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ABSTRACT 

Using transmission electron microscopy (TEM), the presented work expands on the 

ultrastructural findings of an earlier report on “syncytial hepatitis”, a novel disease of 

tilapia (SHT). Briefly, TEM confirmed the presence of an orthomyxovirus-like virus 

within diseased hepatocytes, but not within endothelium. This was supported by 

observing extracellular and intracellular (mostly intraendosomal), 60-100nm round 

virions with a trilaminar capsid containing up to 7 electron dense aggregates. Other 

patterns noted included enveloped or filamentous virions and virion-containing 

cytoplasmic membrane folds, suggestive of endocytosis. Patterns atypical for 

orthymyxovirus included the formation of syncytia and the presence of virions within 

perinuclear cisternae (suspected to be the Golgi apparatus). The ultrastructural 

morphology of SHT-associated virions is similar to that previously reported for Tilapia 

Lake Virus (TiLV). A genetic homology was investigated using available RT-PCR 

probes for TiLV and comparing clinically sick with clinically normal fish and negative 

controls. By RT-PCR analysis, viral nucleic acid was detected only in diseased fish. 

Taken together, these findings strongly suggest that a virus is causally associated 

with SHT, that this virus shares ultrastructural features with orthomyxoviruses, and 

that it presents with partial genetic homology with TiLV (190nucleotides). 

KEYWORDS 

Fish, hepatitis, orthomyxovirus, syncytia, tilapia, virus, ultrastructure 

INTRODUCTION 

Tilapia are considered to be relatively resistant to many of the diseases that beset 

other farmed fish. Although they are targeted by the usual parasites commonly found 

in almost any intensively reared fish species and by some bacteria, notably 
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Streptococcus spp., viral diseases have not been frequently reported. However, 

viruses have been recently implicated in several large disease outbreaks with high 

levels of mortality in both farmed and wild tilapia.2,8,9,23 These outbreaks featured 

infection by betanodavirus and herpes-like viruses causing central nervous system 

alterations (neuropil vacuolation and meningoencephalitis, respectively), and a novel 

enveloped RNA-virus causing ocular, cutaneous, and meningeal pathology. A novel 

cause of tilapia mortality suspected of having a viral aetiology is syncytial hepatitis of 

tilapia (SHT), which has been described in Ecuador.9 This disease presents grossly 

with ascites, and histologically with hepatocellular lipoprotein accumulation, necrosis 

and syncytia formation, plus necrosis of gastrointestinal mucosa.9 Previously 

described examples of piscine viral diseases that feature hepatic necrosis include 

infectious salmon anaemia,24 viral haemorrhagic septicaemia in several 

species,10,12,19 channel catfish virus,21 adenovirus-like disease of cultured white 

sturgeon,11 and halibut reovirus.3 Interestingly, the latter also presents with syncytia 

formation in the liver, which is a feature of SHT. 

Our previous report of SHT provided a preliminary description of the clinical 

presentation, histopathology, and ultrastructural alterations. These included virus-like 

particles within the cytoplasm of hepatocytes.9 In this work, we aim to provide 

additional, detailed information on some of the ultrastructural features of SHT-

associated virions using transmission electron microscopy (TEM). Based on 

ultrastructural similarities, and using RT-PCR, we also set out to test the hypothesis 

that the virions noted in SHT may have genetic homology with those of TiLV. 

MATERIAL AND METHODS 

Fish. Details of the clinical presentation of these fish have been previously reported.9 

Briefly, intensively-reared tilapia fingerlings (Oreochromis niloticus L.) were collected 
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for diagnostic work-up following several months of above-normal mortality. In the 

involved farm, only the own farm-bred tilapia “Chitralada” were affected (with up to 

90% mortality), whereas cohabiting tilapia from an outsourced, genetically all male 

strain were not affected (basal mortality levels). Typically, clinical disease started 

shortly after transferring the fish into larger on-growing ponds; at that time, the 

average fish weight was approximately 3g. 

Case definition. Grossly, these fish presented with darkening, exophthalmia, and 

ascites (clear fluid). The livers were grossly unremarkable. Histopathological lesions 

included necrotizing hepatitis with distinctive hepatocellular syncytial giant cell 

formation, and necrosis of gastric glandular epithelium and intestinal enterocytes 

(Figure 1). 

