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Abstract: This paper presents the results of an experimental investigation of 

L-shaped columns composed of concrete-filled steel tubes (LCFST columns) 

connected by steel linking plates. As a new kind of composite column, the 

fundamental structural behavior of LCFST columns connected by steel linking plates 

is discussed in this paper. Eight large-scale LCFST columns were constructed and 

loaded under either concentric axial compression or biaxial eccentric compression up 

to failure. Slenderness ratio, thickness of the steel linking plates and load 

eccentricities were all studied within the experimental programme. The relationships 

of load versus longitudinal displacement, lateral deflection at mid-height, longitudinal 

strain at mid-height etc are presented. It is demonstrated that specimens with larger 

slenderness ratios or eccentricities have lower ultimate load capacities, as expected. It 

is also demonstrated that the steel connection plates, also as expected, have a 

considerable influence on confining lateral deflections of the mono CFST columns  
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and that they significantly contribute to the columns’ ultimate carrying capacity. 

Predictive formulas for calculating the ultimate loads of LCFST columns connected  

by steel linking plates are proposed based on modifications of the ANSI/AISC 360-05 

guidelines.  

Keywords: L-shaped composite columns; Experimental investigation; Concrete-filled 

steel tubes; Steel linking plates; Axial compression; Eccentric compression 

1 Introduction 

In recent years, various types of novel columns for applications in buildings have 

been widely used and studied all around the world. L-shaped reinforced concrete 

columns were first studied and the basic structural behavior of this kind of column 

under concentric or eccentric axial compressive loading was previously investigated 

by [1-3]. With the advent of high strength concrete and steel, these materials have also 

been used in L-shaped reinforced concrete columns. Tokgoz et al.[4] experimentally 

studied the behavior of L-shaped section steel fiber reinforced high strength 

reinforced concrete and steel-concrete composite columns under eccentric axial 

compression. Recently, with the increasing usage and popularity of concrete-filled 

steel tubular columns, owing to their highly efficient load carrying capabilities, 

inherent deformability and excellent energy dissipation properties, concrete-filled 

L-shaped (and other novel shaped) steel tube columns have been proposed and studied 

in considerable detail. For example, Yang et al.[5] studied the compressive behavior 

of T-shaped concrete-filled steel tubular columns. The seismic behavior of 

concrete-filled unconventional-shaped steel tube columns was also experimentally 

investigated by [6] , demonstrating that all the specimens exhibited favorable energy 

dissipation and ductility. Due to the weak bond between the special-shaped steel tubes 

and concrete in-fill, relative slippage between the two materials was observed to occur 
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at failure.  

To improve the properties of concrete-filled novel-shaped steel tube columns, various 

shapes of columns composed of concrete-filled steel tubes (SCFST columns) linked 

by shear connections were proposed by Chen et al. [7,8]. Three cross-sectional shapes 

of L-shape, T-shape, as well as crisscross-shaped columns, when used as corner 

columns, side columns, and middle columns were previously proposed and 

experimentally studied. Because of the small width of the concrete filled steel tube 

mono columns in SCFST columns, SCFST columns can be embedded within the 

walls of buildings, which in turn enlarges the usable area of the buildings, with 

obvious benefits for developers. The fundamental structural behavior of SCFST 

columns connected by ‘lacing bars’ (i.e. effectively trussed CFST columns) under 

axial compression was studied by [9].  

Based on the research above, SCFST columns connected by steel linking plates were 

proposed as shown in Fig.1. Two LCFST columns connected by steel linking plates 

were tested to investigate the effect of inner concrete on the behavior of the columns 

by Zhou et al. [10]. The behavior of the columns subjected to constant axial load and 

cyclically varying flexural load was also investigated by Zhou et al. [11]. Furthermore, 

related research on the heat transfer properties of this new kind of LCFST column, 

with a view to better understanding their fire resistance have been carried out using 

finite element methods [12].The seismic performance of frame structures composed 

of this novel kind of LCFST columns was also recently experimentally studied [13]. 

Nonetheless, research on this type of LCFST column is limited to date, and a large 

number of relevant parameters have yet to be investigated. 

In the current study, eight large-scale L-shaped specimens were tested under either 

axial compression or biaxial eccentric compression. Parameters studied include 
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slenderness ratio, thickness of steel linking plates and the eccentricities of applied 

axial compressive load were selected to analyze their effects on the failure modes and 

deformation processes of LCFST columns. Specimen layout and experimental setup 

are described first, followed by discussion of the effects of the three aforementioned 

parameters on the response of the columns under compressive loading, including 

load-longitudinal displacement relationships, load-lateral deflection relationships and 

load-longitudinal strain relationships are presented. LCFST columns connected by 

steel linking plates are then compared against LCFST columns connected by so-called 

‘lacing bars’ to clearly demonstrate their advantages. Finally, the experimental results 

are compared with predicted values obtained from proposed formulae based on 

modification of the ANSI/AISC 360-05[14] guidelines. 

