
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A framework for habitat monitoring and climate change
modelling: construction and validation of the Environmental
Stratification of Estonia

Citation for published version:
Villoslada, M, Bunce, RGH, Sepp, K, Jongman, RHG, Metzger, MJ, Kull, T, Raet, J, Kuusemets, V, Kull, A &
Leito, A 2016, 'A framework for habitat monitoring and climate change modelling: construction and
validation of the Environmental Stratification of Estonia', Regional Environmental Change.
https://doi.org/10.1007/s10113-016-1002-7

Digital Object Identifier (DOI):
10.1007/s10113-016-1002-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Regional Environmental Change

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. Apr. 2024

https://doi.org/10.1007/s10113-016-1002-7
https://doi.org/10.1007/s10113-016-1002-7
https://www.research.ed.ac.uk/en/publications/61ab60ae-9cb6-45ba-b396-edc962e6530d


1 
 

A framework for habitat monitoring and climate change modelling: construction and validation of the 1 
Environmental Stratification of Estonia. 2 
 3 
 4 
Miguel Villoslada1, Robert G.H. Bunce1, Kalev Sepp1, Robert H.G. Jongman2, Marc J. Metzger3, Tiiu Kull1, 5 
Janar Raet1, Valdo Kuusemets1, Ain Kull4

 and Aivar Leito1
 6 

 7 
 8 
 9 
(1) Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia 10 
(2) Alterra, Wageningen UR, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands 11 
(3) School of GeoSciences, The University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK 12 
(4) University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 13 
 14 
Robert G.H. Bunce 15 
robert.bunce@emu.ee 16 
 17 
Kalev Sepp 18 
kalev.sepp@emu.ee 19 
 20 
Robert H.G. Jongman 21 
rob.jongman@wur.nl 22 
 23 
Marc J. Metzger 24 
marc.metzger@ed.ac.uk 25 
 26 
Tiiu Kull 27 
tiiu.kull@emu.ee 28 
 29 
Janar Raet 30 
janar.raet@emu.ee 31 
 32 
Valdo Kuusemets 33 
valdo.kuusemets@emu.ee 34 
 35 
Ain Kull 36 
ain.kull@ut.ee 37 
 38 
Aivar Leito 39 
aivar.leito@emu.ee 40 
 41 
 42 
 43 
Corresponding author: Miguel Villoslada 44 
E-mail: mpecina@emu.ee 45 
Phone: (+372) 56890255 46 
Address: Kreutzwaldi 5, room 2C18, 51014 Tartu, Estonia 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

mailto:robert.bunce@emu.ee
mailto:kalev.sepp@emu.ee
mailto:rob.jongman@wur.nl
mailto:marc.metzger@ed.ac.uk
mailto:tiiu.kull@emu.ee
mailto:janar.raet@emu.ee
mailto:valdo.kuusemets@emu.ee
mailto:ain.kull@ut.ee
mailto:aivar.leito@emu.ee


2 
 

Abstract 55 

Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and 56 
ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in 57 
Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the 58 
construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis 59 
(PCA) was used to select the variables that capture the most amount of variation. Seven climate variables and 60 
topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce 61 
relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms 62 
of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the 63 
selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia 64 
and correlated with five environmental datasets. All correlations were significant. The stratification has therefore 65 
already been used to extend the current series of samples in agricultural landscapes into a more statistically 66 
robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the 67 
strata and associated ecological impacts is also examined.    68 
 69 
 70 
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Introduction 91 

Environmental stratification is the process that applies multivariate statistical analysis to divide the 92 

environmental gradients of a given region into relatively homogeneous units, which can then be used as a 93 

framework for sampling both socio-economic and ecological features. Tried-and-tested statistical procedures are 94 

used to ensure that the environmental strata are independent of personal bias (Metzger et al. 2005). Commonly, 95 

climatic and topographic parameters are used as input variables in the clustering procedure. The resulting 96 

environmental strata are relatively homogeneous in terms of the climatic and environmental variables (Klijn and 97 

de Haes 1994). These units help in the interpretation of climatic and environmental patterns and thus lead to a 98 

better understanding of underlying ecological processes (Jongman et al. 2006).  99 

