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 2 

Soil microbes form some of the most diverse biological communities on Earth and are 32 

fundamental in regulating the terrestrial carbon cycle. Their response to climate warming could 33 

therefore have major consequences for future climate, particularly in tropical forests where high 34 

biological diversity coincides with a vast store of soil carbon. Here, we show high sensitivity of 35 

the tropical forest soil microbial community and growth to two-years of in situ soil warming, 36 

which was decoupled from large increases in CO2 emission. Microbial diversity declined 37 

markedly, especially of bacteria. As the microbial community composition shifted under 38 

warming, many taxa were no longer detected and others, including taxa associated with 39 

thermophilic traits, were enriched. This community shift resulted in an adaptation of growth to 40 

warmer temperatures, which we used to specify a microbial model to predict changes in soil CO2 41 

emissions. However, the observed in situ CO2 emissions increase exceeded the rates predicted by 42 

our model three-fold. The additional emissions were driven by acceleration of enzymatic activity, 43 

likely through abiotic processes because activity increased even at temperatures beyond the 44 

optimal temperature for microbial growth. Our results suggest that warming of tropical forests 45 

will have rapid, detrimental consequences both for soil microbial biodiversity and future climate. 46 

 47 
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Microbial communities sustain the biosphere by cycling carbon (C) and nutrients between the Earth 56 

and the atmosphere. As a result, their response to warming provides a fundamental feedback on the 57 

terrestrial C cycle and climate, and will have direct consequences for the function and maintenance of 58 

terrestrial biota1. The nature of this feedback is especially critical for tropical forests, because they 59 

exchange more carbon dioxide (CO2) with the atmosphere than any other ecosystem, contain over a 60 

third of global soil C2, two-thirds of terrestrial plant biomass3, and represent the apex of global 61 

terrestrial biodiversity4. Under current emission scenarios, temperatures in the tropics are predicted to 62 

warm by 2-5oC by 21005 and to exceed historical precedent more quickly than anywhere else on Earth6. 63 

Despite this, we have almost no information on the magnitude and direction of soil microbial feedbacks 64 

under warming for the huge C stores and biodiversity found in tropical forests7. 65 

 66 

Climate warming is predicted to increase soil C mineralisation and CO2 emission from soil to the 67 

atmosphere8. Numerous experiments performed outside the tropics have shown that warming increases 68 

CO2 emission from soil9, and that changes in the microbial community composition and activity 69 

determine the associated soil C loss10,11.  In tropical forests where soils contribute a major portion of 70 

these ecosystems’ globally significant total C exchange with the atmosphere12, small fractional 71 

increases in CO2 emission from soils will have a large impact on the atmosphere and climate. Warming 72 

experiments in tropical forests have only recently been initiated and first results point towards a large 73 

response. Two years of in situ full-profile soil warming by an average 4oC increased the soil CO2 efflux 74 

by 55% for a tropical forest in Panama13, and significantly for a tropical forest in Puerto Rico under 75 

infra-red soil warming by 4oC (Wood et al, pers. com.)*. These results provoke key fundamental 76 

questions: what are the drivers of the large CO2 emissions from warmed tropical forest soils – and are 77 

                                                 
* Prior to publication, we will amend this line to include detail on the % increase and include the full citation of the paper 

from this Puerto Rico experiment (the authors understand the results are currently in review/press) 
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they related to abiotic or biotic process, including changes in the composition of the microbial 78 

community, its diversity and/or its activity, as found in other ecosystems10,11,14. 79 

 80 

The response of soil C to warming is underpinned by changes in soil microbial activity, via the 81 

instantaneous sensitivity of microbial growth and respiration, which can be modified over time by 82 

adaptive change in the microbial community composition10,15. These microbial responses have been 83 

represented in models of soil C temperature sensitivity by the efficiency of growth and respiration16, 84 

while the thermal response of growth and respiration has been described by the square root model15,17. 85 

In the square root model, the moderating effect of temperature adaptation is described by a change in 86 

the theoretical value of Tmin (the minimum temperature for growth), corroborated by observations that 87 

Tmin is strongly correlated to mean annual temperature differences across climatic gradients globally18-88 

20. For example, Tmin for bacterial growth ranges from approximately -15ºC in arctic ecosystems to 89 

approximately 0ºC for tropical ecosystems, with similar patterns observed for Topt
15,19 and for 90 

respiration20. Across temperate temperature ranges, Tmin has been observed to increase under 91 

experimental warming21,22 alongside community compositional shifts14,23,24, thus indicating that the 92 

observed thermal adaptation occurred via microbial community composition change. Despite the 93 

proven importance of this relationship in determining the temperature response of activity and its 94 

thermal adaptation15,17, we have no information on whether it holds under warming in the lowland 95 

tropics, where the mean annual temperature is already close to the predicted optima for activity15
. 96 

