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Abstract

Text-to-Speech synthesis in Indian languages has a seen lot of
progress over the decade partly due to the annual Blizzard chal-
lenges. These systems assume the text to be written in Devana-
gari or Dravidian scripts which are nearly phonemic orthog-
raphy scripts. However, the most common form of computer
interaction among Indians is ASCII written transliterated text.
Such text is generally noisy with many variations in spelling
for the same word. In this paper we evaluate three approaches
to synthesize speech from such noisy ASCII text: a naive Uni-
Grapheme approach, a Multi-Grapheme approach, and a super-
vised Grapheme-to-Phoneme (G2P) approach. These methods
first convert the ASCII text to a phonetic script, and then learn a
Deep Neural Network to synthesize speech from that. We train
and test our models on Blizzard Challenge datasets that were
transliterated to ASCII using crowdsourcing. Our experiments
on Hindi, Tamil and Telugu demonstrate that our models gener-
ate speech of competetive quality from ASCII text compared to
the speech synthesized from the native scripts. All the accom-
panying transliterated datasets are released for public access.
Index Terms: Indian Languages, Speech Synthesis, Deep Neu-
ral Networks, ASCII transliteration.

1. Introduction
Though a large number of Indian languages have indigenous
scripts, the lack of a standardized keyboard, and the ubiquity
of QWERTY keyboards, means that people most often write
using ASCII1 [1] text using spellings motivated largely by pro-
nunciation [2]. Increasingly, many technologies such as Web
search and natural language processing are adapting to this phe-
nomenon [3, 4, 5]. In the area of Speech Synthesis, although the
efforts of the 2013, 2014 and 2015 Blizzard Challenges2 [6, 7]
resulted in improvements to the naturalness of speech synthesis
of Indian languages, the text was assumed to be written in native
script. In this work, we transliterate Blizzard data to informal
chat-style ASCII text using Mechanical Turkers, and synthesize
speech from the resulting transliterated ASCII text. This repre-
sents a more realistic use case than in the Blizzard Challenge.

Synthesizing speech from ASCII text is challenging: Since
there is no standard way to spell pronunciations, people often
spell same word in multiple ways, e.g., the word start in Telugu
can be ASCII spelled prarhambham, prarambham, prarambam,
praranbam, etc. whilst words that differ in both pronunciation

1The ASCII character set is the union of Roman alphabets, digits,
and a few punctuation marks.

2http://www.synsig.org/index.php/Blizzard_
Challenge

and meaning might be spelled the same, e.g., the words ledhu
and ledu in Telugu could both be spelled ledu.

We address these problems by first converting ASCII
graphemes to phonemes, followed by a DNN to synthesise the
speech. We propose three methods for converting graphemes
to phonemes. The first model is a naive model which assumes
that every grapheme corresponds to a phoneme. In the second
model, we enhance the naive model by treating frequently co-
occurring character bi-grams as additional phonemes. In the
final model, we learn a Grapheme-to-Phoneme transducer from
parallel ASCII text and gold-standard phonetic transcriptions.
The contributions of this paper are:

• to synthesize speech from ASCII transliterated text for
Indian languages, which to our knowledge is the first
such attempt. Our results show that our Grapheme-
to-Phoneme conversion model combined with a DNN
acoustic model performs competitively with state-of-the-
art speech synthesizers that use native script text.

• the release of parallel ASCII transliterations of Blizzard
data to foster research in this area.

2. Related work
2.1. Transliteration of Indian Languages

Many standard transliteration systems exist for Indian lan-
guages. Table 1 shows different transliterations for an exam-
ple sentence. Among these, CPS (Common Phone Set) [8] and
IT3 [9] are widely used by the speech technology community,
ITRANS3 [10] is used in publishing houses, and WX4 [11] by
the Natural Language Processing (NLP) community. Though
these scripts provide umambiguous conversion to native Indian
scripts, due to their lack of readability, and the overhead in
learning how to use them, people still spell their words moti-
vated by pronunciation. One such transliteration is shown in
the row Informal of Table 1.

The most common trend observed in the literature is to treat
transliteration as a machine translation and discriminative rank-
ing problem [12]. Our work aims to exploit the fact that translit-
erations are phonetically motivated, and therefore treat translit-
eration as a conversion problem. Specifically, we convert in-
formal transliterations to phonetic script, and then synthesize
speech from the phonetic script using a DNN.