At present, environmental stratifications have been developed at several levels: global (Metzger et al. 2012, 100 

Metzger et al. 2013), continental e.g. Europe (Metzger et al. 2005; Jongman et al. 2006),  national e.g. Great 101 

Britain (Bunce et al. 1996), Northern Ireland (Cooper 2000), Spain (Elena-Roselló 1997; Regato et al. 1999), 102 

Norway (Bakkestuen et al. 2008), Sweden (Ståhl et al. 2011) and the Czech Republic (Fňukalová and Romportl 103 

2014) and regional e.g. Bunce & Smith (1978). The original methodology was published in 1975 (Bunce et al. 104 

1975) and has undergone progressive development since then, as described by Sheail and Bunce (2003). 105 

Environmental stratification has primarily been applied in strategic ecological survey projects by using the strata 106 

to select statistically representative random samples for surveillance and subsequent monitoring of biodiversity. 107 

Environmental stratification has also been used for climate change modelling (Metzger et al. 2008).  108 

National level stratifications have usually been carried out regularly in regions characterized by considerable 109 

environmental variability. The main aim of this paper is to demonstrate that it is also feasible to implement 110 

environmental stratifications in regions or countries without pronounced topographic and climatic variability. 111 

The data required to construct regional level environmental stratifications are usually in more detail than those 112 

used at the continental level. This paper describes the construction of the Environmental Stratification of Estonia 113 

(ESE) and therefore provides an example of regional level classification. An important step in this process was 114 

to explore the data required to cluster the environmental variability of the country into interpretable strata. The 115 

suitability of the ESE for modelling possible future ecological changes according to climate change scenarios is 116 

also discussed.  117 

Estonia covers 45227 km2 in the Baltic region of north-eastern Europe between Finland, Russia and Latvia, as 118 

shown in Fig. 1. According to the European Environmental Stratification (EnS) (Metzger et al. 2005), Western 119 
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Estonia belongs to two classes of the Nemoral Zone, whereas Eastern Estonia is situated in the least cold of the 120 

eight classes of the Boreal Zone. Therefore, although a small country, Estonia is located on the boundary 121 

between two of the largest EnS classes. According to the Intergovernmental Panel on Climate Change (IPCC) 122 

climate change scenarios (Nakicenovic et al. 2000), the border between these zones is likely to shift by 2050. In 123 

addition, the Atlantic North Zone may extend into Western Estonia by 2080, as modelled by Metzger et al 124 

(2008).  The EnS partitions climate variation in Europe, but is not suitable for modelling changes in smaller 125 

regions due to the insufficient regional detail of the climate datasets used and because the number of strata 126 

produced is not adequate for capturing local environmental gradients. The availability of detailed physiographic 127 

and climatic datasets in Estonia facilitates the construction of finer divisions at the national level, as compared to 128 

the coarser resolution of the European Zones previously described by Metzger et al. (2005). It has already been 129 

recognised that subdivisions of the EnS are needed for local studies. For example, Jongman et al. (2006) 130 

subdivided one of the European Environmental Strata in Portugal on the basis of soil types. The existing 131 

classification of Estonian landscapes (Arold 2005) was based on the interpretation of geomorphological and soil 132 

patterns. The boundaries between the landscape units were descriptive and defined according to expert 133 

knowledge, whereas an objective regional classification is required as a framework for landscape and 134 

biodiversity monitoring strategies based on a stratified random sampling design. Statistical clustering of the 135 

environmental variability into homogeneous units allows deriving reliable estimates on biodiversity, habitats and 136 

land cover (Jongman et al. 2006).   In this regard, Estonia lacks a robust statistical framework for the selection of 137 

biodiversity and vegetation sampling and monitoring plots. The Environmental Stratification of Estonia (ESE) 138 

provides the structure needed for such assessment and monitoring strategy, thus the statistical validity of these 139 

strata is also examined in this paper.   140 

The present study was initiated in the frame of a multidisciplinary project within the Estonian University of Life 141 

