
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photoperiod-dependent changes in the phase of core clock
transcripts and global transcriptional outputs at dawn and dusk
in Arabidopsis

Citation for published version:
Flis, A, Sulpice, R, Seaton, DD, Ivakov, AA, Liput, M, Abel, C, Millar, AJ & Stitt, M 2016, 'Photoperiod-
dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and
dusk in Arabidopsis', Plant, Cell and Environment, vol. 39, no. 9, pp. 1955-1981.
https://doi.org/10.1111/pce.12754

Digital Object Identifier (DOI):
10.1111/pce.12754

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Plant, Cell and Environment

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. May. 2024

https://doi.org/10.1111/pce.12754
https://doi.org/10.1111/pce.12754
https://www.research.ed.ac.uk/en/publications/a2e016e7-9b65-44ee-a761-4f78b59cb9ee


1 
 

Photoperiod-dependent changes in the phase of core clock transcripts and global 

transcriptional outputs at dawn and dusk in Arabidopsis  

 

Anna Flis1*,4, Ronan Sulpice1,3*, Daniel D. Seaton2, Alexander A. Ivakov1,4, Magda 

Liput1, Christin Abel1, Andrew J. Millar2 Mark Stitt1  

 

1 Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-

Golm, Germany 

2 SynthSys and School of Biological Sciences, C.H. Waddington Building, University of 

Edinburgh, Edinburgh EH9 3BF, Scotland, UK 

3 Present Address: NUIG, Plant Systems Biology Lab, Plant and AgriBiosciences Research 

Centre, Botany and Plant Science, Galway, Ireland 

4 Present Address: ARC Centre of Excellence for Translational Photosynthesis, Research 

School of Biology, Australian National University, GPO Box 475, Canberra, ACT, 2601, 

Australia 

 

*contributed equally  

 

Corresponding author 

Mark Stitt, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 

Potsdam-Golm, Germany,  

TEL ++49 331 567 8100;  

FAX ++49 331 5567 8101;   

email: mstitt@mpimp-golm.mpg.de 

 

Keywords 

Arabidopsis, circadian clock, metabolism, photoperiod, transcripts 

mailto:mstitt@mpimp-golm.mpg.de


2 
 

ABSTRACT 

Plants use the circadian clock to sense and respond to photoperiod length. Seasonal responses 

like flowering are triggered at a critical photoperiod when a light-sensitive clock output 

coincides with light or darkness. However, many metabolic processes, like starch turnover, 

and growth respond progressively to photoperiod duration. We first tested the photoperiod 

response of ten core clock genes and two output genes. qRT-PCR analyses of transcript 

abundance under 6, 8, 12 and 18 hour photoperiods revealed 1-4 hour earlier peak times 

under short photoperiods, and detailed changes like rising PRR7 expression before dawn. 

Clock models recapitulated most of these changes. We then explored the consequences for 

global gene expression by performing transcript profiling in 4, 6, 8, 12 and 18 hour 

photoperiods. There were major changes in transcript abundance at dawn, which were as 

large as those between dawn and dusk in a given photoperiod. Contributing factors included 

altered timing of the clock relative to dawn, and light-signaling and changes in carbon 

availability at night due to clock-dependent regulation of starch degradation. Their interaction 

facilitates coordinated transcriptional regulation of key processes like starch turnover, 

anthocyanin, flavonoid and glucosinolate biosynthesis and protein synthesis, and underpins 

the response of metabolism and growth to photoperiod.  
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INTRODUCTION 

Organisms live in a world in which light and darkness alternate every 24 h, and the relative 

lengths of the light and dark periods change with season. Circadian clocks are found from 

archaea to mammals and act as internal time-keepers to generate ~24 h rhythms (Dong and 

Golden, 2008; Zhang and Kay, 2010). Clocks maintain endogenous rhythms in the absence of 

external inputs, but are entrained by inputs like light and temperature. This synchronizes 

them with the external light-dark cycle, especially dawn, allowing them to operate as reliable 

timekeepers in a wide range of natural conditions (Johnson et al. 2003; Millar, 2004; Dodd et 

al. 2005). Clocks have two main functions. Firstly, they coordinate metabolic, physiological 

and developmental responses with the daily recurring cycle of light and darkness (Millar, 

2004; Dodd et al. 2005; Zhang & Kay, 2010; Farré & Weise, 2012; Seo &Mas, 2014). 

