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Chapter 1
Energy-Efficient User Association in Broadcast
Transmission

Cengis Hasan and Mahesh K. Marina

Abstract This paper addresses the user association problem in a multi-cell broad-
cast transmission. We seek minimal total energy consumption by considering both
transmission power and operational power cost. We propose a novel distributed so-
lution based on network utility games and using so-called Markovian approximation
we design the distributed base station (BS) selection algorithm. Extensive simula-
tion results are provided and highlight the relative performance of the algorithm.

1.1 Introduction

Broadcast scenarios have been widely studied for video or audio broadcasting. It is
intended to be used for some content, such as streaming transmission of a sport or
cultural event, but broadcasting may also be of interest to transmit some signalling
such as a beacon for time synchronization or for power control purposes.

We consider broadcasting under a green-aware objective aiming at reducing
the energy consumption which is an important issue in wireless environments [1].
Broadcasting may bring a strong improvement in wireless channels since a common
resource (in frequency and/or time) may be used for all destinations. The transmis-
sion cost for a base station (BS) to reach all nodes in a multicast group is assumed
to be proportional to the power needed to reach the worst mobile among the group,
where the worst refers to the mobile receiving the weaker signal which relies on its
distance and on additional shadowing effects. We thus consider the situation where
there is one common information that every mobile m ∈ M is interested to receive,
and which can be obtained from any one of n ∈ N BSs. The objective is then to
achieve a user association which minimizes the total energy consumption. More-
over, model setting consists of BSs that are devoted to broadcast transmission as
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well as non-devoted BSs that can be utilized for different purposes and these BSs
are always switched on. We take into account interference of non-devoted BSs and
target a transmission rate under total interference from non-devoted BSs. Thus, we
calculate required transmission power from devoted BSs to the users in order to
achieve targeted transmission rate.

The evolution of wireless networks toward smaller cells offering theoretically
higher capacity could in turn lead to an unacceptable increase of the energy ex-
penditure of wireless systems. When decreasing the cell size, the energy consumed
for data transmission becomes lower compared to the operational power costs (e.g.
power amplifiers, cooler, etc.) of a typical BS. Switching off a BS may then bring
significant improvements in energy efficiency. Therefore, we take into account the
switching on/off operation in the problem formulation. The overarching problem
studied in the sequel is then finding energy-efficient broadcast transmission tech-
niques to reduce spurious energy using distributed schemes. The literature mostly
concentrates on the geometric aspects of the user association problem where ba-
sically, the coverage area of a BS is assumed to be a disc which issues from om-
nidirectional antenna pattern. However, the effect of shadowing, special designed
antenna patterns as well as the operational power costs may impact the BS-user as-
sociations. In this paper, we take into account these effects by introducing a energy
matrix containing all BS-mobile pairing energy costs. We moreover study the case
where a BS may be in ON, SLEEP and SETUP modes.

We formulate the problem as a binary integer program. As it is known, such a
problem is NP-hard. Besides, the large scale nature of the wireless network further
requires to solve it in a decentralized manner. Thus, game theory appears as a natural
tool to cope with both features: distributed decision and NP-hardness. We address
this problem by considering the mobiles as players being able to make strategic
decisions and the BSs as the strategy identifiers. We define the utility function of
a mobile as a sum of sub-utilities of all possible BSs that can serve corresponding
mobile. We prove that the modelled game is a potential game [8]. Subsequently, we
introduce a new algorithm based on Markovian approximation, called distributed
BS selection algorithm. We refer to [2–7] for further reading as related literature to
our work.