2.2. Statistical Speech Synthesis

Most existing work in speech synthesis for Indian languages
uses unit selection [13] with syllable-like units [14, 15]. Re-

3https://en.wikipedia.org/wiki/ITRANS
4https://en.wikipedia.org/wiki/WX_notation



Table 1: Transliteration of Hindi text in various notations
Original
Sentence
Notation Transliteration

CPS aapakei hiqdii pasaqda karanei para
khushii huii

IT3 aapakei hin:dii pasan:da karanei para
khushii huii

ITRANS Apake hiMdI pasaMda karane para khushI
huI

WX Apake hiMdI pasaMda karane para KuSI
huI

Informal apke hindi pasand karne par kushi hui

Table 2: Training data for the Grapheme-to-Phoneme model

Word Informal
transliteration

Pronunciation (CPS
notation)

congress /k/aa/q/g/r/e/s/

pravesikkavum /p/i/r/a/w/ei/c/i/k/k/a/w/u/m/

aapke /aa/p/a/k/e/

cently, based on the observation that Indian languages share
many commonalities in phonetics, a language independent
phone set was proposed, and was used in building statistical
parametric (HMM-based) speech synthesis systems [8]. We
make use of this common phone set in one of our models.

Our work also aligns with the recent literature on unsuper-
vised learning for text-to-speech synthesis which aims to re-
duce the reliance on human knowledge and the manual effort
required for building language-specific resources [16, 17, 18].
These approaches are able to learn from noisy input repre-
sentations where there is no standard orthography. Following
the success of DNNs for speech recognition [19] and synthesis
[20, 21, 22], we also use a DNN as the acoustic model.

3. Our Approach
Our speech synthesis pipeline consists of two steps: 1) Con-
verting the input ASCII transliterated text to a phonetic script;
2) learning a DNN based speech synthesizer from the parallel
phonetic text and audio signal.

3.1. Converting ASCII text to Phonetic Script

We explore three different approaches which vary in the degree
of supervision in defining a phoneme.

3.1.1. Uni-Grapheme Model

In this approach, we assume each ASCII grapheme acts as a
phoneme. We assume that the DNN will learn to map these
“phonemes” to speech sounds. We normalize the data to low-
ercase and remove all punctuation marks. This ensures that the
phone-set contains 26 letters and an extra /sil/ phone to mark
beginning and end of the sentence.

3.1.2. Multi-Grapheme Model

In this approach, in addition to uni-graphemes, we also include
some frequently co-occurring bi-graphemes as “phonemes”.

Figure 1: Performance of G2P models from uni-gram to 6-gram
for Hindi, Telugu and Tamil

From manual inspection of the top 50 bi-graphemes, we found
that the phonemes indicating stop consonants such as /kh/,
/ch/, /th/, /ph/, /bh/ and long vowels such as /aa/, /ii/,
/ee/, /oo/, /uu/ and dipthongs such as /ai/, /au/, /ou/ ap-
pear most frequently across languages. We selected 17 of these
bi-graphemes as phonemes in addition to the above 27 uni-
graphemes, making a total of 44 phonemes.

3.1.3. Grapheme-to-Phoneme (G2P) Model

In this model, we assume the phoneme-set is given. We use
the common phone set (CPS, [8]) to work with the languages
of interest. We convert the native text to CPS phonetic text us-
ing deterministic converters [9, 23]. We then align the pho-
netic transcriptions to the ASCII transliterations from Mechan-
ical Turkers to create a pronunciation table. Table 2 shows the
parallel data with the native text in the first column, the infor-
mal ASCII transliteration in the second column, and the CPS
phonetic transcription in the third column.

Given the pronunciation lexicon, we train a G2P trans-
ducer [24] for each language separately with varying n-gram
sequences. The corpus used for training is described in Sec-
tion 4.1. Figure 1 displays the phone error rate of the G2P model
with varying n-grams. The 6-gram model achieved the lowest
phone error rate across the three languages. Telugu and Tamil
achieved lower phonetic error rates compared to Hindi. This
can be attributed to the ineffective handling of intricate schwa
deletion, a well-known phenomenon in Indo-Aryan languages.

An advantage with this model is that, since the phoneme-
set is standard, we can train G2P and DNN on two independent
datasets – G2P on parallel transliterations of a very large corpus
that could be obtained via crowdsourcing, and DNN model on
gold phonetic speech transcriptions independently of the G2P
model’s performance. We leave this aspect of our work for fu-
ture. In this work, we train a DNN model on the output of G2P
aligned with natural speech.

3.2. DNN Speech Synthesizer

We use a DNN for learning to synthesize speech from the pho-
netic strings obtained in the previous step. We use two inde-
pendent DNNs – one for duration and the other for acoustic
modeling.