 97 

The effect of warming on tropical forest soil C will depend not only on the response of the soil 98 

microbial community activity7, but also its community composition and diversity, which may have 99 

consequences for other biota25. In a temperate forest, two decades of experimental warming increased 100 

bacterial diversity,14 specifically for lignin-degrading microbes26; this positive temperature-diversity 101 

relationship is consistent with observations across natural temperature gradients where soil pH and 102 
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moisture are held constant23,27,28. It is unknown whether soil microbial diversity will similarly increase 103 

under the novel high-temperature regimes predicted for the tropics6 and will depend on the thermal 104 

tolerance of the microbial taxa present24,29. Nor is it understood how diversity change would affect soil 105 

process rates, although the effect might be considerable given phylogenetic evidence for high niche 106 

specialization among tropical forest microbial taxa30. The historically-novel high temperature regimes 107 

predicted for the tropics this century6 (e.g. 2-5ºC atmospheric warming5 added to 1-3ºC warming 108 

through land-use change and reduced transpiration31) could result in temperature maxima that exceed 109 

a metabolic threshold for portions of the tropical forest soil microbial community, with potentially 110 

large implications for ecosystem functioning and the climate. 111 

 112 

Here we used an in situ warming experiment to test the response of the soil microbial community, and 113 

its growth and respiration to warming over a range of 3 to 8ºC above ambient – thereby providing the 114 

first test of how tropical forest soil communities and function respond across these levels of warming 115 

in a field experiment. The experiment, SWELTR (Soil Warming Experiment in Lowland TRopical 116 

forest) consists of five pairs of circular control and warmed plots (whole-profile warming, using buried 117 

resistance cables) distributed evenly within approximately 1 ha of semi-deciduous moist lowland 118 

tropical forest on Barro Colorado Island, Panama13. Each warmed plot has a ground surface area of 119 

~20 m2 and is heated across the full soil profile, resulting in a total of 120 m3 of warmed soil for the 120 

experiment. For this study we established two subplots per treatment plot that differed with distance 121 

to the heating source, thus providing two treatments of, on average, 3ºC and 8ºC warming of surface 122 

soils (0–20 cm depth). Two years after the warming treatment was initiated, we conducted field 123 

campaigns during the wet season (when moisture was non-limiting) to measure soil CO2 efflux, to 124 

characterise the temperature sensitivity of instantaneous microbial growth, respiration and enzyme 125 

activities, and to determine the microbial community composition. We tested the hypotheses that: (1) 126 

warming will change the α-diversity and community composition of soil bacteria and fungi; (2) the 127 
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temperature sensitivity of microbial communities (with respect to growth, Tmin, and enzymatic activity) 128 

will become ‘adapted’ to the new temperature regime (whether adaptation is via genetic change within 129 

species, phenotypic plasticity or community-composition change, sensu Pietikäinen et al.; Bradford 130 

32,33); and (3) soil CO2 emission will increase under 3 to 8oC warming and follow the increase predicted 131 

by the temperature sensitivity of microbial growth and respiration. 132 

 133 

Two years of soil warming reduced the diversity of both bacteria and fungi and caused large shifts in 134 

the microbial community composition (Fig. 1). The diversity decline was largest for bacteria, occurring 135 

via the loss of proportionally-abundant taxa (Shannon and Inverse-Simpson indices declined; Fig. 1, 136 

Extended Data Fig. 1). For fungi, our results suggest a diversity decline due to loss of rare taxa (species 137 

richness declined but not Shannon and Inverse-Simpson indices), although this result is less definitive 138 

that for bacteria, given methodological difficulties when detecting rare taxa (see Supplementary 139 

Methods) and our detection of new fungal taxa in warmed soils (see below). Warmed soils also hosted 140 

microbial species (defined by Amplicon Sequence Variants, ASVs) that were undetected in soils at 141 

ambient temperature, especially among fungi, although the number of newly detected species was too 142 

few to offset the number of species no longer detected (Fig. 1). This decline in diversity, especially for 143 

the bacteria, may have negative implications for soil functioning, given the prevailing paradigm of a 144 

positive relationship between biological diversity and ecosystem functioning34, also supported for 145 

soils35,36. Such a decline in soil microbial diversity under warming is also contrary to positive 146 

relationships between temperature and diversity observed in a temperate warming experiment14 and 147 

across natural environmental gradients27,28,37. This positive relationship is consistent with metabolic 148 

theory of ecology (i.e. positive correlation between energy input, evolutionary rates and diversity)38 149 

and is considered to contribute a positive feedback on tropical plant diversity39.  40,41. Our results point 150 

towards a breakdown in this energy-diversity relationship for tropical soil bacterial communities after 151 

a two-year period where temperatures ranged from 29–34oC. These temperatures may represent a 152 
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thermal maximum for the persistence of many species, implying that our findings can also provide 153 

insight over timescales longer than the duration of our warming treatment. 154 

 155 

Warming also caused large shifts in community composition (Figs. 1–2, Extended Data Figs. 1–5), 156 

with many taxa significantly increasing or decreasing in relative abundance with warming by 3oC, and 157 

further with warming by 8oC (Fig. 1; Extended Data Figs. 2–3). In warmed soils there was a decrease 158 

in the relative abundance of Bacteroidetes, a common non-spore-forming bacterial group which 159 

comprise taxa that are primary degraders of polysaccharides42. For fungi, there was decrease in the 160 

relative abundance of members of the Basidiomycota including the Agaricales, a broad order of 161 

saprophytic fungi, and the ecologically diverse yeast order, Sporidiobolales. In contrast, warming 162 

increased the relative abundance of Firmicutes, a diverse and stress-tolerant bacterial phylum, able to 163 

form endospores resistant to desiccation and high temperatures43. Indeed, taxa within the Firmicutes 164 

have been identified as warm-responsive in laboratory studies24,29 and in field soil warming 165 

experiments outside the tropics14,44. Warming also increased the abundance of the class 166 