 

(a) L-shape            (b) T-shape       (c) Crisscross-shape 

Fig.1 SCFST columns connected by steel linking plates 

 

2 Experimental program 

2.1 Introduction 

Eight large-scale LCFST columns were fabricated and tested. The primary objective 

of the testing was to study the effects of various parameters including: slenderness 

ratio, thickness of the steel linking plates and the eccentricities of loading on the 

failure modes, load carrying capacity and deformation response of the specimens. The 

test specimens were 2/3 scale LCFST columns; these have already been applied in 
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real projects in residential buildings in Cangzhou, China, as shown in Fig.2. 

                    
(a) LCFST column              (b) LCFST column frame structure  

Fig.2 LCFST columns connected by steel linking plates in Cangzhou China 

 

2.2 Specimens layout 

Vertical stiffeners with a height of 100mm were welded to the top and bottom of the 

columns to prevent local failure at the heads of the specimens. Two steel plates with a 

thickness of 20mm were also welded to the tops and bottoms of the specimens to 

apply uniform compressive loads during testing. For the specimens tested under 

biaxial eccentric compression, the eccentricities were 40mm or 80mm from the 

centroid of the specimens along a symmetry axis, Y’-Y’, as shown in Fig.3. The 

details of the columns are shown in Fig.4.To prevent out-of-plane buckling failure of 

the steel linking plates, transverse stiffeners were welded to the steel linking plates 

and steel tubes at a spacing of 200mm. 

All specimens were divided into three groups. The first group, labeled “SR”, includes 

the specimens differing in slenderness ratio, the second group, labeled “T”, contains 

the specimens used to study the effects of thickness of steel linking plates, and the 

third group, labeled “E”, consists of the specimens loaded at different eccentricities. 

For example, Specimen SR-13.8-1000 had a slenderness ratio   of 13.8 and a height 

of 1000mm; Specimen T-3.75 means the thickness of the steel linking plates is 
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3.75mm; and Specimen E-40 means the eccentricity is 40mm. The test program is 

summarized in Table 1. 

 

Fig.3 Arrangement of loading points for specimens under biaxial eccentric 

loading 

 

(a) Overview      (b) Cross-section A-A      (c) Cross-section B-B 

Fig.4 Details of the test columns 

Table.1 Properties of specimens 

 

Specimen 
L

(mm) 

  

t
 

(mm) 

oe  

(mm) 

SR-13.8-1000 1000 13.8 5.75 0 

SR-20.7-1500 1500 20.7 5.75 0 

SR-34.5-2500 2500 34.5 5.75 0 

Standard 

specimen 
2000 27.6 5.75 0 

T-3.75 2000 27.6 3.75 0 

T-7.75 2000 27.6 7.75 0 

E-40 2000 27.6 5.75 40 

E-80 2000 27.6 5.75 80 

 

X 
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2.3 Material properties 

The material properties of the steel were determined using tensile tests on coupons 

taken from the steel tubes and linking plates. Concrete cube and cylinder tests were 

used to determine compressive strength and elastic modulus. Mechanical properties of 

the steel and concrete are shown in Table 2. 

Table.2 Mechanical properties of steel and concrete used in the current study 

Material 
t  

(mm) 

yf

(MPa) 

uf

(MPa) 

sE

(MPa) 

εy 

( ) 

cf

(MPa) 

cE

(MPa) 

Steel tube 5.75 358 439 1.51×105 2371 -- -- 

Steel plate 1 3.75 334 474 1.37×105 2438 -- -- 

Steel plate 2 5.75 319 465 1.58×105 2019 -- -- 

Steel plate 3 7.75 310 442 1.92×105 1740 -- -- 

Concrete -- -- -- -- -- 43.2 17453 

 

2.4 Test setup and instrumentation layout 

The tests were performed using a 5000 kN hydraulic compression machine, as shown 

in Fig. 5. To measure the longitudinal and transverse strains of the specimens, 60 

strain gauges were bonded to the top, middle, and bottom of the steel tubes, except the 

four areas connected to the steel linking plates where strain gauges were bonded onto 

the mid-height of the areas. Furthermore, another two strain rosettes were bonded to 

the mid-heights of the steel linking plates to determine the directions of the principal 

strains as well as longitudinal and transverse strains under different loading conditions. 

Fig.6 shows the layout of strain gauges on the specimens. The lateral deflections and 

longitudinal displacements were measured using 16 Linear Variable Displacement 

Transducers (LVDTs). The arrangement of LVDTs is shown in Fig.7. Twelve LVDTs 

were placed at the middle and quarter parts of the specimens to measure lateral 

deflection. Two additional LVDTs were placed at the top, and another two at the 

bottom, of the specimens to measure longitudinal displacements. A load interval of 
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100kN was used, and each load was maintained for two minutes, the test stopped after 

the specimens failed.  