Transmission electron microscopy. Ten fish consistent with the gross case 

definition were anaesthetised with clove oil, and the liver was dissected. Half of the 

liver was fixed in 10% neutral buffered formalin (NBF) and the other half fixed in 

2.5% glutaraldehyde in a 0.1M sodium cacodylate buffer. The NBF sample was 

processed for histology to confirm the presence of the histological case definition, 

which was confirmed in all 10 fish. Samples fulfilling the case definition were 

selected for subsequent processing for TEM. Specimens destined for TEM were 

post-fixed in 1% osmium tetroxide in 0.1M sodium cacodylate for 45 min, then 

washed in three 10 min changes of 0.1M sodium cacodylate buffer. These samples 

were then dehydrated in 50%, 70%, 90% and 100% normal grade acetones for 10 

min each, then for a further two 10-min changes in analar acetone. Samples were 

then embedded in Araldite resin. Sections, 1μm thick, were cut on a Reichert OMU4 

ultramicrotome, stained with toluidine blue, and viewed in a light microscope. Ultra-

thin sections, 60nm thick, were cut from selected areas and contrasted with uranyl 
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acetate and lead citrate. They were examined under a Philips CM120 transmission 

electron microscope, equipped with a Gatan Orius CCD camera. 

RT-PCR. Samples of liver were collected from 3 groups of fish selected as follows: 

a) 17 clinically sick fish, b) 10 asymptomatic fish from the same farm, and c) 6 

unexposed healthy control tilapia (also Oreochromis niloticus) from Grenada. Tilapia 

were deeply anaesthetized with tricaine methane sulphonate (MS-222 - Syndel) and 

a total spinal cord severance was performed post-anaesthesia. After dissection of 

the liver, all samples were individually placed in RNA-later (Qiagen). Samples were 

kept at -20°C while not in transport. The RNA extractions were performed using 

RNeasy Minikit (cat # 74104 Qiagen) as directed by the manufacturer. A one-step 

RT-PCR (Qiagen) assay was conducted using degenerate primers NM-CLU7-SF1, 

AGTTGCTTCTCAYAAGCCTGCTA and NM-CLU7-SR1, 

TCGTGTTCACARCCAGGTTTACTT to amplify a ~245-nt region of the tilapia lake 

virus (Accession no. KJ605629). The RT-PCR conditions were 50°C for 30 min, 

94°C for 15 min, and 35 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 1 min, 

with a final extension of 72°C for 5 min. Amplicons were visualized by 

electrophoresis in 1.5% agarose gels stained with ethidium bromide under UV light. 

Negative controls for RNA extraction and RT-PCR assays (SGU fish and water) 

were included in each assay. PCR products were visualized on 2% agarose gel, 

purified with Purelink Gel Extraction kit (Invitrogen) and confirmed for target 

specificity by sequencing of both strands by Sanger Sequencing (GeneWiz, NJ). 

Negative controls for RNA extraction and RT-PCR assays (SGU fish and water) 

were included in each assay. 
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RESULTS 

RT-PCR. All liver samples from clinically sick fish were RT-PCR positive (17/17) 

while no amplicons were detected in liver samples from asymptomatic fish (0/10) or 

any of the Grenada controls (0/6). After trimming the primer sequences 190nt long 

PCR fragments from seventeen positive Ecuadorian fish, samples were aligned with 

published tilapia lake virus fragment (Accession no. KJ605629). Sequences showed 

98-100% nucleotide identity with reference sequences and with positive samples. 

Transmission electron microscopy. Virions were seen both within the cytoplasm 

of hepatocytes as well as in the space of Disse. Although occasionally icosahedral in 

appearance (Figures 2-5), most virions noted were round and 60-100nm in diameter 

(mean=75nm). They presented with variably retained structural detail (Figure 5). 

When the structure was clearly visible, it featured a moderately electron-dense core 

containing several (up to 7) irregular electron dense aggregates, bounded by a 

trilaminar capsid. 

Virions were seen to have at least two additional morphologies: round to oval 

enveloped structures, and filamentous/tubular forms (Figures 3 & 4). Enveloped 

virions were 70-110nm wide (average=100nm), they had a moderately electron 

dense core, a trilaminar capsid-like structure, and a 10-15nm thick moderately 

electron dense external band containing regularly spaced electron dense structures 

(envelope). Filamentous/tubular forms were less common, but when present they 

were 90-110nm wide, of varying length, and had a moderately electron dense core, a 

trilaminar capsid, and an envelope similar to that described above. 