Thermoleophilia within the Actinobacteria, known to include aerobic thermophiles45. For fungi, 167 

warming increased the relative abundance of Glomerales—arbuscular mycorrhizae—as also seen in 168 

warming experiments outside the tropics46. In addition, warming increased the relative abundance of 169 

several orders in the phylum Ascomycota, including the Eurotiales, Hypocreales and Pezizales, which 170 

include thermotolerant saprophytic and pathogenic species, as well as saprophytic and pathogenic 171 

yeast in the Saccharomycetales. Thus, broadly, changes in diversity under warming occurred alongside 172 

shifts in communities towards thermotolerant microorganisms. 173 

 174 

Adaptation of the microbial community to warming potentially can have a large influence on long-175 

term change in soil C emissions10,16. To assess this, we used laboratory incubations to determine the 176 

instantaneous temperature sensitivity of bacterial growth (Tmin)
15,17. We found Tmin to increase under 177 
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3ºC warming and to increase further under 8ºC warming (Fig. 2); where the observed magnitude of 178 

increase in Tmin, of 0.3ºC per 1ºC warming, is consistent with observations made elsewhere15. 179 

Furthermore, among all the parameters associated with temperature adaptation in the field experiment, 180 

Tmin was the most significant correlate of the change in bacterial and fungal diversity and community 181 

composition (Fig. 2e, Extended Data Tables 1–2). Thus, while acknowledging that we cannot exclude 182 

an influence of genetic change within species on this temperature adaptation, our results strongly 183 

suggest that adaptation occurred through community compositional change, as found elsewhere24, and 184 

the development of a microbial community functionally adapted to the warmer conditions. 185 

 186 

These changes in diversity and community composition occurred alongside altered soil process rates 187 

in the field experiment: increased bacterial growth rates, enzyme activity per unit microbial biomass 188 

for 7 hydrolytic and oxidative enzymes involved in C, N and P cycling (although microbial biomass 189 

remained stable) and, measured in situ, increased soil CO2 emission (Figs. 2–3, Extended Data Figs. 190 

5–6). Soil CO2 emission in the field experiment increased markedly at warmer temperatures: 78% 191 

higher than controls under 3ºC warming and 337% higher under 8ºC warming of surface soils (Fig. 3; 192 

Extended Data Table 3). The soil CO2 efflux response for the wet season was consistent with the 193 

previously-reported 55% increase over 2-years of 3ºC surface soil warming at this experiment 194 

(including dry and wet seasons), which was shown to have arisen predominantly from increased 195 

heterotrophic microbial activity13. Our observation of increased soil metabolic activity, indicated by 196 

increased bacterial growth and enzyme activity with in situ soil warming, describes a further 197 

acceleration of heterotrophic activity with warming. Enzymatic activity per unit of microbial biomass 198 

increased for 7 out of 10 studied enzymes and markedly at +8ºC in situ warming for enzymes that 199 

degrade organic phosphorus, nitrogen, and carbon in phenolic and hemicellulose compounds (Fig. 2, 200 

Extended Data Fig. 5–6). Collectively, the observed changes in process rates—of increased respiration, 201 

growth and enzymatic activity per unit microbial biomass—corroborate our parallel findings that the 202 
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microbial community shifted towards favouring thermotolerant taxa that readily persist and even 203 

increase in productivity under warmer conditions. 204 

 205 

However, the predicted increase in soil CO2 efflux based on the measured temperature sensitivity of 206 

microbial respiration and growth in control soils (24–68% increase under 3–8ºC warming; Fig. 3), was 207 

substantially exceeded by the observed in situ increase in soil CO2 efflux (78–337% under 3–8ºC 208 

warming; Fig. 3). Furthermore, the predicted CO2 emission was only marginally higher when 209 

accounting for adaptation of the microbial community to warmer conditions (measured Tmin increase; 210 

Fig. 2), resulting in a 25–77% increase under 3–8ºC warming (Fig. 3). Importantly, we found no 211 

evidence to suggest that the observed in situ increase in soil CO2 emission occurred due to decreased 212 

microbial metabolic efficiency, a common finding in short-term soil warming experiments where high 213 

waste respiration exceeds growth47. Reduced metabolic efficiency is inconsistent with our previously 214 

reported observation of no decrease in the size of the microbial biomass or in microbial CUE48 215 

(measured using a stoichiometric method, see Supplementary Methods for discussion of this method 216 

and its assumptions; Extended Data Fig. 5); a result in line with the independent observation of 217 

increased microbial biomass under soil warming in tropical forest in Puerto Rico49. Similarly, we 218 

cannot explain the augmented soil CO2 emission by reference to accelerated substrate depletion, which 219 

would also be expected to cause a decline in microbial biomass50. Indeed, microbial biomass remained 220 

stable despite evidence for substrate depletion (decreased DOC and available P at 8ºC warming; 221 

Extended Data Fig. 5). Soil warming can also induce soil drying, potentially influencing CO2 emission 222 

and other community and process rate changes8. However, our study here was focused on the tropical 223 

rainy season and despite lower moisture content in our +8ºC treatment (Extended Data Fig. 5), we 224 

expect this had negligible influence on our results because moisture remained non-limiting to 225 

microbial activity. Finally, the augmented in situ soil CO2 emission cannot be explained by increased 226 

root respiration or substrate supply from root exudates, because by using root-partitioning cores we 227 
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found that warming had no effect on the root-derived soil CO2 efflux13. Thus, we show that the 228 

temperature response of microbial community metabolism to warming—considered in models to be 229 

fundamental in explaining the long-term, and relatively large, response of soil C to climate 230 

warming16,48—only accounted for 23–32% of the observed in situ soil CO2 emission. 231 