 

Fig.5 Photo of test setup 

 

                    

(a) Overview                   (b) Right view 

Fig.6 Layout of strain gauges and strain rosettes during testing 

 

               

Fig.7 Schematic arrangement of LVDTs during testing 
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3 Experimental results and discussions 

3.1 Failure mode 

Fig.8 shows the failure modes of the specimens. For specimens differing in 

slenderness ratios, failure modes varied greatly depending on slenderness ratio. 

Specimen SR-13.8-1000 experienced severe local buckling combined with global 

bending around the X’-X’ axis, which is at 45 degrees from the X-X axis (Fig.3). The 

deformation of Specimen SR-13.8-1000 was not obvious until peak load, when it was 

approaching the peak load a small sound was heard followed by dramatic deformation 

of the specimen. Fig.8(a) shows that severe local buckling was observed at the middle 

of areas C1, C2, D1, D2, the top and bottom of areasB1, A2, as well as the bottom of 

A1 and B2. No local buckling appeared on the areas connected to steel plates. A 

similar phenomenon was observed for Specimen SR-20.7-1500, however less obvious. 

Fig. 8(b) shows that local buckling was evident at the quarter point near the bottom of 

areas A1, B2, C1 and D1, and the whole column bent about the X’-X’ axis. Local 

buckling did not appear in the areas connected to steel plates. However, different from 

the specimens described above, which had smaller slenderness ratios, local buckling 

was not observed in the standard specimen or in Specimen SR-34.5-2500, the failure 

modes of which were global buckling in both cases.  

For specimens differing in the thickness of steel linking plates, the failure modes were 

also global buckling but larger out-of-plane deflection of the mono columns was 

observed in the specimens with smaller thickness of linking plates (as expected). 

Fig.8(c) shows typical failure modes of the four specimens discussed above. The 

failure modes of the eccentrically loaded specimens are shown in Fig.8(d). Similarly, 

global buckling was seen in these two specimens, and they also bent about the X’-X’ 

axis. However, due to the large lateral deflections experienced at the middle of the 
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columns, local buckling appeared in the middle of the side of mono column L1 and 

the side of mono column L3. From the above, failure modes of LCFST columns vary 

along with slenderness ratio and the steel linking plates have a considerable effect on 

preventing the areas connected to them from local buckling. 

             

(a1) Right view   (a2) Front view    (a3) Left view       (a4) Back view 

(a)Failure mode of Specimen SR-13.8-1000 

           

(b1) Right view   (b2) Front view     (b3) Left view     (b4) Back view 

(b)Failure mode of Specimen SR-20.7-1500 

         

(c1) Right view    (c2) Front view    (c3) Left view      (c4) Back view 
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(c)Typical failure mode of specimens with the height of 2 meters or higher 

under axial compression 

       

(d1) Right view  (d2) Front view  (d3)Mono column L3 (d4)Mono column L1 

(d)Typical failure mode of eccentrically loaded specimens 

 

Fig.8 Failure modes of the specimens 

3.2 Effect of slenderness ratios 

Slenderness ratio is discussed in this section along with its effect on the secant 

stiffness, load carrying capacity and strain distributions in LCFST columns connected 

by steel linking plates. Load versus longitudinal displacement relationships and load 

versus longitudinal stain relationships are also presented. 

3.2.1 Load-longitudinal displacement relationships 

Two LVDTs were set at each end to measure the vertical deformation, and the average 

value was considered as the displacement. The longitudinal displacement of the 

specimen was taken as the sum of the absolute values of the vertical displacement of 

the top and base plates. Fig.9 shows the axial load (N) versus longitudinal 

displacement curves of specimens differing by slenderness ratio. All specimens had 

nearly linear load-longitudinal displacement response up to the yield point. Load 

carrying capacity then increased at a lower rate. Fig. 9 clearly shows that a rise of 

slenderness ratio causes the secant stiffness to decrease, and the load carrying capacity 

to drop, as anticipated. Beyond the peak load, the specimens displayed a softening 
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branch, indicating considerable deformation ductility.  

 

Fig.9 Axial load (N) versus longitudinal displacement curves for specimens with 

increasing slenderness ratios 

3.2.2 Load-longitudinal strain relationships 

The relationship between axial load and the largest longitudinal stains at the 

mid-height of each mono column is shown in Fig.10. Because the differences in 

slenderness ratios of the four specimens were not extreme, the curves are similar. 