Sciences concerning national ecotones and boundaries. A key module in the project is the assessment of the 142 

impact of climate change on vegetation and habitats. The aim of the present study is therefore to describe the 143 

construction and validation of the Environmental Stratification of Estonia (ESE), which will be used as a basis 144 

for the selection of representative sampling sites for recording data on habitats and vegetation. Moreover, the 145 

ESE will provide the statistical framework required to upgrade the current Agricultural Landscape Monitoring 146 

programme in Estonia. The collected data will then be used in modelling the potential impacts of climate change 147 

on the stock and change of biodiversity (Berry et al. 2003; Thuiller et al. 2008). Modelling exercises will also 148 
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include determining the shifts in the distribution of the strata under different climate change scenarios. The ESE 149 

will also be used as a framework to determine the provision of ecosystem services throughout Estonia. 150 

Materials and Methods 151 

Based on previous experience, it was initially decided to examine the potential use of climatic, geomorphological 152 

and soil data as input variables to generate the ESE. The data flow was organized in successive steps, as shown 153 

in Fig.2. The input variables used in the stratification (Table 1) were selected based on the conceptual model 154 

described by Klijn and de Haes (1994), Bunce et al. (1996) and Metzger et al. (2005). The concept is based on a 155 

regression model between the environmental strata and the observed ecological parameters.  In the functional 156 

hierarchy described by Klijn and de Haes (1994), lower components (e.g. vegetation) are dependent on 157 

parameters at a higher level (e.g. climate and geomorphology). This hierarchical framework has been recognized 158 

by other authors (Godron 1994; Breckle and Walter 2002; Ferrier 2002). At the landscape scale, the variability of 159 

environmental conditions is relatively high and the interrelationships between factors that determine this 160 

heterogeneity are complex. However, ecosystem patterns and habitat distributions can be analysed using this 161 

model even at the national scale. 162 

 Climate data 163 

The climate data were interpolated from 26 Estonian meteorological stations, covering a period of 30 years. The 164 

data were obtained over the period 1971-2000, which is used nationally as the official period for climate 165 

reporting and analysis. In addition, the recording methodology at weather stations in Estonia has been 166 

standardized only from 1971 onward. The daily observations at meteorological stations were provided by the 167 

Estonian Weather Service. Latvian, Russian and Finnish weather stations were also included in the climate 168 

dataset to expand the coverage of the environmental model and provide a more accurate interpretation of the 169 

climate in border regions. The climate variables corresponding to the Latvian, Russian and Finnish weather 170 

stations were obtained from the E-OBS dataset (Haylock et al. 2008). In order to avoid high correlations and 171 

give equal weight to the climate variables, Principal Components Analysis (PCA) was used to generate a subset 172 

from a climate dataset composed of 16 parameters (King and Jackson 1999). PCA is a variable reduction 173 

procedure that extracts independent components from a large set of variables. PCA identifies the variables that 174 

capture the most amount of variation, as well as those that are redundant (Jolliffe 1972; Krzanowski 1987; 175 

McCabe 1984). A threshold of 90% of variance explained was used to select the first four components. 176 

Subsequently, the two variables with the highest positive and negative loadings were selected from each 177 
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component. A total of seven climate variables were selected from the initial dataset, as shown in Table 1. This 178 

variable selection method has been previously used by Saxon et al. (2005) to generate homogenous climate 179 

domains of the continental sector of the United States of America.  180 

The environmental stratification clustering process requires gridded raster layers as input variables. Therefore, 181 

the climate data obtained from the weather stations were interpolated into 1x1km raster climate surfaces using 182 

the Spline function in ArcGIS 10.1. As a result, seven climate raster grids were produced (Fig. 3). An analogous 183 

interpolation procedure has been used by Hijmans et al. (2005) and New et al. (2002).  184 

