi1	may	influence	Atoh1	specificity.	

	

In	this	review	we	have	drawn	from	the	broader	literature	to	suggest	a	number	of	possible	biochemical	

and	 transcriptional	 mechanisms	 by	 which	 Gfi1,	 Pou4f3,	 and	 Atoh1	 might	 cooperate	 during	 the	

development	of	mechanosensory	cells.	The	paucity	of	hair	cells	in	the	inner	ear	has	until	now	hampered	

progress	in	this	area	because	it	is	difficult	to	perform	genome-wide	studies	and	biochemical	analysis	on	

such	small	numbers	of	cells.	The	recently	developed	transcriptional	programming	strategy	(48)	provides	

a	much-needed	opportunity	to	access	and	interrogate	this	important	developmental	transition	in	a	more	

experimentally	 tractable	 system.	 This	 may	 bring	 some	 clarity	 to	 the	 intriguing	 question	 of	 how	
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Atonal/Atoh1	conserves	the	ability	to	drive	mechanosensory	cell	differentiation	across	invertebrate	and	

vertebrate	species,	yet	 is	able	 to	direct	differentiation	of	several	distinct	cell	 types	 in	different	 tissues	

within	the	same	organism.		
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Box	1:	Development	of	mechanosensory	cells	in	flies	and	mouse		

A) At	the	onset	of	Drosophila	sense	organ	development,	clusters	of	ectodermal	cells	are	marked	by	the	

expression	of	proneural	genes,	such	as	those	of	the	achaete–scute	complex	(AS-C)	or	atonal	(Ato).	The	

Sensory	Organ	Precursor	(SOP)	is	subsequently	selected	from	the	cluster	by	accumulating	high	levels	of	

proneural	protein,	which	activates	the	transcription	program	for	sense	organ	development.	The	SOP	

divides	and	the	progeny	differentiate	into	the	ciliated	mechanosensory	neuron	(N)	and	supporting	cells	

(S)	 of	 bristle	 and	 chordotonal	 organs	 (the	 fly’s	 mechanotransduction	 organs).	 The	 upregulation	 of	

proneural	 genes	 in	 the	SOP	and	 their	downregulation	 in	neighboring	 cells	 is	mediated	by	 the	Notch	

signaling	pathway.	Notch	activation	caused	by	Delta	binding,	results	in	a	downregulation	of	proneural	

genes	 in	Notch	expressing	cells	which	prevents	their	differentiation	 into	a	SOP.	Subsequently,	Notch	

signaling	is	also	involved	in	cell	fate	determination	of	the	different	cell	types	of	the	sense	organs.	

B) The	auditory	sensory	epithelium	in	vertebrates	arises	from	the	otic	placode,	an	ectodermal	thickening	

that	lies	on	either	side	of	the	posterior	hindbrain.	Expression	of	Sox2	marks	sensory	domains	in	the	otic	

placode	where	a	neurogenic	event	occurs	prior	to	differentiation	of	hair	cells	and	supporting	cells.	In	

mouse,	upregulation	of	the	bHLH	proneural	gene	Neurogenin1	(Ngn1)	is	required	for	determination	of	

neuronal	fate.	These	neural	committed	cells	prevent	their	neighbours	from	developing	into	neuroblasts	

via	 Notch	 signaling.	 Next,	 several	 prosensory	 patches	 are	 specified	 (regions	 where	 cochlear	 and	

vestibular	epithelia	will	develop).	Sox2	is	expressed	and	plays	an	important	role	in	the	specifications	of	

these	domains.	Subsequently,	the	expression	of	the	bHLH	Atoh1	in	the	prosensory	patch	initiates	the	

hair	 cell	 differentiation	 program.	 This	 causes	 the	 upregulation	 of	 Notch	 ligands	 (Dll1,	 Jag2),	 and	

consequently,	Notch	activation	in	neighouring	cells,	which	ultimately	differentiate	into	supporting	cells.	

Similar	the	fly	mechanosensory	organs,	proneural	genes	and	Notch	pathway	regulate	cell	fate	decisions	

that	are	necessary	for	the	development	hair	cell,	supporting	cells	and	neurons.	

	

[Figure.Box	to	be	inserted	here]	
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Figure	Legends	

	

Figure	 1:	 Schematic	 representations	 of	 the	 Atonal	 (A),	 GPS	 (B)	 and	 POU-IV	 (C)	 transcriptional	 factor	

proteins	found	in	mouse,	Drosophila	and	C.	elegans.	

	
	 	



19	

	

	
	

Figure	2:	Schematic	summary	of	the	ability	of	Drosophila	Sens	to	act	as	a	transcriptional	repressor	when	

bound	 to	 DNA,	 and	 as	 a	 transcriptional	 co-activator	when	 bound	 to	 Atonal	 or	 other	 bHLH	 proneural	

factors.	When	 acting	 as	 a	 co-activator,	 Sens	 is	 proposed	 to	 stimulate	 proneural	 gene	 autoregulation,	

thereby	promoting	sensory	precursor	specification.	E	is	the	bHLH	E	protein	dimerisation	partner.	

	