Furthermore, because of the comparatively small slenderness ratios, the second-order 

inelastic moments had only minor effects on the specimens, resulting in compressive 

strains across the entire cross sections. To compare the strain distributions for side 

mono column L1 and side mono column L3, absolute values of the largest strains at 

the mid-height of side mono column L3 are shown in Fig.10(a). Some strain gauges 

malfunctioned at loads approaching the peak loads, so the descending branches were 

not recorded in some cases. Fig.10 shows that each mono column experienced an 

essentially linear increase in longitudinal strains during the elastic phase. The figure 

curves for side mono column L1 and side mono column L3 are almost symmetrical, 

indicating that strain distributions were similar for these mono columns. Strains of 

corner mono column L2 were smaller than those of the side mono columns, and the 

specimens with larger slenderness ratios showed smaller longitudinal strains in corner 
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mono column L2 under the same loads. This is likely because of bending about the 

X’-X’ axis (see Fig.3), with corner mono column L2 located in the tensile area while 

the side mono columns were located in the compressive area. Corner mono column 

L2 was under the actions of both compressive stress caused by axial load and tensile 

stress caused by the second-order inelastic moment, which resulted in its smaller 

compressive longitudinal strains at mid-height. However, because of the small effect 

of second-order inelastic moments on Specimen SR-13.8-1000, the strains of the three 

mono columns were similar, suggesting that the axial load should have been assigned 

evenly to the three mono columns. According to the results obtained from the strain 

gauges, the largest longitudinal strains in the steel tubes of each mono column 

including corner mono column L2 which surpassed the yield strain of the steel tube 

obtained from the tensile tests when the specimens failed. This suggests that the 

failure mode of the four specimens discussed above was by inelastic buckling. 

 

(a)Side mono column L1 and Side mono column L3 
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3000
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 SR-34.5-2500

Side mono column L1

()

y =2371y



14 
 

 

(b)Corner mono column L2 

Fig.10 Axial load (N) versus the largest mid-height longitudinal strain curves of   

specimens with different slenderness ratios 

 

3.3 Effect of thickness of steel linking plates  

As the connection between the mono columns, the steel linking plates have a great 

influence on the response of LCFST columns. The variation of thickness of these 

plates is discussed with reference to its effect on the load versus deformation behavior 

of the columns. 

3.3.1 Load-longitudinal displacement relationship 

Fig.11 depicts the axial load (N) versus longitudinal displacement curves of the 

specimens differing in the thickness of steel linking plates. Increasing thickness of the 

steel linking plates causes a rise in the secant stiffness. Similarly, a slight rise in load 

carrying capacity is also apparent when increasing the plate thickness, which suggests 

that part of the axial loads were also taken by the steel plates (as expected). No 

differences were observed in the three specimens in the descending branch. The 

analysis above suggests that the steel linking plates have an important effect on 

improving the secant stiffness as well as mildly enhancing the load carrying capacity, 

but no obvious effect of improving ductility. 
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Fig.11Axial load (N) versus longitudinal displacement curves of specimens with 

different thicknesses of steel linking plates 

3.3.2 Load-lateral deflection relationship 

Similar to the strain distribution in the side mono columns, because of their bending 

about the X’-X’ axis (see Fig.3), out-of-plane lateral deflections of the two side mono 

columns were also similar. Out-of-plane lateral deflections of Area A2 and Area B1 in 

the corner mono column L2 also had similar values, so the typical axial load (N) 

versus mid-height lateral deflection curves of the side mono columns, as well as the 

corner mono column, for Specimen T-3.75, standard specimen（T-5.75）and Specimen 

T-7.75 are presented in Fig.12(a) and Fig.12(b), respectively. Each mono column 

experienced a linear increase in lateral deflections in the elastic phase, after reaching 

the yield point, and lateral deflections then started to rise. The lateral stiffness of 

mono columns rose with increasing the steel plate thickness, thus indicating that the 

steel plates had a great influence on confining the lateral deflections of mono columns, 

which in turn delayed their out-of-plane instability. Lateral deflections of corner mono 

column L2 were smaller than those of side mono columns. Mid-height lateral 

deflections corresponding to the ultimate loads of corner mono column L2 were 9mm, 

9.5mm, and 9.8mm for Specimen T-7.75, standard specimen (Specimen T-5.75) and 

Specimen T-3.75, respectively, while the values for side mono columns were 10.5mm, 
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11.2mm and 11.7mm respectively. This may result from the fact that two of the areas 

of the corner mono column L2 were connected to the steel linking plates and the 

out-of-plane deflections were thus better confined. The steel linking plates thus have a 

great influence on controlling the lateral deflections of mono columns, as expected. 

 

(a) Side mono columns             (b) Corner mono column 

Fig.12 Typical axial load (N) versus mid-height lateral deflection (um) curves of 

specimens with different thickness in steel linking plates 

3.4 Effect of the eccentricity 

In previous studies, the eccentric loading angle was investigated to analyze its effect 

on the response of LCFST columns connected by steel linking plates. It was 

determined that the variation of the eccentric loading angle did not strongly affect 

load carrying capacity. Two specimens were tested in the current study under biaxial 

eccentric compression, with the magnitude of the eccentricity as a variable. 

Eccentricities of 40mm and 80mm from the centroid of the specimens, along the 

symmetry axis, Y’-Y’ (see Fig.3), are presented in this section. 