1.2 System Model

We consider that a set of mobiles denoted by M = {1, . . .,m} are subscribed to receive
a common information from a set of BSs denoted by N = {1, . . .,n}. We shall call as
devoted BSs the BSs and they do not interfere each other and are fully synchronized
when broadcasting the common information to the mobiles. Devoted BSs can be
considered as logically separated entities which utilize the same resource blocks
that are allocated for broadcast transmission. On the other hand, there exists the BSs
which operate for different purposes such as unicast transmission, etc. and these BSs
may cause interference to devoted BSs. Those BSs are called as non-devoted BSs.
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We represent by Ij the total interference that BS j ∈ N receives from non-devoted
BSs. Moreover, henceforth, when we mention about a BS, it is always a devoted BS.
We assume that

• any BS j can be in ON, SLEEP, or SETUP mode1;
• if mobile i is assigned to BS j, then traffic transmission power is denoted by Pi j

• any BS j spends P j
0 operational power which captures the cost of power ampli-

fiers, cooler, etc.;
• power consumption model is given by γPi j + P j

0 where γ is the slope of traffic-
dependent transmission power

• if BS j is in SLEEP mode, it spends P j
sleep power; and if it is activated to ON

mode, then setup time τsetup is needed and during this time it spends P j
setup power;

• if BS j is in ON mode and not assigned to any mobile then, it shall be switched
off and set to SLEEP mode during the slot only if indicator parameter z j ∈ {0,1}
is equal to one2;

1.3 Optimization Problem

We aim to minimize total energy expenditure during a time slot τ. The required
transmission power depends on the mobile having worst signal level from the BS.
At this power level, all mobiles are guaranteed to receive a sufficient power. For
example, if BS j is assigned to mobiles within set S ⊂ M then, the total energy
expenditure of BS j according to its mode during the time slot is given by




τ
(
γmaxi∈S Pi j +P j

0

)
, BS j is in ON

τsetupP j
setup+ (τ− τsetup)

(
γmaxi∈S Pi j +P j

0

)
, BS j is in SLEEP

(1.1)

where τsetup < τ. If BS j is in SLEEP mode and is not assigned to any mobile then,
its energy expenditure during the time slot is given by τP j

sleep.
Channel coefficient gi j represents the shadowing which follows a log-normal

distribution and its value does not change during a time slot but, it might change
slot by slot. The transmission rate Ri j when BS j is assigned to mobile i is given
by Ri j = log(1+Pi jd−αi j gi j/(Ij +N0)) bps/Hz where di j is the distance between the
mobile i and BS j, α is path loss exponent, and N0 is the white noise spectral density.
For every mobile, we target a transmission rate denoted by Rθ and thus, we calculate
the power needed for that rate, i.e.

Pi j = (2Rθ −1)
Ij +N0

d−αi j gi j
. (1.2)

1 In SETUP mode, the BS is in transition from SLEEP to ON.
2 We consider the case where a devoted BS may be used for both unicast and broadcast transmission
and indicator variable shows whether it can be switched off at all or not.
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We assume Pi j ∈ [0,∞). If Pi j > Pmax , then Pi j =∞ where Pmax denotes an upper
bound in transmission power, for instance, in WiFi, it is 100 mW.

We denote by

ei j =



τ
(
γPi j +P j

0

)
, BS j is in ON

τsetupP j
setup+ (τ− τsetup)

(
γPi j +P j

0

)
, BS j is in SLEEP

(1.3)

the energy expenditure for assigning BS j to mobile i. Note that when BS j is
assigned to a set S ⊂ M mobiles, we can calculate the total energy expenditure of
BS j as maxi∈S ei j which is equivalent to equation (1.1). Moreover, we represent by
energy matrix E = (ei j ) ∈ <m×n the energy expenditure of BS-mobile pairs.