 232 

In addition to biotic processes, our data point towards a further influence of abiotic processes in 233 

accelerating CO2 emission at warmer temperatures. By using ex situ soil incubations across 2–40ºC, 234 

we found that microbial growth declined at temperatures exceeding 34ºC (Fig. 2); but enzyme activities 235 

increased—as did in situ soil CO2 emissions (Figs. 2–3; Extended Data Fig. 6). These results can be 236 

explained by the effect of warming on the soil physico-chemical environment, including chemical 237 

oxidation/hydrolysis and desorption of mineral-stabilised organic matter and extracellular enzymes 238 

(Supplementary discussion)51. Clay-rich soils, such as those found at our tropical forest site, contain a 239 

large pool of stabilised C and inactive extracellular enzymes adsorbed to clay minerals.52 At high 240 

temperatures desorption reaction rates can overtake adsorption reaction rates53, thereby increasing the 241 

pools of active enzymes and labile C, and consequent CO2 emissions. Consistent with a rapid increase 242 

in the pool of active enzymes driven by desorption, under warming we observed increased Q10 of Vmax 243 

for four enzymes including phosphomonoesterase, β-xylanase and β-glucosidase (Fig. 2, Extended 244 

Data Fig. 5). A combination of these processes therefore resulted in increased enzyme activity that 245 

was uncoupled from growth (Fig. 2), contributing substantially to the observed CO2 emissions that 246 

exceeded the predicted increase based on standard expectations from the observed temperature 247 

sensitivity and warm-adaptation response of the microbial community15 (i.e. it was exceeded by 3.1–248 

4.4 fold; Fig. 3). 249 

 250 

In summary, our results show a progressive decline in tropical forest soil microbial diversity, especially 251 

for bacteria, and clear microbial community compositional shifts with warming (Fig. 1), occurring 252 
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alongside community growth-adaptation to temperature (Fig. 2) and resulting in further increased CO2 253 

emission (Fig. 3). This response of diversity declines under warming is contrary to observations from 254 

temperate forest warming studies14,26. Our data thus provide empirical support for the hypothesis that 255 

tropical soil communities are highly sensitive to warming and are consistent with independent 256 

evidence for deep evolutionary niche specialization in tropical soil microbes30. Further, we note that 257 

in view of the widespread evidence for intensive feedbacks among tropical soil microbial communities, 258 

plant diversity, and soil processes25,41, declines in diversity may have substantial implications for 259 

overall tropical forest functioning, composition, and diversity in a warmer world. Alongside the 260 

decline in diversity observed in this experiment, the concurrent increased abundance of thermotolerant 261 

species resulted in a stable microbial biomass, accelerated enzymatic activity, and increased soil CO2 262 

emissions. This finding partially supports prior model-based projections showing increased C loss 263 

under climate warming this century due to adaptation of microbial growth16. However, our results go 264 

further by demonstrating that microbial models alone do not accurately predict the change in soil C 265 

emissions under warming in tropical ecosystems, especially at high temperatures where abiotic 266 

processes may accelerate C loss. Further study is urgently required to understand these combined biotic 267 

and abiotic controls on soil C in different tropical soils, the timescales of their effects, and the wider 268 

consequences of declines in soil microbial diversity for the functioning and composition of tropical 269 

forests in a warmer world. 270 

 271 

METHODS 272 

 273 

Site and experiment. The experiment is situated in seasonally moist lowland tropical forest on Barro 274 

Colorado Island, Panama. Within the experiment area (1 ha) the dominant tree species include 275 

Anarcardium excelsum and Poulsenia armata; a full census of tree and understory species composition 276 

in this forest is available for a nearby 50 ha forest plot in forest with similar soils, tree species and 277 
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demographic composition54. The soils are Inceptisols (Fine, isohyperthermic, Dystric Eutrudepts) that 278 

are rich in clay (~54% profile-weighted clay concentration) and secondary metal oxides. The soils 279 

developed on the volcanic facies of the Bohio Formation, a basaltic conglomerate of Oligocene age55. 280 

Inceptisols account for 14% of total land area in the tropics (Ultisols and Oxisols account for 20% and 281 

23%, respectively)56. 282 

 283 

The SWELTR experiment consists of 10 circular plots (five paired plots ‘warm’ and ‘control’). Each 284 

plot measures 5 m diameter, with approximately 10 m between each plot-pair and a minimum of 20 m 285 

between different plot-pairs. The experiment heats approximately 120 m3 soil in total (5 plots x 5 m 286 

diameter by 1.2 m depth). Temperature in the internal plot area (~3 m diameter) of each warmed plot 287 

was maintained at 4ºC above the temperature in each corresponding paired control plot, based on the 288 

average temperature from 0–120 cm depth at the mid-radius points in each plot. For this study we 289 

established subplots representing a high-temperature treatment, situated in a buffer-zone close to the 290 

heating cable. We therefore had two subplots per plot, situated at approximately 10 cm and 1 m 291 

distance from the one of the main heating rods, representing two different levels of warming. The 292 

average warming for the low-warming subplot was 2.8ºC and for the high-warming subplot was 7.9ºC 293 

(determined at 0–10 cm soil depth), based on the difference in temperature between control plots. 294 

Thus, our study consisted of three treatments, soil at 26 ± 1ºC (‘Control’), 29 ± 2ºC (‘+3ºC’) and 34 ± 295 