3.4.1 Load-longitudinal displacement relationship 

Fig.13 depicts the load versus longitudinal displacement relationship of the standard 

specimen (E-0), Specimen E-40 and Specimen E-80. It can be clearly seen that with 

an increase in eccentricity of loading, the secant stiffness and load carrying capacity 

of the specimens dropped dramatically. The ultimate loads of the standard specimen 
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(E-0), Specimen E-40, and Specimen E-80 were 3858kN, 2427kN and 2030kN, 

respectively. Thus, the ultimate load carrying capacity of Specimen E-40 and 

Specimen E-80 decreased 37% and 47%, respectively, compared with the standard 

specimen (E-0) under pure axial load. This confirms the well-known result that 

increasing eccentricity reduces the capacity of columns. 

 

Fig.13Axial load (N) versus longitudinal displacement curves of specimens with          

different loading eccentricities 

3.4.2 Load-lateral deflection relationship 

Because the loading eccentricities were along the symmetry axis Y’-Y’ (see Fig.3), 

this resulted in almost the same out-of-plane deflections of each mono column. Fig.14 
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the standard specimen (E-0), Specimen E-40 and Specimen E-80. Similar to the 

axially loaded specimens, lateral deflections of the eccentrically loaded specimens 

also experienced an almost linear increase before reaching the yield point. However, 
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0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
(k

N
)

Longitudinal displacement (mm)

 Standard specimen

        (E-0)

 E-40

 E-80



18 
 

Specimen E-80 are shown in Fig.15; h denotes the distance from the bottom support. 

Lateral deflections of the mono columns increased slowly before the specimens 

reached 60 % of ultimate load, which corresponded appropriately to yielding of the 

material, however after reaching the yield point the lateral deflections began to rise 

quickly and the specimens with larger eccentricities experienced dramatic increases in 

lateral deflections. The curves of the mono columns were almost symmetrical about 

mid-span. Furthermore, although small discrepancies could be observed between the 

test curves and the half-sine waves, lateral deflection curves of the mono columns 

approximated to be half-sine waves. 

 

Fig.14 Typical axial load (N) versus mid-span lateral deflection (um) curves of   

mono columns in eccentrically loaded specimens 
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(a) Specimen E-40                 (b) Specimen E-80 

Fig.15 Typical lateral deflections (u) along the column of the mono columns in 

eccentrically loaded specimens at different load levels 
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3.4.3 Load-longitudinal strain relationships 

The relationship between axial load and the largest longitudinal strains at the 

mid-height of each mono column for Specimen E-40 and Specimen E-80 is shown in 

Fig.16. Similar to the comparison above, absolute values of the largest compressive 

strains at the mid-height of side mono column L3 are shown in Fig.16 (a). Similar to 

the phenomenon observed in the specimens under axial load, curves of side mono 

column L1 and side mono column L3 are almost symmetrical for Specimen E-80. 

However, curves of the two side mono columns for Specimen E-40 are 

non-symmetrical, which may be due to initial imperfections of the specimens as well 

as unavoidable experimental errors. In contrast with the side mono columns, corner 

mono column L2 of the eccentrically loaded specimen was under a tensile state, and 

the largest tensile strains which appeared at the mid-height of the column are shown 

in Fig.16 (b). Fig.16 shows that vertical strains of all the steel tubes of the mono 

columns surpassed the yield strains of the steel tubes at failure, which suggests that 

the failure mode of these specimens was also inelastic buckling. 

  

(a) Side mono columns              (b) Corner mono column 

Fig.16 Axial load (N) versus the largest mid-height longitudinal strain curves of   

specimens with different eccentricities 
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4 Analysis of the principal strains in the steel plates 

Two strain rosettes were bonded to the two steel linking plates (see Fig. 6) to measure 

the principal strains during loading; these consisted of strain gauges at angles of 00 , 

045 and 090 . The 00 strain gauges were placed in the horizontal direction. The values 

and directions of the principal strains of the steel linking plates were calculated using 

[15]: 
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where xy is the shear strain, 45 is the strain obtained from the 045  strain gauge, 1  

is the first principal strain, 2 is the second principal strain and p  is the angle 

between the direction of the first principal strain and the transverse direction.  

The values of p  of each specimen varied irregularly with an increase of axial load, 

but ranged from 00  to 010 , which suggests that the direction of the first principal 

strain 1  of the steel linking plates was almost horizontal and the direction of the 

second principal strain 2 thus almost vertical. Eqs. (1)-(3) suggest that the first 

principal strains 1  of each specimen were positive, indicating that they were tensile 

strains while the second principal strains 2  of each specimen were negative. In 

addition, the values of the second principal strains 2  surpassed the yield strains of 

the steel linking plates obtained from the tensile tests at failure, which indicates that 
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the steel plates contributed to the ultimate capacity. The directions of the principal 

strains of the steel linking plates between the two stiffeners are shown in Fig.17. Thus, 

the steel linking plates in the LCFST columns should be treated as thin plates, and 

relevant theories of thin plates can be used to design the steel linking plates so as to 

prevent them from local buckling before the columns failed in a global mode. 