Combinatorial Formulation: Let us define binary variable xi j ∈ {0,1}, ∀i ∈
M,∀ j ∈ N : xi j = 1, if mobile i is served by BS j and xi j = 0, otherwise. Since
we assume that if a BS is not assigned to any mobile, it might be set to SLEEP
mode or not according to its indicator parameter. Thus, we only need to know rela-
tive difference of energy expenditure of ON and SLEEP mode in the following way:
ēi j = ei j − τz jP

j
sleep. Then, minimal total energy can be calculated by

min
x

( ∑
i∈M

∑
j∈N

ēi j xi j + τ
∑
j∈N

P j
sleep

�����
C

)
=min

x

( ∑
i∈M

∑
j∈N

ēi j xi j
�����
C

)
+ τ

∑
j∈N

z jP
j
sleep

(1.4)

where C denotes the “constraints” and shall be defined in the sequel. We represent
relative energy matrix by Ē. Note that the optimization only is needed to be car-
ried out in relative energy part of the formulation in equation (1.4). Consider the
following relative energy matrix:

Ē =


2 3
1 6
5 4


. (1.5)

Simply, the binary integer program for finding minimal relative energy consumption
of the considered example can be given by

min
x

{
2x11(1− x31)+1x21(1− x31)(1− x11)+5x31+3x12(1− x22)(1− x32)+6x22+

4x32(1− x22)
}

subject to x11+ x12 ≥ 1, x21+ x22 ≥ 1, x31+ x32 ≥ 1, (1.6)

where note that 2x11(1− x31) means that if x11 = 1 and x31 = 0, the solution adds
2 to the total relative energy cost; that is also valid for the remaining cases. The
inequality constraints in equation (1.6) refer to that any mobile has to be assigned
to at least one BS. In terms of pure coverage considerations, the optimal solution
may feature some mobiles to be covered by several BSs, no matter to which BS
the mobile eventually associates with. We represent by W i, j a new set having the
following meaning: choose row i ∈ P and column j ∈ P, then find the row indices in
column j of which values are higher than pi j . Linearization conditions of the product
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of several binary variables is given as following: if y =
∏

j∈S x j , then
∑

j∈S x j −

y ≤ |S | − 1 and −
∑

j∈S x j + |S |y ≤ 0. Using this result, ∀ j ∈ N and ∀i ∈ M , yi j =
xi j

∏
k∈W i, j (1− xk j ) requires xi j −

∑
k∈W i, j xk j − yi j ≤ 0 and −xi j +

∑
k∈W i, j xk j +

( |W i, j +1|)yi j ≤ |W i, j |.
Let us now denote Si, j = M \W i, j which is the set of mobiles having less and

equal relative energy cost than ēi j in relative energy matrix, e.g. in matrix Ē, we can
find that S1,1 = M \W 1,1 = (1,2), S2,1 = M \W 2,1 = (2), S3,1 = M \W 3,1 = (1,2,3),
etc. The inequality constraints in equation (1.6) now allows a particular mobile to
be in any group. Thus, the minimal total relative energy can be found by

(P) min
y

∑
j∈N

∑
i∈M

ēi j yi j subject to
∑
j∈N

∑
i∈M

yi j:i∈Sk, j ≥ 1, ∀k ∈ M . (1.7)

1.4 Decentralized Solution

We seek a decentralized solution of the problem utilizing a game model. We con-
sider that mobiles are decision makers–players and BSs are the strategies. We rep-
resent the game by a triple G = 〈M,Nm, (φi)i∈M 〉 where M is the set of players,
N is the set of strategies and φi : Nm →< is the utility function of player i ∈ M .
Due to physical or other circumstances, a particular mobile cannot see every BS in
N . Thus, we represent by Ni the set of BSs that mobile i can choose. So, we have
that

⋃
i∈M Ni = N . Each player i ∈ M chooses exactly one element from Ni . The

choices of players are represented by σ = {σ1,σ2 . . .,σm} ⊆ Nm which is called the
strategy profile (σi shows the strategy chosen by player i). We can create a connec-
tivity graph of mobiles where an edge of the graph shows two neighbour mobiles
which can receive broadcast transmission from at least one common BS. We say
that mobile i and i′ are neighbours if Ni ∩Ni′ , ∅. Thus, the neighbours of mobile i
is defined as Mi = {k ∈ M : Ni ∩Nk , ∅}.