Let xi = [xi(1), ..., xi(dx)]
T and yi = [yi(1), ..., yi(dy)]

T

be static input and output feature vectors of the DNN, where dx
and dy denote the dimensions of xi and yi, respectively, and T
denotes transposition.



Duration Model: For duration modeling, the input com-
prises binary features (xp) derived from a subset of the ques-
tions used by the decision-tree clustering in the standard HTS
synthesiser. Similar to [20, 21], frame-aligned data for DNN
training is created by forced alignment using the HMM sys-
tem. The output is an eight-dimensional vector (yp) of durations
for every phone, comprising five sub-state durations, the over-
all phone duration, syllable duration and whole word duration.
We use this form of multi-task learning to improve the model;
the three additional features (phone, syllable, and word dura-
tions) act as a secondary task to help the network learn more
about suprasegmental variations in duration at word level. At
synthesis time, these features are predicted, but ignored.

Acoustic Model: The input uses the same features as du-
ration prediction, to which 9 numerical features are appended.
These capture frame position in the HMM state and phoneme,
state position in phoneme, and state and phoneme duration.
The DNN outputs comprise MCCs, BAPs and continuous logf0
(all with deltas and delta-deltas) plus a voiced/unvoiced binary
value.

In both acoustic and duration model, all the input features
are normalized to the range of [0.01, 0.99] and output features
are normalized to zero mean and unit variance. The DNNs are
then trained to map the linguistic features of input text to du-
ration and acoustic features respectively. If D(xi) denotes the
DNN mapping of xi, then the error of the mapping is given by:

ε =
∑
||yi −D(xi)||2 (1)

D(xi) = d̃(zn+1) (2)

zn+1 = d(w(n)d(zn)) (3)

d(ϑ) = a tanh(bϑ), d̃(ϑ) = ϑ (4)

where n indexes layer and w(n) is the weight matrix of the nth

layer of the DNN model.
At synthesis time, duration is predicted first, and is used as

an input to the acoustic model to predict the speech parame-
ters. Maximum likelihood parameter generation (MLPG) using
pre-computed variances from the training data is applied to the
output features for synthesis, and spectral enhancement post-
filtering is applied to the resulting MCC trajectories. Finally,
the STRAIGHT vocoder [25] is used to synthesize the wave-
form.

4. Experimental Setup
4.1. Speech Databases

Our languages of interest are Hindi, Tamil and Telugu, all of
which are widely-spoken Indian languages. We train and test
on the 2015 Blizzard Challenge data which contains about four
hours of speech and corresponding text for each language. The
data-set contains 1710 utterances for Hindi, 1462 utterances for
Tamil, and 2481 utterances for Telugu, with a single speaker
per language. We used 92% of the data for training, 4% for
development and 4% for testing.

4.2. Annotation

Starting from the original transcriptions in native script, we
asked crowdsourced human annotators to ASCII transliterate
them using pronunciation as their main motivation for spelling.
For Hindi and Tamil, we recruited paid workers via Mechan-
ical Turk who could read and speak the language fluently (as

self-reported); for Telugu we had access to a trusted pool of na-
tive speakers. We tokenize each sentence to words with whites-
pace and punctuations as the delimiters. The annotators were
provided with a web-interface containing a text box for each
word. This ensures transliteration of every word given in the in-
put sentence. The total number of annotators for Telugu, Tamil
and Hindi are 50, 66 and 82 respectively. We diversified train,
dev and test splits by having different set of annotators for each
split.

4.3. Experimental Settings

We used the same DNN architectures (Section 3.2) for both du-
ration and acoustic modeling. The number of hidden layers used
was 6 with each layer consisting of 1024 nodes. As shown in
equation 4, the tanh function was used as the hidden activation
function, and a linear activation function was employed at the
output layer. During training, L2 regularization was applied to
the weights with penalty factor of 0.00001, the mini-batch size
was 256 for the acoustic model and 64 for the duration model.
For the first 10 epochs, momentum was 0.3 with a fixed learning
rate of 0.002. After 10 epochs, the momentum was increased to
0.9 and from that point on, the learning rate was halved at each
epoch. The learning rate of the top two layers was always half
that of other layers. Learning rate was fine-tuned in duration
models to achieve best performance. The maximum number of
epochs was set to 30 (i.e., early stopping).