 

Fig.17 Directions of the principal strains in the steel linking plates between two 

stiffeners 

5 Comparison with LCFST columns connected by lacing bars 

Related research on LCFST columns connected by lacing bars was conducted [10] 

several years ago, and a figure of the specimen is shown in Fig.18. As described in 

[10], the height of the specimen is 2 meters, the size of the cross section of the 

specimen is absolutely the same with the standard specimen in this paper, furthermore, 

the mechanical properties of concrete as well as steel are very close to those of the 

standard specimen as well. Therefore, in this part the standard specimen is compared 

with the LCFST columns connected by lacing bars to reflect the advantages of 

LCFST columns connected by steel plates. Comparisons of the two specimens are 

given in Table.3. As shown in Table.3, the ultimate load of the standard specimen is 

larger than that of the LCFST column connected by lacing bars, which suggests that 

described steel plates contribute to the load carrying capacity of the column. Failure 

of the LCFST column connected by lacing bars under axial load was caused by the 

out-of-plane instability of one side mono column while the failure of the standard 

specimen was caused by the global buckling of the whole column which indicates that 
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the steel plates and the stiffeners welded to the mono columns delayed the 

out-of-plane instability of them and improved the integrity of the LCFST columns. 

The location of the largest lateral deflections of each mono column of standard 

specimen is at the mid-height, while that of the LCFST column connected by lacing 

bars varies in different mono columns which indicates that the steel plates have a 

higher confinement of the lateral deflections of the mono columns and they can 

ensure the mono columns work together. As shown in Table.3, strains of the steel 

plates corresponding to the ultimate loads of the columns are much larger than the 

yield strain while those of lacing bars are much smaller, which further verifies the 

hypothesis that the steel plates undertake part of the axial loads and the function of the 

lacing bars is just connecting the mono columns. Concluded from the comparisons 

above, LCFST column connected by steel plates have a much better property than the 

LCFST column connected by lacing bars. 

Table.3 Comparisons of standard specimen and LCFST column connected by 

lacing bars 

Specimen 
Failure 

mode 

Ultimate 

loads 

(kN) 

Location of 

the largest 

lateral 

deflections 

of each 

mono 

column 

Strains of 

steel plates or 

lacing bars 

corresponding 

to ultimate 

loads 

Standard 

specimen 

Global 

buckling of 

the whole 

column 

3858 Mid-height 

Much larger 

than the yield 

strain 

LCFST 

column 

connected 

by lacing 

bars 

Out-of-plane 

instability of 

one side 

mono 

column 

3610 

Quarter 

parts near 

the top or 

the bottom 

of the 

column 

Smaller than 

the yield 

strain 
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Fig.18 LCFST column connected by lacing bars 

6 Calculating the ultimate capacity of LCFST columns connected by steel linking 

plates  

Predictive formulas for the ultimate loads of LCFST columns connected by steel 

linking plates are proposed based on a modification of American national standard for 

structural steel buildings ANSI/AISC 360-05[14] for determining the ultimate loads of 

steel laced columns, as well as concrete-filled steel tubular columns. Values of the 

ultimate loads obtained from the predictive formulae are compared with the 

experimental results in this section. 

According to ANSI/AISC 360-05 [14], design formulae for laced columns are the 

same as those for mono columns after modification of the slenderness ratio. 

Modification of the slenderness ratio for intermediate connectors that are welded is 

determined as follows: 

2
2 2

2
( ) ( ) 0.82 ( )

(1 )
m o

ib

KL KL a

r r r




 


 (4) 

Where ( )m

KL

r
 is the modified column slenderness for laced columns, ( )o

KL

r
 is the 

column slenderness of laced column acting as a unit, in the buckling direction being 

considered, a is the distance between connectors, for columns connected by lacing 

bars this is the distance between the centroidal axis of the adjacent transverse lacing 
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bars, and for those connected by batten plates it is the distance between the centroidal 

axis of the adjacent batten plates. ibr is the radius of gyration of each individual 

component relative to its centroidal axis, parallel to member axis of buckling, and is 

the separation ratio.  

Modification of the slenderness ratios for laced columns are used to involve the effect 

of the shear deformation of the connectors on the ultimate capacity of the columns. 

However, since steel linking plates welded to the mono columns distributed along the 

height of the specimens, along with transverse stiffeners welded to the steel linking 

plates which have a great confinement on the deformation of steel linking plates, thus 

shear deformation of the steel linking plates is so small that its effect can be neglected 

in calculating the response of the columns. This idea can also be verified by 

considering Eqn. (4) with the distance between connectors assumed as zero, so ( )m

KL

r
 

is equal to ( )o

KL

r
. 