Multifocal invaginations of the cytoplasmic membrane containing virions were 

frequently seen at the sinusoidal pole of hepatocytes. This was occasionally 
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associated with an electron dense band below the membrane (vesicle formation with 

coating, Figure 7). 

The intracellular location of the virions is shown in Figures 6 to 9. In most instances, 

virions were present within membranous intracytoplasmic structures morphologically 

consistent with endosomes, located below the plasma membrane and at the central 

region of the cytoplasm. Conversely, in perinuclear areas, virions were contained 

within prominent membrane-bound anastomosing cisternae. Morphologically, these 

resemble greatly enlarged Golgi apparatus (Figure 9). More rarely, virions were 

noted free floating within the cytoplasm. 

Affected hepatocytes featured several additional pathological changes (data not 

shown). These included scattered, intracytoplasmic lattices of electron dense 

material, some of which were membrane-delimited. Other features included 

nucleolar dispersion, prominent nuclear pores, and intranuclear clusters of granular 

material. There was also multifocal hepatocyte necrosis, hepatocellular syncytial 

formation, hydropic degeneration, mitochondrial swelling and the presence of 

intracytoplasmic lamellar bodies. 

DISCUSSION 

The ultrastructural changes described here provide further evidence to support the 

previous suggestion of a viral aetiology for syncytial hepatitis of tilapia (SHT). Further 

confirmatory studies to isolate the virions and transmit this disease are required to 

confirm this. Several ultrastructural features of the virions shown in this paper are 

similar to those of orthomyxoviruses. Moreover, preliminary RT-PCR data support 

the fact that the virus noted in SHT presents with at least partial genetic homology 



8 

(190nt) with Tilapia Lake Virus (TiLV), a novel RNA virus causing mortality in tilapia 

in Israel.8 

SHT targets the gastro-intestinal tract as well as liver, but the ultrastructural 

component of this study has been restricted to the liver. Ultrastructurally, virions 

were noted only within hepatocytes and in the space of Disse, and not within the 

endothelium. This suggests tropism of the SHT virus for the epithelial, but not 

endothelial cell population in the liver. This ties in with the histological absence of 

sinusoidal disruption and haemorrhage, in contrast with infectious salmon anaemia 

(ISA), where the causative isavirus is endotheliotropic.15 A range of cell types has 

been shown to be infected by orthomyxoviruses. Influenza virus can infect 

respiratory epithelial cells, erythrocytes, leukocytes and platelets,5 whereas isavirus 

will target endothelium,15 but also leukocytes20 and gill lamellar epithelium.25 By 

contrast with SHT, isavirus has not been reported in necrotic hepatocytes,20,24 

although the isavirus (orthomyxovirus) associated with haemorrhagic kidney 

syndrome in Canada infected renal tubular epithelial cells,4,18 suggesting that 

isavirus tropism for epithelial cells is possible in certain circumstances. 

The ultrastructural features of the orthomyxoviral virion and replication cycle have 

been described in detail for several species, including influenza viruses,5 and 

isavirus.4,15 The ultrastructural features of the virions noted in SHT are similar to 

those described for the above orthomyxoviruses. The electron-dense aggregates 

noted in the core of SHT-associated virus are similar to those previously described 

for influenza virus, which have been associated with the segmentation of the viral 

genome.5 Moreover, extracellular tubular forms, similar to those noted in SHT, have 

been reported for both influenza virus5 and isavirus.15 The presence of an envelope 

at the extracellular stage has been described for influenza virus,5 isavirus,14,15 and 
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TiLV virus.8 By contrast, in our study, an envelope was not always seen in 

extracellular virions. The significance of this is unknown at this stage. Defective 

virions have been described for isavirus, and we cannot preclude the possibility of a 

similar situation in SHT-associated virus.15 

In our study there were multiple instances of cytoplasmic membrane invagination 

containing virions, with occasional electron-dense coating, suggestive of virion 

endocytosis. We suspect that the process we have noted is similar to that previously 

observed in other orthomyxoviruses, where both clathrin-dependent and clathrin-

independent endocytic mechanisms may be involved.17 However, more work is 

required to ascertain this (e.g. studies using double labelling for clathrin and SHT-

virions to assess hypothetical co-location). In influenza virus, endocytosis is followed 

by viral trafficking from early endosomes below the plasma membrane to perinuclear 

late endosomes. The latter have an acidic environment, and both influenza and 

isavirus have been shown to require a low pH step for release of their RNA into the 

cytoplasm.7,16 In our SHT study we noted intraendosomal virions below the plasma 

membrane, but did not detect perinuclear, late endosomes.  