Geomorphology data 185 

The influence of geographical factors in the distribution and coverage of plant species, even in lowland regions 186 

such as Estonia has already been described (Kull et al. 2002; Palo et al. 2008). In order to provide sufficiently 187 

detailed information at the local scale in the stratification, geomorphological data were also included by 188 

incorporating a digital elevation model, derived from the Estonian LIDAR database. Mean elevation data were 189 

calculated within each 1x 1km climate grid cell.  190 

Soil data 191 

At the initial stage of the modelling process, two soil databases were considered for analysis: the Soil Map of 192 

Estonia (1:10.000) and the European Soil Database (1:1.000.000) (European Commission 2004). The Soil Map 193 

of Estonia proved impractical because of inconsistencies in the definitions of the classes. Before any data could 194 

be used, extensive pre-processing would have been required in order to ensure that the classes were consistent 195 

throughout the country. In contrast, the coarse resolution of the European Soil Database (ESDB) does not 196 

capture the necessary detail required at the regional scale. Moreover, soil information is expressed as categorical 197 

classes, which are not compatible with the climate and geomorphology variables expressed as continuous 198 

gridded raster layers. Although a transformation of categorical soil data into a continuous grid is possible, the 199 

large amount of soil classes in combination with the coarse resolution of the ESDB unbalanced the clustering 200 

process, and lead to certain strata being defined exclusively by a unique soil class. The soil data were therefore 201 

not included. 202 

The input variables are measured in different units, and some also have large variances which can in turn, have 203 

an undesired effect on the resulting clusters. The variables were therefore standardized to zero mean and unit 204 

standard deviation.  205 
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The variables were subsequently subjected to the ISODATA clustering algorithm to generate the environmental 206 

strata. This procedure has been used in comparable studies by Metzger et al. (2005) and Tou and Gonzalez 207 

(1974). ISODATA is an iterative algorithm that uses minimum Euclidean distances between each pixel and the 208 

closest cluster in the multi-dimensional feature space of the selected variables. The process starts with arbitrary 209 

means being assigned to a pre-defined number of clusters. Each raster cell is then assigned to the cluster of 210 

which the mean is the closest. The process repeats itself, each raster cell being progressively assigned to the 211 

closest cluster in the multidimensional space until no more grid cells are reassigned.  The Runtime software 212 

program ArcGIS 10.1 was used to perform the analysis. As stated by Memarsadeghi et al. (2007), the main 213 

advantage of ISODATA over other clustering procedures is the ability of the algorithm to split large diffuse 214 

clusters and to merge small clusters whose centres are closer than a certain threshold. The clustering operation 215 

reduces the overall environmental variation into groups with comparable variation around a mean. The number 216 

of strata is arbitrary, but each stratum is distinctive and interpretable in terms of its environmental characteristics. 217 

The number of strata at which the clustering procedure was stopped was eight. This was considered an 218 

interpretable division of Estonia: while reflecting the well-known division between East and West (Lippmaa 219 

1935), the main geomorphological features and contrast between Upland and Lowland regions is appropriately 220 

captured by eight strata. In addition, it was observed that the ISODATA algorithm failed to produce clusters 221 

when the number was set at ten and above. This could be explained by the fact that the algorithm was not able to 222 

create distinguishable clusters above a certain limit. Given the size of Estonia and the main aim of the present 223 

study, eight strata is thus considered a practical number for scientific and policy objectives, as well as an 224 

adequate reflection of the variation in the environment of the country. 225 

At the last stage of the process, isolated pixels and scattered regions smaller than 15 km2 were assigned to the 226 

closest stratum. In relatively flat regions such as Estonia, these scattered pixels are statistical artefacts of the 227 

clustering algorithm, rather than real local features, and the spatial integrity of classes was therefore considered 228 

to be the overriding factor (Metzger et al. 2005). 229 

In order to determine the reliability of the stratification, it was necessary to compare this method with 230 

independent classifications and to assess the correlations between the clustered input variables and the 231 

underlying environmental gradients using the datasets shown in Table 2. The Estonian Landscape Regions 232 

classification (Arold 2005) is derived from soil and geomorphological characteristics using expert judgement. 233 

Although the classes are not based on statistical reproducible criteria, it is useful to compare their distribution 234 

patterns with the ESE to examine the extent of agreement. The Fuzzy Kappa statistic (Hagen 2003) was 235 