Utility: We choose the utility of a player under a strategy profile to be the total
relative energy of all BSs that it can select, i.e.

∀i ∈ M : φi (σi,σ−i) = −
∑
j∈Ni

max
k∈Sσj

ēk j (1.8)

where Sσj is the set of mobiles choosing BS j when the strategy profile is σ and σ−i
represents the strategies chosen by the neighbours of player i.

Equilibrium Analysis: The Nash equilibrium is defined as following: strategy
profile σN = {σN1 , . . .,σ

N
n } is a Nash equilibrium if there is no any mobile that can

improve its utility by unilaterally changing its BS, i.e.

σNi = arg max
σi ∈Ni

φi (σi,σ−i), ∀i ∈ M . (1.9)

The partitioning of mobiles which corresponds to Nash equilibrium is given by ∀ j ∈
N , SNj =

{
k ∈ M : σN

k
= j

}
.
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Lemma 1. The game G is a potential game with potential function Φ:

Φ(σ) = −
∑
j∈N

max
k∈Sσj

ēk j (1.10)

of which maxima is a Nash equilibrium, i.e. σN =maxσΦ(σ).

Proof. Let us assume that mobile i switches from BS a to b. The utility before
switching is given by φi (a,σ−i) =−maxk∈Sσa ēk j−maxk∈Sσ

b
ēk j−

∑
j∈Ni\{a,b }maxk∈Sσj ēk j

and after switching we have Sσa → Sσa \ i and Sσ
b
→ Sσ

b
∪ i. So, the utility becomes

φi (b,σ−i) = −maxk∈Sσa \i ēk j −maxk∈Sσ
b
∪i ēk j −

∑
j∈Ni\{a,b }maxk∈Sσj ēk j . Thus, the

utility shift of mobile i due to the switching is given by φi (a,σ−i) − φi (b,σ−i) =
−maxk∈Sσa ēk j −maxk∈Sσ

b
ēk j +maxk∈Sσa \i ēk j +maxk∈Sσ

b
∪i ēk j . Similarly, poten-

tial function is calculated as following before and after switching, respectively
Φ(a,σ−i) = −maxk∈Sσa ēk j −maxk∈Sσ

b
ēk j −

∑
j∈N\{a,b }maxk∈Sσj ēk j , Φ(b,σ−i) =

−maxk∈Sσa \i ēk j−maxk∈Sσ
b
∪i ēk j−

∑
j∈N\{a,b }maxk∈Sσj ēk j , and, we haveΦ(a,σ−i)−

Φ(b,σ−i) =−maxk∈Sσa ēk j−maxk∈Sσ
b

ēk j+maxk∈Sσa \i ēk j+maxk∈Sσ
b
∪i ēk j = φi (a,σ−i)−

φi (b,σ−i). Thus, we prove that the considered game is a potential game.

Any local or global maximum of Φ corresponds to a Nash equilibrium. We denote
by σ∗ = {σ∗1,σ

∗
2, . . .,σ

∗
m} the strategy profile which gives the global maximum of Φ.

Thus, σ∗ gives also the optimal solution of problem (P) in equation (1.7).

1.5 Distributed Algorithm for BS Selection

The maxima of potential function can be found as following: maxσ∈ΣΦ(σ) where
Σ,×i∈Mσi is the collection of all possible strategy profiles. Note that such a frame-
work involves a combinatorial optimization carried out in a discrete solution space
Σ. Such a problem, as is known, is very challenging to solve when the number of
mobiles is high since the solution space becomes too large. We can write the prob-
lem in the following way:

max
p

∑
σ∈Σ

pσΦ(σ) s. t.
∑
σ∈Σ

pσ = 1, pσ ≥ 0, ∀σ ∈ Σ (1.11)

where pσ is the probability of adopting strategy profile σ. The optimal solution of
this problem is clearly to choose with probability one the optimal strategy profile.
Closed form solution of this formulation is well-known (for proof look at [9]) and
is given by