Exceptionally for RNA viruses, orthomyxoviruses require nuclear involvement during 

their replication. This results in ultrastructural nuclear changes, including increase in 

nucleolar density, followed by dispersion and presence of granular material 

throughout the nucleus.5 Sections of tilapia liver infected with SHT virus presented 

with nuclear dispersion, granular intranuclear material (occasionally clustered below 

the nuclear envelope), and prominence of nuclear pores. These nuclear features are 

similar to those described for orthomyxoviruses, although it is not feasible to discard 

the possibility that they are artefactual without more information on the features of 

the replication cycle of SHT-associated virions. 
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The final step in the viral replication cycle is exit from the host cell. In both influenza 

and isavirus, viral assembly takes place at the host cell cytoplasmic membrane by 

budding.5,15 This is followed by release of the enveloped virus particle from the cell, 

associated with formation of long microvilli. Regrettably, instances of viral assembly 

and exit were not captured in the sections of this study on SHT, although there was 

disarray of hepatocyte villi at the sinusoidal pole. Further work is needed to 

characterize this. 

So far, we have described ultrastructural features of SHT-associated virions that 

match those of described orthomyxoviruses. There are, however, several noteworthy 

areas of divergence. Perhaps the most notable of these is the presence of virions 

within a perinuclear complex of anastomosing membranous structures, that are 

strongly suggestive of Golgi apparatus. The role and significance of this feature in 

the replication cycle of SHT-associated virus are unknown, but it is possible that this 

could represent an intracytoplasmic transport step of virions either towards the 

nucleus, or towards the cytoplasmic membrane. There is a role for the Golgi 

apparatus in the replication cycle of influenza virus, where it participates in the 

transport of a subset of viral proteins to the plasma membrane,5 but this does not 

feature intraluminal virions. Also characteristic of SHT is the formation of syncytia, 

which is not a feature of orthomyxoviral infections. Syncytia formation, driven by a 

fusion factor, is reported in paramyxoviruses.6 Finally, another noteworthy 

divergence is that in our sections we recorded free intracytoplasmic virions in SHT, 

which are not reported for orthomyxoviruses.8 Overall, overlapping features with 

orthomyxovirus suggest it is possible to hypothesize that SHT-associated virions are 

novel orthomyxoviruses, but there are enough divergences to cast doubts over this 
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possibility. Genome sequencing of SHT-associated virus is necessary to elucidate its 

taxonomy. 

Above, we have discussed the ultrastructural features of SHT-associated virions. 

The published report of TiLV describes sparse electron-dense, 55-75nm virions 

extra- and intra-cellularly in E-11 cell culture.8 Further examination of the pictures 

published (picture 2F) reveals an ultrastructural morphology similar to SHT-

associated virions (i.e. intraendosomal location, and capsid containing electron 

dense aggregates). These similarities led us to test the probes published for TiLV on 

SHT clinical cases (and negative controls). Revealingly, the RT-PCR results do 

indeed confirm partial genetic homology between the virus noted in TSH and TiLV 

(190nt). A complementary study has revealed further genetic homology.1 These 

results highlight future research possibilities. For example, TiLV was isolated in E-11, 

a cell line originating from snakehead (Ophicephalus striatus), as well as in a primary 

tilapia brain cell culture.8 E-11 is a clone of SSN-1, a cell obtained from whole fry (i.e. 

composed of a mixed population).13 It is therefore not unreasonable to assume that 

isolation of SHT virus may be also possible using E-11. This is despite possible 

differences in tissue tropism, as gross and histological diversity between TiLV and 

SHT also suggests. In TiLV, lesions include encephalitis and ophthalmitis with limited 

hepatic degeneration (hepatocellular pigment accumulation);8 conversely, in SHT 

there is hepatic necrosis with hepatocyte dissociation/syncytia formation and 

mucosal necrosis of gastro-intestinal tract. This diversity may indicate these are 

distinct viruses, although it is noteworthy that differences in tissue tropism of one 

virus are possible. One example of this is isavirus: early descriptions of ISA in 