7ºC (‘+8ºC’), providing a test of moderate (atmospheric warming with moderate fossil fuel emission 296 

reduction) to extreme (atmospheric warming plus deforestation) predictions of warming for tropical 297 

soils this century5,31. Further information on the plot design, thermostat control and power 298 

specifications can be found in Nottingham et al. 202013. 299 

 300 

Soil gas-exchange and partitioning. Soil CO2 efflux was measured every week at four systematically 301 

distributed locations within each plot from June 2018 to September 2018 (representing the 3ºC surface 302 
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soil-warming treatment); and was measured twice-weekly at two systematically distributed locations 303 

within the high-warming subplot from August to September 2018 (representing the 8ºC surface soil-304 

warming treatment). Soil CO2 efflux measurements were made using an infra-red gas analyser (IRGA 305 

Li-8100; LI-COR Biosciences, Nebraska, USA) and at the same time we measured soil temperature 306 

(using a HI98509 thermometer probe; Hanna Instruments, USA) and soil moisture (using a 307 

Thetaprobe; Delta-T, Cambridge, UK) at 0–20 cm soil depth for a random location immediately 308 

adjacent to each soil collar. 309 

 310 

Soil sampling. Soil for this study was sampled during the wet season (June–Sept) in 2018. We sampled 311 

during the wet season to ensure that there was no moisture limitation to soil microbial activity and soil 312 

processes, and no difference in moisture limitation among treatments. Soil was sampled from 0–10 cm 313 

depth from the mineral horizon for each subplot and analysed for properties: total elements, available 314 

nutrients, exchangeable cations, microbial C, N and P and enzyme activities using standard procedures 315 

(see below and Supplementary Methods). We calculated microbial carbon-use-efficiency (CUE) using 316 

microbial CNP and enzyme activity data using a stoichiometric method (see Supplementary Methods). 317 

Soil samples were stored at −60ºC until DNA extraction (see below). All analyses were performed on 318 

replicate soil samples (n = 5). 319 

 320 

Soil properties. Soil microbial biomass C and N were measured by fumigation-extraction57,58 and 321 

extractable C and N were determined by fresh soil extraction in 0.5 M K2SO4. Extracts were analyzed 322 

for extractable organic C and N using a TOC-VCHN analyzer (Shimadzu, Columbia, MD). Microbial 323 

C and N were calculated as the difference between fumigated and unfumigated extracts and corrected 324 

for unrecovered biomass using a k factor of 0.4559. Microbial biomass P was determined by hexanol 325 

fumigation and extraction with anion-exchange membranes60. Extractable P was determined using 326 

unfumigated samples and microbial P was calculated as the difference between the fumigated and 327 
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unfumigated samples, with correction for unrecovered biomass using a kp factor of 0.460. Exchangeable 328 

cations were determined by extraction in 0.1 M BaCl2 and detection by inductively coupled plasma-329 

optical emission spectrometry (Optima 7300 DV; Perkin‐Elmer Ltd, Shelton, CT, USA). Effective 330 

cation exchange capacity (ECEC) was calculated as the sum of the charge equivalents of Al, Ca, Fe, 331 

K, Mg, Mn and Na. Soil pH was determined in deionized water in a 1:2 soil to solution ratio. All 332 

analyses apart from total elements (C, N, P), cations, and pH were determined on fresh soils within 24 333 

hours of sampling, and K2SO4 extracts within 6 h. All soil chemical properties are expressed on the 334 

basis of oven-dry equivalent soil (determined by drying at 105ºC for 24 hours). 335 

 336 

DNA extraction, sequencing, and processing. DNA was extracted using the DNeasy Powersoil kit 337 

(Qiagen) and communities (bacterial and fungal) were amplified using a two-stage PCR protocol. For 338 

bacteria, we amplified the V4 hypervariable region of the 16S rRNA and for fungi we amplified the 339 

first internal transcribed spacer (ITS1) region of the rRNA operon (see SI methods for complete 340 

details). Libraries were sequenced on an Illumina MiSeq with 250bp paired end reads. Reads in the 341 

16S rRNA and ITS data sets were first trimmed of forward and reverse primers. Based on visual 342 

inspection of read quality profiles, we removed the reverse reads from the 16S rRNA analysis due to 343 

poor quality. We then used DADA261 within the R environment (R Core Team, 2019) (v4.1.0) to filter 344 

and trim both datasets (based on quality profiles), error correct, dereplicate, and infer amplicon 345 

sequence variants (ASVs). We then merged pair-end reads (ITS only) and constructed sequence tables 346 

for both datasets. In the final step, we removed chimeras and assigned taxonomy (see Supplementary 347 

Methods for further detail). 348 

 349 

Instantaneous temperature response of microbial growth and respiration. We used the instantaneous 350 

temperature response of microbial growth and respiration to: i) predict the effect of warming on in situ 351 

soil CO2 emissions and ii) to determine the temperature adaptation of the bacterial community 352 



 15 

following two years of in situ warming. For the former, we measured the instantaneous temperature 353 

response of respiration and bacterial and fungal growth for control soils only. For the latter, we 354 

measured the instantaneous temperature response of bacterial community growth for all warming 355 

treatments and controls; assuming the temperature adaptation respiration and fungal growth responded 356 

similarly as for bacterial growth, as found in tropical soils elsewhere19,20. To determine the temperature 357 

response of bacteria growth, we used the leucine incorporation method19; for the temperature response 358 

of fungal community growth, we used the acetate-in-ergosterol method19; for the temperature response 359 

of instantaneous respiration, we used incubation assays of 2 g soil in 20 ml vials for 24–140 hours at 360 

10–30oC and measurement of headspace CO2. For full details, see Supplementary Methods and 361 

references therein. 362 

 363 

Soil enzymes. Soil enzyme activity (Vmax) was determined for ten enzymes involved in carbon and 364 

nutrient cycling, We used microplate assays to measure activity of α-glucosidase and β-glucosidase 365 