8 
 

therefore calculated using Map Comparison Kit v 3.0 (Visser 2004). The objective of the Fuzzy Kappa statistic is 236 

to assess the degree of agreement between maps of different classes and the comparisons should thus be treated 237 

as similarity coefficients rather than as measures of correlation (Bunce et al. 2002; Klotz et al. 2016). 238 

In order to test the relationships between the ESE and the underlying environmental gradients, regressions were 239 

calculated between a number of datasets and the ESE. According to the hierarchical framework previously 240 

described, correlations should be present between higher, independent components and the dependent variables. 241 

As shown in Table 2, the components derived from the variables used for clustering were correlated with five 242 

environmental datasets. Bunce et al. (1996) described classical regression as the most appropriate model to 243 

assess the abovementioned correlation.  The complex of underlying environmental factors used to create the 244 

classes and the selected environmental datasets (Table 2) are the independent and dependent variables 245 

respectively. This procedure, referred to as orthogonal regression, has previously been used (Metzger et al. 2005) 246 

to assess the validity of the European classification.  247 

Regressions cannot be directly calculated between nominal variables such as Corine land cover and the ESE 248 

clustering variables. In order to calculate a multivariate proxy of the land cover classes, the percentages of each 249 

class within each stratum were calculated. The first principal component of the land cover percentages was then 250 

extracted and correlated with the mean first principal component of the clustering variables within each stratum. 251 

Although being directly influenced by human activity, the broad land cover distribution was expected to show a 252 

strong relationship with the environmental gradients captured by the ESE. The same procedure was applied to 253 

the European Soil Database soil types.  254 

The distribution of plant species was also expected to show significant correlations with the ESE. Species that 255 

show well defined distribution patterns in Estonia were chosen for the analysis. The whole flora could not be 256 

used because the majority of species that are present throughout the country would provide much background 257 

noise in the analysis. Consequently, 26 species were selected as representatives of the Estonian flora, recorded 258 

from the 6’x10’ grid used for the Atlas of the Estonian Flora (Kukk and Kull 2005). Binary distribution data 259 

were then analyzed by Canonical Correspondence Analysis (CCA) (Ter Braak 1986). The distribution data were 260 

fed into the statistical analysis software Canoco 5 to obtain CCA first axis scores for each grid square (Ter Braak 261 

and Šmilauer 2012). The mean CCA scores within each stratum were subsequently calculated and then 262 

correlated with the mean PCA first axis scores of the stratification for each stratum.  263 
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For continuous variables such as topsoil organic carbon, the regression was calculated between the mean score of 264 

the first principal component of the classification variables and the mean value of the response variable within 265 

each stratum. Cover Management factor is also a continuous variable, therefore the same procedure was applied. 266 

Cover Management factor is one of the five factors included in the Revised Universal Soil Loss Equation 267 

(RUSLE) and it accounts for the effects of land cover, crops and crop management practices in soil loss 268 

(Panagos et al. 2015). 269 

The next stage in the approach is to select a set of randomly located survey sites for sampling biodiversity and 270 

landscape monitoring from within each stratum. The procedure used has been described by Metzger et al. (2013) 271 

and Carvalho et al. (2015). The design of the sampling framework as well as the number of sampling sites 272 

required depends upon the population or the area of habitat or land cover type being sampled. In the present 273 

study, the use of the ESE as a framework for monitoring is exemplified by its application in the Agricultural 274 

Landscape Monitoring (ALM) programme in Estonia. The number of agricultural landscape monitoring sites in 275 

Estonia currently being surveyed as a basis for modelling is only 22, which is statistically unreliable. However, 276 

the aim is to increase the number of sites for a long term ALM programme in order to obtain estimates on 277 

agricultural land use change and landscape metrics. Stratified random sampling was chosen as the most suitable 278 

strategy for the objects of the ALM (Peterseil et al. 2004; Ståhl et al. 2011). The first step of the sampling design 279 

was the definition of the target population, which was restricted to all 1 km squares containing agricultural land. 280 