4.4. Our Models

As outlined in Section 3.1, we train three different models for
each language. The number of questions used in DNN were
different from system to system. For Uni-Grapheme model
(labelled as UGM), the questions based on quin-phone iden-
tity were used, and other questions include suprasegmental fea-
tures such as syllable, word, phrase and positional features. For
Multi-Grapheme model (labelled as MGM) and Grapheme-to-
Phoneme model (labelled as G2P), other questions based on
position and manner of articulation were additionaly included.

4.5. Benchmark

As a benchmark, we use the DNN speech synthesizer trained on
CPS phonetic transcriptions of the speech data. The goal is thus
to synthesize speech from ASCII text that is as close as possible
in quality to this benchmark (labelled as BMK).

5. Results
5.1. Objective Evaluations

5.1.1. Duration Model

To evaluate the duration prediction DNN, we calculated the
root-mean-square error (RMSE) and Pearson correlation be-
tween reference and predicted durations, where the reference
durations are estimated from the forced-alignment step in HTS.
Tables 4 and 5 present the results on test data.

Overall, the benchmark system showed better performance
than other systems in all languages. Among the proposed ap-
proaches, G2P performed slightly better than the other two in
terms of correlation, whereas RMSE performance was not con-
sistent across the languages. A possible explanation for this
is that G2P uses superior phone set defined manually whereas
UGM and MGM use unsupervised phones. Nevertheless, the
proposed systems are not too far from the benchmark.



Table 3: Objective results of the proposed techniques versus the benchmark approach. MCD and BAP are Mel-Cepstral Distortion and
Band Aperiodicity distortion, respectively. V/UV error means frame-level voiced/unvoiced prediction error. Root Mean Squared Error
(RMSE) of F0 was calculated on a linear frequency scale.

MCD
(dB)

BAP
(dB)

F0
RMSE (Hz)

V/UV error
rate(%)

MCD
(dB)

BAP
(dB)

F0
RMSE (Hz)

V/UV error
rate(%)

Method Telugu Hindi
Uni-Grapheme-TTS 4.97 2.05 35.13 6.23 4.82 1.92 10.87 9.25

Multi-Grapheme-TTS 5.02 2.06 36.49 6.01 4.81 1.92 11.29 9.31
G2P-TTS 4.77 2.04 35.18 5.94 4.80 1.92 10.77 9.30

Benchmark 4.81 2.04 37.09 5.83 4.52 1.90 10.86 8.07
Method Tamil Combined Average

Uni-Grapheme-TTS 4.87 2.07 40.65 9.63 4.89 2.01 28.88 8.37
Multi-Grapheme-TTS 5.15 2.09 43.31 9.92 4.99 2.02 30.36 8.41

G2P-TTS 5.16 2.09 44.27 10.38 4.91 2.02 30.07 8.54
Benchmark 5.06 2.08 43.67 10.04 4.79 2.01 30.54 7.98

Table 4: RMSE (frames per phone) between predicted and
forced-aligned durations.

Models Telugu Hindi Tamil
UGM 5.121 8.924 12.540
MGM 5.015 9.876 13.105
G2P 4.897 9.657 13.026

BMK 4.118 9.321 12.378

Table 5: Pearson correlation between predicted and forced-
aligned durations.

Models Telugu Hindi Tamil
UGM 0.787 0.525 0.618
MGM 0.807 0.533 0.624
G2P 0.818 0.564 0.657

BMK 0.866 0.692 0.695

Compared to Telugu, Hindi and Tamil show worse objec-
tive scores. For these two languages, punctuation marks were
not retained in the corpus, which made pauses harder to pre-
dict. As a consequence, occasional pauses in the acoustics were
frequently forced-aligned to non-pause phones, introducing er-
rors in the reference durations. These unpredictable elongations
inflated the objective measures, without perturbing the actual
predictions too much. (Telugu, in contrast, used oracle pauses,
inserted using Festvox’s ehmm based on the acoustics.)

5.1.2. Acoustic Model

We used following four objective evaluations to assess the per-
formance of the proposed methods in comparison to the bench-
mark system.

• MCD: Mel-Cepstral Distortion (MCD) to measure MCC
prediction performance.

• BAP: to measure distortion of BAPs

• F0 RMSE: Root Mean Squared Error (RMSE) to mea-
sure the accuracy of F0 prediction. The error value was
calculated on a linear scale instead of log-scale which
was used to model the F0 values.

• V/UV: to measure voiced/unvoiced error.

In all these metrics, a lower value gives the better performance.
While the objective metrics do not map directly to percep-
tual quality, they are often useful for system tuning. Table 3
presents the results on test data. As expected, the benchmark
model performs well on most metrics. While the G2P Model
performs well on Telugu and Hindi, the Uni-Grapheme model
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Figure 2: Performance of systems evaluated in the MUSHRA
test for all three languages.

does well on Tamil. Overall, the proposed approaches compare
favourably with the benchmark.