p∗σ =
exp(BΦ(σ))∑

σ′∈Σ exp (BΦ (σ′))
, ∀σ ∈ Σ. (1.12)

where B is a parameter that controls the approximation ratio. Theoretically, the op-
timal solution of this problem is found when B → ∞ . We can design an algo-
rithm where asynchronous strategy selection by the mobiles form a Markov chain.
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By time-sharing among different strategy profiles σ according to p∗σ we solve
the main problem in equation (1.11), approximately. Let us denote by Tσ,σ′ the
transition rate between two states σ and σ′, and we use it to construct a time-
reversible Markov chain. We entail that direct transitions between two strategy con-
figurations are feasible only if they differ by one and only one mobiles’ BS selec-
tion. Thus, the strategy profiles that can be transited directly from σ is given by
Ωσ := {σ̄ ∈ Σ : |{σ̄∪σ} \ {σ̄∩σ}| = 2}, ∀σ ∈ Σ which means that only one mobile
changes its BS in a particular time. We need to design Tσ,σ′ in such a way that (i) re-
sulting Markov chain is irreducible, i.e. any two strategy profiles are reachable from
each other, and (ii) the detailed balance equation is satisfied: ∀σ ∈ Σ and σ , σ′,
p∗σTσ,σ′ = p∗σ′Tσ′,σ , i.e.,

exp(BΦ(σ))Tσ,σ′ = exp(BΦ(σ′))Tσ′,σ (1.13)

Designing Transition Rate: Let each mobile generate a random timer according
to an exponential distribution (the time interval between two actions follows an
exponential distribution) with a rate ti , ∀i ∈ N . We also assume that each mobile i
chooses randomly a BS σ′i following a uniform distribution, and

• if φi (σ′i,σ−i) ≥ φi (σi,σ−i) then, mobile i stays in BS σ′i with probability 1;
• if φi (σ′i,σ−i) < φi (σi,σ−i) then, mobile i stays in BS σ′i with probability

exp(B(φi (σ′i,σ−i)−φi (σi,σ−i)))

Thus, the transition probability from strategy profile (σi,σ−i) to (σ′i,σ−i) can be
given by

Pσ,σ′ =
1
|Ni |

{
1, if φi (σ′i,σ−i) ≥ φi (σi,σ−i)
exp(B(φi (σ′i,σ−i)−φi (σi,σ−i))), if φi (σ′i,σ−i) < φi (σi,σ−i).

(1.14)

Moreover, transition rate becomes Tσ,σ′ =
{

tiPσ,σ′, if σ′i ∈ Ωσ
0, otherwise. . Markov chain

with transition rate Tσ,σ′ is time-reversible. A proof can be found in [10].
Algorithm: We utilize the results obtained in previous section. The algorithm is

fully distributed and mobiles randomly select their BSs in parallel. We also consider
that random BS selection is repeated for a number of iterations nI . Such a method
enables the algorithm to converge to Nash equilibrium when the number of iterations
is large enough. Fundamentally, we consider that BSs share related information such
as energy matrix and indicator variables through their control channels. Besides, one
mobile can listen to a control channel and learn the mobiles that have already chosen
corresponding BS. In the initialization stage, each BS shares its indicator variable
and each mobile selects randomly a BS. In every random BS selection, every mobile
i needs to know the sets Sσj , ∀ j ∈ Ni . For having this information, we assume that
every mobile i listens to the control channels of BSs in Ni . So, it calculates the value
of exp(B(φi (σ′i,σ−i) − φi (σi,σ−i))). We assume that a mobile listen sequentially
the control channels, and thus, obtain needed information.
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Algorithm 1 Distributed BS Selection
Initialization:
each mobile selects randomly a BS.
Association:
while iteration ≤ nI do

for each mobile i in parallel do
generate a timer value with mean nI /ti
count down until the timer expires
select randomly a BS σ′i ∈ Ci
compute φi (σ′i, σ−i )
if φi (σ′i, σ−i ) < φi (σi, σ−i ) then