Subsequently an agricultural raster mask layer was extracted from the Estonian Basic Map and intersected with a 281 

grid of 1 km square resolution specifically created for this process. In order to set the minimum required 282 

sampling size, the coefficient of variation of agricultural area within the 1 km squares was defined as the quality 283 

constraint (Brus et al. 2011). For any required coefficient of variation, the minimum amount of total sampling 284 

units in a stratified random sampling design is defined by Eq. 1 below (de Gruijter et al. 2006):  285 

𝑛𝑟𝑒𝑞 =
1

𝑉𝑚𝑎𝑥
 (∑ 𝑁ℎ𝑆ℎ(𝑦)

𝐿

ℎ=1

)

2

 286 

where nreq is the required total sample size, Vmax is the maximum sampling variance of the total area, Nh is the 287 

number of 1km squares in stratum h, Sh is the spatial standard deviation of y within stratum h and y is the land 288 

cover class or habitat being sampled. Vmax is obtained by multiplying the required coefficient of variation by the 289 

total area of the population being sampled.  290 
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Results 291 

The distribution map of the strata of the ESE is shown in Fig. 4. The boundary between the Nemoral and Boreal 292 

Zones (Metzger et al. 2005) is almost precisely reproduced at the border between classes 1-3 and 4-8. This result 293 

confirms the significance and stability of this boundary, since the ESE and the European Environmental 294 

Stratification were generated from different climate and topography datasets. 295 

Names have been ascribed to the classes, which together with summary information are shown in Table 3. In 296 

order to better understand the characteristics of the environmental strata, a brief description of each stratum 297 

based on geomorphology, soils and land cover is presented in Table 4. 298 

The ESE was compared with the landscape classification of Arold (2005) and the Fuzzy Kappa comparison 299 

yielded a kappa statistic of 0.415, interpreted as “moderate strength of agreement” (Landis and Koch 1977), 300 

which is indicative of similarities between the classifications.   301 

The correlations between the selected environmental datasets and the ESE were significant at the 0.05 level. The 302 

scatter diagram for the relationship of the Cover Management factor mean value within each stratum with the 303 

first PCA axis of the environmental variables is shown in Fig. 5a and Table 2, with an r-value of .77. A summary 304 

of the percentage of each soil type within each stratum is provided in Fig. 6 305 

The results of the analysis of the 26 species are shown in Fig. 5b and Table 2, with an r-value of .76. This 306 

analysis confirms the role of the principal environmental gradients as determinant factors in the distribution 307 

patterns of the flora of Estonia, therefore validating statistically the reliability of the environmental stratification 308 

procedure. 309 

Fig. 5c and Table 2 show a correlation of the overall land cover pattern and the underlying environmental 310 

gradients with an r-value of .67. A summary of the percentage of each Corine Land Cover class within each 311 

stratum is provided in Fig. 7. 312 

Based on the proposed sampling design and an initial coefficient of variation set at 0.1, a total minimum number 313 

of 40 1 km monitoring squares was obtained as a basis for monitoring. The minimum required amount of 314 

monitoring sites per stratum was therefore set at five, which were assigned to the smallest stratum (Northern 315 

Lowlands). The allocation of monitoring sites was subsequently weighted according to stratum size, as described 316 

by Haines-Young et al. (2000). This represents the most effective method for reducing the final standard errors 317 
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of any parameters for which estimates are required. The result was a total sample size of 100 monitoring sites 318 

and a final coefficient of variation of 0.06. Further samples can be added later according to the objectives of a 319 

given project (Haines-Young et al 2000). Increasing the number of samples does not usually change the total 320 

figures but reduces the standard errors (Mateus 2004; Jongman et al 2006). 321 

Table 5 shows the current number of agricultural landscape monitoring sites in Estonia and the number of 322 

additional monitoring sites needed per stratum. Further steps in the construction of the stratified random 323 

sampling design involve subdividing the strata into equal-area polygons according to the number of sampling 324 

sites required per stratum as described by Metzger at al. (2013). Subsequently, a sampling 1 km square will be 325 