5.2. Subjective Evaluations

Three MUSHRA (MUltiple Stimuli with Hidden Reference and
Anchor)5 [26] tests were conducted to assess the naturalness of
the synthesized speech. For each language, 16 native listeners
were exposed to 20 sentences, chosen randomly from the test
set. For each sentence, 5 unlabelled stimuli were presented in
parallel: one for each of the four synthesis systems speaking
that sentence plus copy-synthesis speech (i.e., vocoded speech,
labelled as VOC) used as the hidden reference. Listeners were
asked to rate each stimulus from 0 (extremely bad for natural-
ness) to 100 (same naturalness as the reference speech), and
also instructed to give exactly one of the 5 stimuli in every set a
rating of 100.

For Telugu and Hindi, we had access to a trusted pool of
native speakers from IIIT-Hyderabad, while for Tamil we re-
cruited paid workers via Amazon Mechanical Turk as listeners.
The Mean Opinion Scores (MOS) from the tests are presented in
Figure 2 with their standard deviation represented in log-scale.
The benchmark model achieves a higher MOS in Telugu and
Hindi, as expected, while in Tamil the Uni-Grapheme model

5https://github.com/HSU-ANT/beaqlejs
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Figure 3: Box plot of absolute values from all three languages’
listening tests. Red lines are medians, dashed lines means. Box
edges show quartiles. Plus signs indicate outliers.
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Figure 4: Box plot of aggregate ranks from listening tests
(higher is better). Red lines are medians, dashed lines means.
Box edges show quartiles. Plus signs indicate outliers.

achieves best performance. However, according to paired t-tests
with Holm-Bonferroni correction for multiple comparisons, the
difference with next best system is significant only in Telugu
and Hindi. Among the proposed approaches, G2P performed
significantly better than other two in Telugu and Hindi. How-
ever in Tamil, both G2P and benchmark performed worse than
the rest. This strange behaviour can be attributed to two reasons:
1) the absence of a mechanism for detecting outliers in turker
judgements (as opposed to the use of trusted pool of listeners
for Hindi and Telugu); 2) the lack of our expertize in enhancing
letter to sound rules specific to Tamil. The difference in ratings
suggest that some additional rules or fine-tuning of lexicon may
be required for Tamil.

The MUSHRA scores combined across all three languages
for each system are presented in Fig. 3. For further analysis,
each set of fifteen parallel listener scores was converted to ranks
from 1 (worst) to 5 (best), with tied ranks set to the mean of the
tied position. A box plot of these rank scores aggregated across
all sentences and listeners is shown in Figure 4. Listener pref-
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Figure 5: Preferences among systems (how often y was rated
above x).

erences between systems are also illustrated in Figure 5. All
these figures indicate, G2P performed the best among the pro-
posed approaches.

An interesting issue is that some test sentences include
English-language words (e.g.: road, page, congress) due to fre-
quent code-switching among the native speakers (also reflected
in the text corpus). This affected the performance of G2P con-
version for those sentences, in turn creating a marginal differ-
ence between G2P and benchmark over the listening test. G2P
trained on large corpora of parallel text may remove such errors
in the future, thereby improving the synthesis quality and re-
ducing the gap towards the benchmark. [27] is one such recent
attempt for synthesizing speech from code-mixed text.

No intelligibility evaluation was conducted since transcrip-
tion word error rate (WER) has been found to be a poor metric
for Indian languages, cf. [6]. However, we believe listeners do
take into account intelligibility while rating the stimuli, even
though they were asked to rate the naturalness.

6. Applications
The grapheme-to-phoneme conversion described herein en-
abled us to build indic-search6, a search engine that helps end-
users use ASCII to search for pages written in Unicode. Text-
to-speech interfaces with ASCII input also enable users to type
in their own pronunciation rather than conforming to a specific
notation.

7. Conclusions
In this paper, we considered the problem of synthesizing speech
from ASCII transliterated text of Indian languages. Our pro-
posed approach first converts ASCII text to phonetic script,
and then learns a DNN to synthesize speech from the phonetic
script. We experimented with three approaches, which vary in
the degree of manual supervision in defining phonemes. Our
results show that G2P model with few assumptions is com-
petitive with manually-defined phoneme models. All the data,
and samples used in the listening tests are available online at:
http://srikanthr.in/indic-speech-synthesis.

6http://srikanthr.in/indic-search
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