As specified in ANSI/AISC 360-05, the design compressive strength of axially-loaded 

concrete-filled steel tubular columns should be determined as: 

(a) When 0.44e oP P  , 

             ( )

[0.658 ]
o

e

P

P
n oP P

          (5) 

(b) When 0.44e oP P , 

0.877n eP P                (6) 

 '0.85o s y sr yr c cP A F A F A f  
      (7) 

        2 2( ) / ( )e effP EI KL
           (8) 

                       EIeff =EsIs + EsIsr + C3EcIc        (9) 
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3 0.6 0.2( ) 0.9s

c s

A
C

A A
  



     (10) 

Where K is the effective length factor. Because the bottom plate of the testing 

machine used herein can rotate while the top plate is rotationally fixed, the end 

conditions of the specimens can be assumed as: 1) for specimens under axial 

compression, rotation is free and translation is fixed for bottom end while rotation is 

fixed and translation is fixed for top end, so K=0.7; 2) for specimens under eccentric 

compression, steel cubes were welded to both ends of the specimens to apply 

eccentric loads and they can rotate throughout the loading process, so rotation is free 

and translation is fixed for both ends of the specimens, thus K=1.0. oP is the nominal 

axial compressive strength without consideration of length effect, nP is nominal axial 

strength, eP is elastic critical buckling load, effEI is effective stiffness of composite 

section, sA , srA , and cA are the cross-sectional areas of the steel tube, reinforcing bars, 

and concrete respectively. sE , cE are the modulus of elasticity of the steel and 

concrete, respectively. sI , srI , and cI are the moments of inertia of the steel tube, 

reinforcing bars, and concrete section, respectively.  

To calculate the ultimate capacity of LCFST columns connected by steel linking 

plates, the steel linking plates’ contributions to load capacity should be included when 

calculating oP , so that oP is equal to 
'3 2 0.85 3s y sp yp c cA F A F A f   , where spA and 

ypF  are the cross-sectional areas and yield strengths of the steel plates. Calculated 

results obtained from the formulae above are given in Table.4.  

For the eccentrically loaded specimens, no specific provisions are available for 

concrete-filled steel tubular laced columns in ANSI/AISC 360-05. Chen et al. [16] 

suggested that the effects of slenderness and eccentricities on the ultimate carrying 
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capacity of concrete-filled steel tubular laced columns were independent after some 

experimental and theoretical investigation, and a coefficient to account for different 

eccentricities was proposed. Relevant provisions are available in the Chinese national 

technical code for concrete-filled steel tubular structures GB 50936-2014[17]. As 

stated in GB 50936-2014, the formulae for the coefficient with the consideration of 

eccentricity are: 

(a) When 0 / 2ce a   , 

0

1

1 /
e

te a
 


      (11) 

(b) when 0 / 2ce a   , 

        
0

1

3( / 1)
e

ce a
 


      (12) 

           0 2 /e M N        (13) 

        0

0 0

c

t c t

N
a h

N N
 


     (14) 

        0

0 0

t

c c t

N
a h

N N
 


     (15) 

where e  is the coefficient related to eccentricity, 0e is the eccentricity of loading, 

ca is the distance between the centroid of the compressive mono columns and the 

centroid of the whole column under pure bending, ta is the distance between the 

centroid of the tensile mono columns and the centroid of the whole column under pure 

bending, h is the distance between the centroid of the tensile mono columns and the 

centroid of the compressive mono columns under pure bending. 0

tN is the sum of the 

compressive ultimate loads of the mono columns in the tensile region without 

consideration of length effects under pure bending, 0

cN is the sum of the compressive 
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ultimate loads of the mono columns in the compressive region without consideration 

of length effects under pure bending.  

A schematic description of the characters above is shown in Fig.19. The coefficient 

related to eccentricity e is used to calculate the ultimate capacities of the 

eccentrically loaded specimens in the current study; these are also presented in Table4. 

Calculated results agree reasonably well with experimental values. The hypotheses of 

neglecting the effect of the shear deformation of the steel linking plates, as well as 

including the steel linking plates’ moderate contributions to oP , are therefore both 

reasonable, and the predictive formulae for the ultimate loads of LCFST columns 

connected by steel linking plates based on a modification of the ANSI/AISC 360-05 

equations appear to be suitable designing such columns. 