stay in BS σ′i with probability exp(B(φi (σ′i, σ−i )−φi (σi, σ−i )))
else

stay in BS σ′i with probability 1
end if

end for
iteration = iteration+1

end while

1.6 Simulation Results

Heterogeneous Network Deployment: For small BSs, the wireless network model
consists of BSs arranged according to an homogeneous Poisson point process with
intensity λsb [BSs/m2] in the Euclidean plane. For macro BSs, we use the classical
honeycomb model to represent a well structured network made of large cells with
intensity λmb . Also, we consider an independent collection of mobile users, located
according to some independent homogeneous Poisson point process with intensity
λm [mobiles/m2]. The expected value of a homogeneous Poisson point process is
given by λA, where A ⊂ <2 denotes some area.

We assume (2Rθ − 1)(I + N0) = −80 dBm for every non-devoted BS, which is
the typical maximum received signal power of a wireless network as well as we set
arbitrarily Pi j = ∞ if Pi j ≥ 20 dBm and we set the path loss exponent α = 3 and
γ = 4. We also assume equal operational power cost for all small BSs, P0 = 12 W,
equal setup power Psetup = P0, Psleep =

15
100 P0, τ = 120 seconds, τsetup = 10 seconds,

no operation power costs of macro BSs in calculations since the macro BSs are not
switched off in a real scenario, and every BS can be switched off when it is not
associated with a mobile, i.e. z j = 1, ∀ j ∈ N .

We compare distributed BS selection algorithm with optimal solution described
in Section 1.3, and the conventional assignment method in which the mobile selects
the BS transmitting with the lowest power. For all simulations, we assume the area
to be A = 1225 km2.

Characteristic Values of Proposed Algorithm: The performance of the pro-
posed distributed algorithm is actually determined mainly by B and the number of
iterations. In Figure 1.1, we depict the change of average total energy with respect
to increasing values of B assuming that λm = 10−8 [mobiles/m2], λsb = 3.08×10−7

[BSs/m2], number of iterations nI = 1000. For assumed parameters, it does not need
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high values in order to converge to an optimal solution which means that in the fig-
ure, for B = 10−2, the algorithm converges to threshold value which is nearly equal
to 2.15. However, for sake of ensuring an optimal solution, in the other figures de-
picted below, we set B = 104.

In Figure 1.2, we depict the convergence of average total energy with respect to
increasing number of iterations. Time complexity of the algorithm depends heavily
on the number of iterations. The assumptions are same as in Figure 1.1. We can
observe from the figure that after 20 iterations, average total energy converges to
around 2.15 W.

Performance Results: We compare the proposed algorithm with optimal solu-
tion and conventional assignment. We assume that B = 104 and nI = 100. In Figure
1.3, we plot the change of average total energy with respect to intensity of mobiles.
As can be seen from the figure, intensity of small BSs is also changed and depicted
in three sub-figures. From the figures, it is obvious that when the intensity of mobiles
and small BSs increase then, average total energy increases. Note that conventional
assignment is not efficient compared to optimal solution.

On the other hand, proposed algorithm performs well and produce near-optimal
results. However, it tends to perform better in lower intensity of mobiles.

1.7 Conclusion

We addressed the user association problem in the context of energy optimization
of broadcast transmission. We introduced a novel decentralized solution based on
network utility maximization games. We proved that the game is a potential game.
For finding the equilibrium in the game, we utilized Markovian approximation. We
developed a complete decentralized algorithm called as distributed BS selection al-
gorithm. The results exhibited that proposed algorithm achieves very good energy
performance compared to the conventional assignment and optimal solution.
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Fig. 1.1: Change of the average total energy with
respect to control parameter B.

Fig. 1.2: Change of the average total energy with
respect to number of iterations nI .

Fig. 1.3: Change of the average total energy with respect to intensity of mobiles λm for increasing
intensity of small BSs λsb .