placed at random within each equal-area polygon. A similar sampling methodology has been successfully 326 

implemented in Portugal (Carvalho et al. 2015).   327 

Discussion 328 

The methodology presented in this paper produced eight unbiased environmental classes for Estonia that are 329 

based on explicit criteria and explain its environmental variability. The division between eastern and western 330 

environmental regions in Estonia (Lippmaa 1935; Laasimer 1965) has been confirmed in the ESE and many of 331 

the observed distribution limits of plant species occur along this border between Nemoral and Boreal strata, 332 

which is likely to shift under climate change scenarios (Metzger et al. 2008). Consequently Estonia is an optimal 333 

location for modelling the impacts of climate change.  334 

The ESE differs from the previous environmental classification (Arold 2005) in having explicit statistical criteria 335 

for defining the classes and is therefore independent of personal judgement. The comparison with the 336 

classification of Estonian Landscapes confirms the fact that, although based on contrasting conceptual 337 

frameworks and datasets, the ESE and the Estonian Landscape Regions reflect the same general environmental 338 

patterns. Jones and Bunce (1985) and Metzger et al. (2005) reached the same conclusion with respect to the 339 

validity of statistical classification versus intuitive and expert knowledge based procedures, proving the benefits 340 

of statistically robust stratification methods. More recently Carvalho et al. (2015) confirmed the value of the 341 

approach described in the present paper. 342 

Several regressions were calculated between the ESE and environmental datasets. The distribution patterns of the 343 

environmental strata are related to the known distribution of individual plant species, two of which are shown in 344 

Fig. 8.  Myrica gale is a north-western Atlantic species and a major contributor to vegetation cover in the bogs of 345 
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Western Britain and Norway. In contrast, Chamaedaphne calyculata is a species with affinities with continental 346 

conditions, which replaces Myrica gale, to some extent, occupying a similar role within bog habitats. Regarding 347 

land cover, many factors, such as socio-economic changes, major political decisions and cultural background, 348 

have affected its distribution patterns (Mander and Palang 1994; Fuchs et al. 2013). However, the results shown 349 

in Fig. 5c demonstrate that the overall pattern is still correlated with the underlying environmental gradients. 350 

The number of strata that is required should be determined according to the objectives of individual projects. 351 

Bunce et al. (1996) discussed the use of complex stopping rules, such as testing the variance between the classes 352 

and concluded that, in order to obtain statistically reliable results, the most appropriate procedure is to define a 353 

minimum size of group that is appropriate for the objectives of the particular project. The divisions made for 354 

large regions such as Europe will inevitably be much coarser than for a small country such as Estonia but this 355 

does not detract from their value in selection of representative sites, which will be based on the variation within 356 

the given domain. The statistical procedure inside the clustering algorithm ensures that the environmental 357 

gradients within a given region and the corresponding variation in the data are appropriately clustered in the 358 

resulting strata. Additional divisions within a large region can be made for specific objectives. An example of 359 

subdividing classes is given by Jongman et al. (2006), who partitioned three EnS strata in the Alpine South zone 360 

into six substrata according to altitude in order to capture the full complexity of the Alpine zone from valley 361 

floors to summits. Because climate data are continuously variable, there is rarely any natural cut-off point, as is 362 

often the case in the analysis of plant taxonomic data.  363 

The climate data used in the construction of the ESE were the best available at the time of analysis. However, 364 

when more detailed data becomes available, it could be used to update the stratification in order to improve the 365 

definition of boundaries between classes. When the boundaries are shifted, a reassessment of the existing sample 366 

and an assessment of the need of additional 1 km monitoring squares are needed. Barr (2011) provides a 367 

complete overview on how to proceed when monitoring sites are reallocated. However, Bunce et al. (1996) 368 

showed that, in practice, only minor variations are observed through re-classification. In addition, any 369 

inefficacies in the strata will be incorporated in the standard errors of the field estimates (Metzger et al. 2005).  370 