 

Fig.19 Schematic description of the characters used in the equations of the       

current section 

Table.4 Comparisons of the predicted ultimate load capacities and the 

experimental results 

Specimen uN
 expuN  exp /u uN N

 

SR-13.8-1000 4040  4138 1.024 

SR-20.7-1500 3980  4000 1.005 

SR-34.5-2500 3800  3632 0.956 
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Standard 

specimen 
3900  3858 0.989 

T-3.75 3790  3705 0.978 

T-7.75 4000  4015 1.004 

E-40 2560  2427 0.948 

E-80 2020  2030 1.005 

Average   0.989 

Standard 

deviation 
  0.025 

7 Conclusions 

This paper has presented an experimental investigation into the fundamental structural 

behavior of L-shaped columns composed of concrete-filled steel tubes (LCFST 

columns) connected by steel linking plates. A total of 8 large-scale specimens were 

tested to study the effects of slenderness ratio, the thickness of the steel linking plates, 

and the eccentricity of loading. The following conclusions can be drawn based on the 

research work reported in the paper: 

(1) Failure modes of LCFST columns connected by steel linking plates varied with a 

change of slenderness ratio. Specimens with small slenderness ratios displayed 

local buckling in different parts of mono columns. Steel linking plates and the 

transverse stiffeners had a considerable influence on preventing local buckling of 

the tube walls. 

(2) The ultimate loads of the specimens were consistent with the anticipated trends 

that with the increase of slenderness ratios or loading eccentricities, the resistances 

of the columns decreased. Ultimate loads of the specimens with slenderness ratios 

of 13.8, 20.7, 27.6, 34.5 are 4138kN, 4000kN, 3858kN and 3632kN respectively. 

Also ultimate loads of the specimens with eccentricities of 0mm, 40mm, 80mm 

are 3858kN, 2427kN and 2030kN respectively.  

(3) The stiffness of the columns, as well as the lateral stiffness of the mono columns, 

was augmented with an increase of thickness of the steel linking plate. However, 
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changing the thickness of steel plates did not have a noticeable effect on the 

ductility of the columns. 

(4) Compared with LCFST columns connected by lacing bars, LCFST columns 

connected by steel linking plates have higher load carrying capacity as well as 

better integrity. Each mono column can work together under the connection of the 

steel linking plate and the functions of the steel linking plates are not only 

connecting the mono columns but also undertaking part of the axial loads. 

(5) Calculated values of the ultimate loads of the specimens obtained from the 

predictive formulas presented herein agree reasonably well with the test results. 

Neglecting the effect of the shear deformation of steel plates, as well as including 

the steel linking plates’ moderate contributions to oP  is reasonable. The 

predictive formulas for the ultimate loads of LCFST columns connected by steel 

linking plates based on the modification of ANSI/AISC 360-05 appear to be 

suitable. 

Nomenclature 

a       Distance between connectors 

 

        For columns connected by lacing bars it is the distance between the 

centroidal axis of the adjacent transverse lacing bars 

 

        For columns connected by batten plates it is the distance between the 

centroidal axis of the adjacent batten plates 

ca       Distance between the centroid of the compressive mono columns and the 

centroid of the whole column under pure bending 

ta       Distance between the centroid of the tensile mono columns and the centroid 

of the whole column under pure bending 

cA       Cross- sectional areas of concrete 
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sA       Cross- sectional areas of steel tube 

srA       Cross- sectional areas of reinforcing bars 

spA       Cross-sectional area of steel plate 

oe       Eccentricity of loading 

cE          Elastic modulus of concrete 

sE          Elastic modulus of steel 

effEI      Effective stiffness of composite section 

cf          Compressive strength of concrete 

uf          Ultimate strength of steel 

yf          Yield strength of steel  

ypF      Yield strength of steel plates 

h        Distance between the centroid of the tensile mono columns and the centroid 

of the compressive mono columns under pure bending 

cI       Moment of inertia of concrete 

sI       Moment of inertia of steel tube 

srI      Moment of inertia of reinforcing bars 

)( m

KL

r
  Modified column slenderness of laced columns 

)( o

KL

r
  Column slenderness of laced column acting as a unit in the buckling 

direction being considered 

 

L       Height of the specimen 

 

N     Axial load 
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c

oN    Sum of the compressive ultimate loads of the mono columns in the 

compressive region without consideration of length effect under pure 

bending 

t

oN     Sum of the compressive ultimate loads of the mono columns in the tensile 

region without consideration of length effect under pure bending 

uN     Calculated ultimate load of the specimen 

expuN   Experimental ultimate load of the specimen 

eP      Elastic critical buckling load 

nP      Nominal axial strength 

oP      Nominal axial compressive strength without consideration of length effect 

ibr      Radius of gyration of individual component relative to its centroidal axis 

parallel to member axis of buckling 

 

t      Thickness of steel 

u      Lateral deflection of mono column 

mu     Mid-span lateral deflection of mono column 

      Separation ratio 

xy     Shear strain of steel plate 

1  2   Principal strain of steel plate       

x      Horizontal strain of steel plate 

y      Vertical strain of steel plate 

0       Strain obtained from the 00 strain gauge 

45      Strain obtained from the 450 strain gauge 

90      Strain obtained from the 900 strain gauge 
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p       Angle between direction of the first principal strain and transverse direction

       Slenderness ratio of the specimen 

e       Coefficient related to eccentricities 
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