(degradation of α- and β-bonds in glucose), cellobiohydrolase (degradation of cellulose), β-xylanase 366 

(degradation of hemicellulose), N-acetyl β-glucosaminidase (degradation of N-glycosidic bonds), 367 

leucine aminopeptidase (degradation of leucine residues; N-rich amino acids), phenol oxidase 368 

(degradation of lignin via oxidation of phenols), phosphomonoesterase and phosphodiesterase 369 

(degradation of monoester- and diester-linked simple organic phosphates) and sulfatase (degradation 370 

of ester sulfates). For hydrolytic enzymes we used fluorometric assays with 100 µM 371 

methylumbelliferone (MU)-linked substrates, except for leucine aminopeptidase for which we used 7-372 

amino-4-methylcoumarin (AMC) substrates. For oxidative enzymes (phenol oxidase) we used 373 

absorbance assays with L-3,4-dihydroxyphenylalanine (L-DOPA) substrates. For each soil sample, 374 

five replicate micro-plates were prepared and incubated at 2ºC, 10ºC, 22ºC, 30ºC and 40ºC respectively, 375 

for calculation of the temperature sensitivity (Q10 of Vmax) and determination of Vmax at soil 376 
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temperature. Enzyme activities (Vmax) are expressed on the basis activity at soil temperature per unit 377 

of microbial biomass C. To determine the Q10 of Vmax we used: 378 

 379 

𝑄10 = 𝑒𝑥𝑝 (10 𝑥 𝑘);  𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑙𝑛
𝑉𝑚𝑎𝑥

𝑡
 380 

  381 

Where k is the exponential rate at which Vmax increases with temperature (t). To calculate k (and thus 382 

Q10) we used linear regression. See Supplementary Methods for detailed protocols. 383 

 384 

Treatment effects on soil properties. To determine treatment effects on soil CO2 emissions, soil 385 

moisture and temperature we used repeated measures ANOVA fitted by maximum likelihood 386 

(repeated measures model with time as random factor). To determine treatment effects (levels: control, 387 

+3oC and +8oC) on soil properties we used one-way ANOVA with post-hoc Tukey HSD tests. We 388 

used this approach for all soil properties, including enzyme Vmax and the Q10 of Vmax for each enzyme 389 

determined at soil temperature. Prior to analyses all data were tested for normality using a Shapiro-390 

Wilk test and log-transformed where non-normally distributed. 391 

 392 

Determination of Tmin for respiration and growth and the predicted response of CO2 efflux to in situ 393 

warming. In the square root model, the effect of temperature on activity is described by a quadratic 394 

increase up to an optimal temperature (Topt,) and then a sharp decline15,17, where the quadratic phase 395 

of the increase is constrained by the minimum temperature for activity (Tmin, the y-intercept of the 396 

square root of activity plotted against temperature). The Tmin of microbial activity was calculated using 397 

empirically defined microbial activity across the temperature range 4–28ºC (where the increase in the 398 

SQRT of activity is linear), according to the Ratkowsky (square root) equation15,17: 399 

√𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑎 ∗ (𝑇 − 𝑇𝑚𝑖𝑛) 400 
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where T is the measurement temperature, Tmin is the minimum temperature for activity (temperature 401 

where activity = 0) and a is empirically defined by the slope parameter from the square root of activity 402 

plotted against temperature; and where activity is either bacterial or fungal growth rates, or respiration. 403 

We determined Tmin for each field replicate (n = 5 plots). 404 

We then used the instantaneous temperature sensitivity of microbial activity (Tmin) to model 405 

the CO2 efflux response to warming, both with and without microbial community adaptation. Here we 406 

used Tmin for bacteria growth only, because there was no significant difference in the Tmin for bacterial 407 

growth (-1.39 ± 0.8) and respiration (0.3 ± 0.4) in control soils (P = 0.1). The Tmin values for bacterial 408 

growth in control soils were also similar to those determined independently for two lowland tropical 409 

forests in Peru with similar mean annual temperature (-1.66 ± 0.7, -1.77 ± 1.0; MAT = 26.4oC)19. 410 

To model the CO2 efflux response to warming we used the following equation: 411 

Predicted 𝐶𝑂2  = [𝑎 ∗ (𝑇 −  𝑇𝑚𝑖𝑛)]2 412 

where Tmin is for control soils. To model the CO2 efflux response to warming following temperature-413 

adaptation of microbial communities, we refitted the model using the Tmin determined for bacterial 414 

growth in experimentally warmed soils for two years by 3ºC and 8ºC (‘adapted’ communities). 415 

 416 

Microbial community analysis. To determine temperature treatment effects on alpha diversity of soil 417 

bacterial and fungal communities, we first applied general prevalence filtering using the R package 418 

PERFect (PERmutation Filtering test for microbiome data)62 (v0.2.4). Here we used the function 419 

PERFect_sim with the alpha parameter set to 0.05 for the 16S rRNA data and 0.1 for the ITS data. We 420 

also applied two complementary methods of prevalence filtering to determine how filtering influenced 421 

alpha diversity estimates (see Supplementary Methods for complete details). We then calculated Hill 422 

numbers using the R package hilldiv63 (v1.5.1), specifically Observed richness (q-value = 0), Shannon 423 

exponential (q-value = 1), and Simpson multiplicative inverse (q-value = 2). We used Shapiro-Wilk 424 