In order to make informed decisions, reliable monitoring data derived from statistically robust sampling designs 371 

is required (Ortega et al. 2011). In this regard, a main shortcoming of the Agricultural Landscape Monitoring 372 

methodology in Estonia has been the lack of a framework for the objective selection of monitoring sites for stock 373 

and change of vegetation and habitats. The sampling efficiency is maximized when the population is stratified 374 
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according to the environmental gradients that define the site characteristics (Jongman et al. 2006). As described 375 

in this study, the ESE has been used as a framework to optimize the ALM programme in Estonia in order to 376 

obtain more reliable estimates of spatiotemporal trends of land use. The number of monitoring sites was 377 

determined based on the coefficient of variation of agricultural land within the 1 km squares in Estonia. As stated 378 

by Jongman et al. (2006), improvements in the sampling effort can be made in later stages, once exploratory data 379 

has been collected. The results obtained from the representative set of sampling sites can subsequently be 380 

extrapolated into national or regional estimates (Bunce et al. 1996; Haines-Young et al. 2000). 381 

Another key objective of the ESE is providing the framework for modelling exercises. Several modelling 382 

exercises have been previously performed using environmental stratifications as a framework. For example, Petit 383 

et al. (2001) assessed the consequences of environmental change for biodiversity in each of the EnS. On the 384 

other hand, Bugter et al. (2011) examined the likelihood of exotic species to survive according to temperature 385 

zones defined by the Global Environmental Stratification (Metzger et al. 2012) and climate change models. Leito 386 

et al. (2015) used the European stratification as a framework to assess the effects of climate change in wintering 387 

and stopover sites of the Eurasian crane (Grus grus).    388 

A current on-going project in ecotones and boundaries in Estonia has recently implemented the ESE to examine 389 

the potential effects of climate change on habitats and groups of species. In this regard, Liivamägi et al. (2013) 390 

showed the changes in the distribution of the Clouded Apollo butterfly (Parnassius mnemosyne). The 391 

distribution of this species is strongly limited to classes four, five, seven and eight of the ESE, and further work 392 

is needed to model the changes in the distribution limits based on climate change models. Moreover, the ESE is 393 

currently being used for vegetation and habitat recording from dispersed random squares based on the procedure 394 

described in this paper and previously defined by Metzger et al. (2013) and Carvalho et al. (2015). Further 395 

applications include the assessment of the provision of certain ecosystem services, utilizing the environmental 396 

strata as units for stratified random sampling.  397 

The European environmental stratification has previously been used to evaluate the potential impact of climate 398 

change in the provision of ecosystem services (Metzger et al. 2006). The climate change scenarios created for 399 

Estonia show a range of results, depending on the General Circulation Models and IPCC storylines adopted. 400 

However, mean increases of 10-20% in annual precipitation and a mean warming by 2.3–4.5°C are projected by 401 

the end of the 21st Century (Jaagus and Mändla 2014). The implications for biodiversity and ecosystem services 402 

provision in Estonia have yet to be determined but the ESE will make such analyses possible. Consequently, 403 
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further research will involve coupling climate change models (climate change simulations have already been 404 

calculated in Estonia by Luhamaa et al. (2014) with the Environmental Stratification of Estonia. This approach 405 

has already been tested by Metzger et al. (2008). By incorporating climate change predictions in the stratification 406 

as input data, the future distribution of the strata can be quantified in terms of the direction and extent of change. 407 

The results of such analyses will in due course enable the estimation of the potential changes in ecological 408 

resources and the provision of ecosystem services in Estonia.      409 

Conclusions 410 

The Environmental Stratification of Estonia (ESE) was constructed using climate and geomorphological data and 411 

applying standard statistical procedures. The classification has been tested and correlated with environmental 412 

data sets, demonstrating that the strata are representative of the principal underlying environmental gradients. 413 

Because the strata are determined statistically and independently of personal judgement, the ESE provides the 414 

framework for optimizing the existing Agricultural Landscape Monitoring programme in Estonia, in order to 415 

obtain statistically robust figures. Furthermore, the ESE will provide the background for modelling the effects of 416 

climate change on habitats, species distribution and the provision of ecosystem services. 417 

 418 

 419 
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