Norway featured hepatic lesions,24 while in Canada lesions were almost exclusively 

renal. In fact, the Canadian presentation was called haemorrhagic kidney syndrome 
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before it was shown that the aetiology was isavirus, albeit a strain different to that 

found in Norway.4 Factors influencing tissue tropism include strain and age of fish 

and this may explain the enormous inter-strain variation in susceptibility in SHT (from 

90% for a farm-bred strain -“chitralada”-, to 0% in a genetically all-male strain GMT).9 

. In this outbreak, SHT was seen only in fry, which died very quickly. By contrast, 

TiLV was recorded in much larger fish, which experimentally survived for 7-10 days 

post-infection. Variation in tissue tropism due to age differences has been reported in 

a viral disease of salmon, infectious pancreatic necrosis (IPN, caused by a 

birnavirus). In fry, IPN targets the liver, while in older fish the main lesions are 

pancreatic/gastrointestinal.22 Concluding, the genetic homology noted between SHT-

associated virus and TiLV represents only the initial stage of research into the link 

between these two viruses. 

Overall, the results of the present study suggest that the virus associated with SHT is 

ultrastructurally similar to an orthomyxovirus, and that it presents with partial genetic 

homology with TiLV (190nt). This homology has been confirmed further in a 

complementary study.1 Further questions to be resolved include isolation of the 

virus, transmission studies, and further study of its replication cycle and 

pathogenesis. 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge Stephen Mitchell at the electron microscopy 

unit of the University of Edinburgh for his help with TEM processing and viewing of 

the samples. 



13 

REFERENCES 

1  Bacharach E, Mishra N, Briese T, et al. Characterization of a Novel Orthomyxo-

like Virus Causing Mass Die-Offs of Tilapia. mBio. 7(2) 2016:  

2  Bigarre L, Cabon J, Baud M, et al. Outbreak of betanodavirus infection in tilapia, 

Oreochromis niloticus (L.), in fresh water. J Fish Dis. 32(8) 2009: 667-673. 

3  Blindheim S, Nylund A, Watanabe K, et al. A new aquareovirus causing high 

mortality in farmed Atlantic halibut fry in Norway. Arch Virol. 160(1) 2015: 91-

102. 

4  Byrne, MacPhee, Ostland, Johnson, Ferguson. Haemorrhagic kidney syndrome of 

Atlantic salmon, Salmo salar L. J Fish Dis. 21(2) 1998: 81-91. 

5  Cheville NF, Lehmkuhl H. Orthomyxoviruses. In: Cheville NF, ed. Ultrastructural 

pathology. Second ed. Iowa, USA: Wiley-Blackwell; 2009:356-357 

6  Cheville NF, Lehmkuhl H. Paramyxoviruses. In: Cheville NF, ed. Ultrastructural 

pathology. Second ed. Iowa, USA: Wiley-Blackwell; 2009:358-366 

7  Eliassen TM, Froystad MK, Dannevig BH, et al. Initial events in infectious salmon 

anemia virus infection: evidence for the requirement of a low-pH step. J Virol. 

74(1) 2000: 218-227. 

8  Eyngor M, Zamostiano R, Kembou Tsofack JE, et al. Identification of a novel RNA 

virus lethal to tilapia. J Clin Microbiol. 52(12) 2014: 4137-4146. 

9  Ferguson HW, Kabuusu R, Beltran S, et al. Syncytial hepatitis of farmed tilapia, 

Oreochromis niloticus (L.): a case report. J Fish Dis. 37(6) 2014: 583-589. 

10  Ghittino P. Viral hemorrhagic septicemia (VHS) in rainbow trout in Italy. Ann N Y 

Acad Sci. 126(1) 1965: 468-478. 



14 

11  Hedrick RP, Speas J, Kent ML, McDowell T. Adenovirus-Like Particles 

Associated with a Disease of Cultured White Sturgeon, Acipenser 

transmontanus. Can J Fish Aquat Sci. 42(7) 1985: 1321-1325. 

12  Isshik T, Nishizawa T, Kobayashi T, Nagano T, Miyazaki T. An outbreak of VHSV 

(viral hemorrhagic septicemia virus) infection in farmed Japanese flounder 

Paralichthys olivaceus in Japan. Dis Aquat Organ. 47(2) 2001: 87-99. 

13  Iwamoto T, Nakai T, Mori K, Arimoto M, Furusawa I. Cloning of the fish cell line 

SSN-1 for piscine nodaviruses. Dis Aquat Organ. 43(2) 2000: 81-89. 