Normality test and Bartlett’s test of Homogeneity of Variances to determine whether Hill numbers 425 
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were normally distributed. In cases where both p-values were greater than 0.05 (parametric data), we 426 

used ANOVA followed by Tukey post-hoc analysis to test for significance. For non-parametric data 427 

(cases where one or both p-values were less than 0.05), we instead used Kruskal-Wallis followed by 428 

Dunn test with Benjamini-Hochberg correction.  429 

 430 

For soil bacterial and fungal beta diversity, we calculated distance matrices for the filtered data sets 431 

using unweighted and weighted UniFrac64 for the 16S rRNA data and Jensen-Shannon Divergence 432 

and Bray-Curtis for the ITS data. To test for temperature treatment effects on beta diversity, we used 433 

the vegan package65 (v2.5-7) to first calculate beta dispersion for the distance matrices (betadisper 434 

function), then perform a Permutation Test for Homogeneity of multivariate dispersions (permutest 435 

function), and finally run PERMANOVA (adonis function; assuming equal dispersion) or Analysis of 436 

Similarity (ANOSIM; where beta dispersion was significant). 437 

 438 

To identify ASVs from the bacterial and fungal communities that were differentially abundant across 439 

temperature treatments, we used Indicator Species Analysis (ISA)66 and linear discriminant analysis 440 

(LDA) effect size (LEfSe)67. Prior to differential abundance analysis, we applied PIME (Prevalence 441 

Interval for Microbiome Evaluation)68 (v0.1.0) filtering to both complete datasets. PIME is a slightly 442 

more aggressive filtering tool specifically designed to work with data sets containing high variation 443 

among samples68 — a pattern observed in the +8ºC warming samples from the 16S rRNA data and all 444 

treatments from the ITS data (Extended Data Figs. 1c and 1f). PIME applies prevalence filtering on a 445 

per treatment basis and removes a substantial amount of within-group variation by eliminating low 446 

abundance ASVs in each treatment and retaining only those ASVs shared at the selected level of 447 

prevalence, within a given treatment68
. Per the developer’s recommendation, we first rarefied all 448 

samples to even depths (per sample: 16S rRNA = 25,088 reads, ITS = 9172 reads) and then split the 449 

data sets by predictor variable (temperature treatment) using the pime.split.by.variable function in R. 450 
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Next, we calculated all prevalence intervals from 5% to 95% (increments of 5%) with the function 451 

pime.prevalence and then used the function pime.best.prevalence to choose the best prevalence. The 452 

best prevalence interval was selected when the out-of-bag (OOB) error rate first reached zero or close 453 

to zero. The most prevalent ASVs (at the best prevalence interval) were retained from each split. Splits 454 

were then merged to obtain the final, PIME filtered data set. ISA was computed with the R package 455 

labdsv69 (v2.0-1)—ASVs were considered an indicator of a treatment if they had a p-value less than 456 

or equal to 0.05. LEfSe analysis was performed within the R package microbiomeMarker70 (v0.0.1) 457 

using the following parameters: pre-sample normalization of the sum of values set to 1e+06, lda_cutoff 458 

= 2, kw_cutoff = 0.5,  and wilcoxon_cutoff = 0.5. We used anvi’o71 (v7-dev) to visualize the 459 

distribution of PIME-filtered 16S rRNA ASVs represented by more than 100 total reads and PIME-460 

filtered ITS ASVs represented by more than 50 reads. We then overlaid the results of the ISA and 461 

LEfSe analyses. Hierarchical clustering of ASVs was performed using Euclidean distance and Ward 462 

linkage against the ASV/sample abundance matrix while hierarchical clustering of samples was 463 

performed using Bray-Curtis distance and complete linkage.  464 

 465 

To assess potential drivers of change in microbial community composition, we used three subsets of 466 

metadata to test correlations with community change; 1) environmental properties, 2) soil functional 467 

responses, and 3) temperature adaptive responses. For each of the three metadata subsets, we 468 

performed the following steps: i) use Shapiro-Wilk Normality Test to determine which metadata 469 

parameters are normally distributed; ii) use the R package bestNormalize72 to find and execute the best 470 

normalization transformation for non-normally distributed parameters; iii) perform autocorrelation 471 

tests for all pair-wise comparisons; iv) remove autocorrelated parameters; v) run Mantel Tests to 472 

determine if any of the metadata subsets are significantly correlated with microbial community data; 473 

and vi) use the bioenv function (vegan package) to identify metadata parameters that are most strongly 474 

correlated with the community data. In last step, vii) we performed distance-based redundancy analysis 475 
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(dbRDA) using capscale from the vegan package. First, we ran rankindex (vegan) to select the best 476 

community dissimilarity index. Then, we ran capscale for distance-based redundancy analysis. Next, 477 

we used envfit (vegan) to fit environmental parameters onto ordinations. And finally, we selected all 478 

metadata parameters that were significant for bioenv (see above) and/or envfit analyses for plotting 479 

the ordinations and vector overlays. For full details including all references on community analyses 480 

methods, see Supplementary Methods. 481 

 482 

 483 
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analysis workflows are available through the Smithsonian figshare under the collection 693 

https://doi.org/XXXXX.†  694 

 695 

Code availability 696 

                                                 
† A figshare DOI for the collection containing related data & data products will be generated upon final manuscript 

acceptance. 

mailto:A.Nottingham@leeds.ac.uk
https://doi.org/10.25573/data.14686755
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All code, reproducible workflows, and further information on data availability can be found on the project 697 

website at https://sweltr.github.io/high-temp/. The code embedded in the website is available on GitHub 698 

[https://github.com/sweltr/high-temp/] in R Markdown format. The version of code used in this study is 699 

archived under SWELTR Workflows v1.0 (REF) [https://github.com/sweltr/high-temp/releases/tag/v1.0], 700 

DOI identifier, https://doi.org/XXX/zenodo.XXXXXX.‡ 701 

 702 

 703 

Extended Data is available for this manuscript, including the following:  704 

Extended Data: Tables 1 to 3 705 

Extended Data: Figs. 1 to 6 706 

Supplementary Information is available for this manuscript, including the following:  707 

Supplementary Methods 708 

Supplementary Discussion 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 
                                                 
‡ A workflow version number (GitHub) and a DOI for the code (generated through Zenodo) will both be generated upon 

final manuscript acceptance. 
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Figures 721 

Figure 1│ Microbial diversity decline and community change under 3oC and 8oC in situ soil warming in 722 
lowland tropical forest. Two years of soil warming caused significant decreases in (a) bacterial and (b) fungal 723 
diversity, determined by 16S rRNA and ITS sequencing, respectively. Data from the PIME filtered data sets for 724 
controls (blue), 3ºC warming (green) and 8ºC warming (red). Hierarchical clustering of ASVs (top dendrograms) 725 
based on Euclidean distance and Ward linkage. Hierarchical clustering of samples (right dendrograms) based 726 
on Bray-Curtis distance and complete linkage. Each vertical line in the main plot represents a unique ASV, 727 
where colour intensity indicates the log-normalized abundance, and no colour indicates an ASV that was either 728 
not detected or removed during prevalence filtering. The coloured bars below indicate ASVs that were enriched 729 
in different temperature treatments as determined by either Indicator Species Analysis (IndVal) or Linear 730 
discriminant analysis Effect Size (LEfSe). Additional data for each sample are presented in the plots on the 731 
right. Diversity estimates charts show the total number of reads, observed richness, Shannon exponential index, 732 
and Inverse Simpson index. Taxonomic profiles show the proportion of major classes (16S rRNA data) or orders 733 
(ITS data). 734 
 735 

 736 

 737 
  738 
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Figure 2│ The response of (a–b) microbial growth and (c–d) enzyme activity to 3ºC and 8ºC soil warming, 739 
and (e) the relationship between the temperature response of growth and activity with microbial 740 
community changes. (a–b) Microbial growth was determined for bacteria for each treatment using Leu-741 
incorporation incubation assays across a temperature range of 4–40oC. The minimum temperature for growth 742 
(Tmin) increased with warming (see b), but growth declined at high temperatures (>30–34oC; see lighter shaded 743 
points in (a); these data were not used for the linear model to determine Tmin). (c) Activities were determined 744 
for 10 enzymes (ß-xylanase shown here, six others responded similarly; see SI) across an incubation temperature 745 
range of 4–40oC. The maximum potential activity—at soil temperature per unit microbial C—increased with 746 
warming for 7 out of 10 enzymes (see d) and increased across high temperature ranges (to 40oC) illustrating a 747 
decoupling of growth and activity above 30oC.  (e) The microbial community composition change was related 748 
to the temperature response of growth (Tmin) and of enzyme activities (Q10 of Vmax) for i) bacteria and ii) fungi. 749 
Bacterial growth and enzyme activity are plotted using a linear transformation (square root). Microbial 750 
community composition change estimated using Distance-based Redundancy Analysis (db-RDA) based on 751 
Bray-Curtis dissimilarity; see Extended Data (Table 2, Fig. 4) for relationships between community composition 752 
change and other soil properties. All analyses are for n = 5 plots. 753 

 754 
 755 
 756 

 757 

 758 

 759 

 760 

 761 

 762 
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Figure 3│ The response of soil CO2 efflux to in situ warming by 3 to 8ºC is greater than the increase 763 
predicted by the temperature response of microbial respiration and growth (a). Data points are 764 
measurements of soil CO2 efflux from control (blue), 3ºC warming (green) and 8ºC warming (red). The response 765 
of CO2 emission to temperature was described by a square root function (‘Observed’ line; CO2 = 1.9 x T2 – 45; 766 
R2 = 0.68, P < 0.001, F = 556). The modelled CO2 efflux responses (‘Predicted’ lines) are based on measured 767 
Tmin at ambient temperature (blue dash line = no adaptation; CO2 = 1.21 x T2  – 0.17; R2 = 0.87, P < 0.001, F = 768 
124) and Tmin change after two years of warming indicating community adaptation (green dash line = 3ºC 769 
adaptation, CO2 = 1.24 x T2 – 0.18; R2 = 0.87, P < 0.001, F = 118; and red dash line = 8ºC adaptation, CO2 = 770 
1.25 x T2 – 0.20; R2 = 0.86, P < 0.001, F = 111). The box plots show the treatment effects on (b) soil CO2 efflux 771 
and (c) soil temperature (repeated measures ANOVA; ** P < 0.01; *** P < 0.001). The centre line of each box 772 
plot represents the median, the lower and upper hinges represent the first and third quartiles and whiskers 773 
represent + 1.5 the interquartile range; the dashed lines represent means. The soil temperature and soil CO2 774 
efflux by treatment was, for controls: 26 ± 1 ºC and 4.74 ± 0.25 µmol CO2 m-2 s-1, 3ºC warming: 29 ± 2ºC and 775 
8.42 ± 0.44 µmol CO2 m-2 s-1, 8ºC warming: 34 ± 7ºC and 15.98 ± 1.68 µmol CO2 m-2 s-1) (mean ± one standard 776 
error, n = 5 plots).  777 

 778 
    779 