14  Kibenge FS, Munir K, Kibenge MJ, Joseph T, Moneke E. Infectious salmon 

anemia virus: causative agent, pathogenesis and immunity. Anim Health Res 

Rev. 5(1) 2004: 65-78. 

15  Koren C, Nylund A. Morphology and morphogenesis of infectious salmon 

anaemia virus replicating in the endothelium of Atlantic salmon Salmo salar. 

Dis Aquat Organ. 29(1997: 99-19. 

16  Lakadamyali M, Rust MJ, Babcock HP, Zhuang X. Visualizing infection of 

individual influenza viruses. Proc Natl Acad Sci U S A. 100(16) 2003: 9280-

9285. 

17  Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microbes 

and infection / Institut Pasteur. 6(10) 2004: 929-936. 

18  Lovely JE, Dannevig BH, Falk K, et al. First identification of infectious salmon 

anaemia virus in North America with haemorrhagic kidney syndrome. Dis 

Aquat Organ. 35(2) 1999: 145-148. 

19  Lovy J, Lewis NL, Hershberger PK, et al. Viral tropism and pathology associated 

with viral hemorrhagic septicemia in larval and juvenile Pacific herring. Vet 

Microbiol. 161(1-2) 2012: 66-76. 



15 

20  Moneke E, Groman DB, Wright GM, et al. Correlation of virus replication in 

tissues with histologic lesions in Atlantic salmon experimentally infected with 

infectious salmon anemia virus. Veterinary Pathology Online. 42(3) 2005: 

338-349. 

21  Plumb JA, Gaines JL, Mora EC, Bradley GG. Histopathology and electron 

microscopy of channel catfish virus in infected channel catfish, Ictalurus 

punctatus (Rafinesque). J Fish Biol. 6(5) 1974: 661-664. 

22  Roberts RJ, Pearson MD. Infectious pancreatic necrosis in Atlantic salmon, 

Salmo salar L. J Fish Dis. 28(7) 2005: 383-390. 

23  Shlapobersky M, Sinyakov MS, Katzenellenbogen M, et al. Viral encephalitis of 

tilapia larvae: primary characterization of a novel herpes-like virus. Virology. 

399(2) 2010: 239-247. 

24  Speilberg L, Evensen O, Dannevig BH. A sequential study of the light and 

electron microscopic liver lesions of infectious anemia in Atlantic salmon 

(Salmo salar L.). Veterinary Pathology Online. 32(5) 1995: 466-478. 

25  Weli SC, Aamelfot M, Dale OB, Koppang EO, Falk K. Infectious salmon anaemia 

virus infection of Atlantic salmon gill epithelial cells. Virol J. 10(2013: 5. 

  



16 

FIGURE LEGENDS 

Figure 1. Syncytial hepatitis of tilapia (SHT). There are multifocal to coalescing 

areas of necrosis, frequent single hepatocellular necrosis with dissociation, syncytial 

cell formation (white arrows), and perivenular, lymphocytic, inflammatory infiltration. 

Haematoxylin & eosin (HE). 

 

Figures 2-5. Ultrastructure, three distinct virion morphologies, SHT-affected tilapia. 

Fig. 2. Non-enveloped free virions within the space of Disse (black arrow). Fig. 3: 

Free extracellular virion (white arrow), and intracellular non-enveloped virions within 

intracytoplasmic membrane bound vacuoles (black arrow). Fig. 4: Free extracellular 

virion (white arrow), and filamentous/tubular extracellular virions (black arrow). 

*=hepatocyte, += endothelium. Fig. 5: High magnification image of the most 
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commonly seen intracellular virion form, which lacks an envelope and may contain 

up to 7 electron-dense irregular aggregates within a core delimited by a trilaminar 

capsid. TEM, scale bars = 200nm. 

 

Figures 6-9. Ultrastructure, liver; SHT-diseased tilapia. Fig. 6: Hepatocytes have 

multifocal invaginations of the cytoplasmic membrane. Note the electron dense band 

below the membrane surrounding one of the virions (arrow). Fig. 7. Intracytoplasmic 

virions are observed within membrane-bound structures consistent with endosomes 

below the plasma membrane (black arrow). Fig 8. Virions observed at the centre of 
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the cytoplasm. Fig. 9. Intracytoplasmic virions observed within perinuclear cisternae; 

*=nucleus. TEM, scale bars: 500nm. 

 