Secondly, they regulate seasonal responses (Yanovsky and Kay 2002; Valdeverde et al. 2004; 

Edwards et al. 2010; Kinmonth-Schultz et al. 2013). 

The plant clock regulates developmental transitions like bud break, flowering and the onset of 

senescence and dormancy to ensure they occur at an appropriate time of the year. According 

to the ‘external coincidence’ model’, these essentially binary responses are triggered when 

the photoperiod exceeds or falls below a critical duration, in which the relevant clock output 

coincides with a time in the external light-dark cycle when the downstream transcripts and 

encoded proteins are stable and active (Yanovsky & Kay 2002; 2003; Hayama & Coupland, 

2003; Imaizumi & Kay 2003; Valverde et al. 2004; Andres & Coupland, 2013). This model 

assumes that progression of the clock is largely independent of photoperiod duration and that 

the timing of the relevant clock output is set largely by the time of dawn and has low dusk 

sensitivity (Song et al. 2014; Seaton et al. 2015). Dusk sensitivity measures how much the 

phase of entrainment is affected by the duration of the light period (Edwards et al. 2010).  

In contrast, many metabolic processes and growth respond in a continuous manner over a 

wide range of photoperiods. Photoperiod duration has two major consequences for 

metabolism and growth. Firstly, shorter light periods decrease growth because less light 

energy is available to drive photosynthetic carbon (C) fixation. Secondly, a longer night 

requires alterations in diurnal C allocation and the timing of growth. Plants use transient C 

reserves like starch as a buffer against the daily alternation of light and darkness (Smith & 

Stitt 2007). In Arabidopsis, part of the newly fixed C is stored as starch in the light and 

remobilized to support metabolism and growth in the night. As the photoperiod becomes 

shorter there is a progressive increase in the rate of starch synthesis and decrease in the rate 
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of starch degradation (Smith & Stitt, 2007; Sulpice et al. 2014). Starch degradation is 

regulated such that starch is almost but not completely exhausted at dawn, as anticipated by 

the clock (Graf et al. 2010; Scialdone et al. 2013), ensuring that C reserves last until dawn 

across a wide range of environmental conditions (Gibon et al. 2009; Pyl et al. 2012; 

Scialdone et al. 2013; Sulpice et al. 2014; Pilkington et al. 2014). These changes in diurnal 

starch turnover are intertwined with changes in the rate and timing of growth. In short 

photoperiods, the rate of growth in the light is decreased because more fixed C is allocated to 

starch, and the rate of growth in the night is decreased because the lower rate of starch 

degradation results in lower levels of sugars, lower polysome loading and slower growth (Pal 

et al. 2013; Sulpice et al. 2014). The mechanism by which the clock paces the starch 

breakdown to dawn is likely to differ from the coincidence model, because starch turnover 

adjusts to a wide range of photoperiods and because the rate of starch degradation can be 

reset throughout most of the 24 h cycle (Graf et al. 2010; Scialdone et al. 2013) 

Premature exhaustion of starch is detrimental, as revealed by investigations of the starchless 

pgm mutant, or wild-type plants after a sudden extension of the night. Exhaustion of starch 

leads to activation of catabolism (Thimm et al. 2004; Gibon et al. 2004; 2009) including 

protein degradation (Izumi et al. 2014; Pilkington et al. 2014; Ishihara et al. 2015), inhibition 

of protein and cell wall synthesis (Pal et al. 2013; Ishihara et al. 2015) and an inhibition of 

growth (Apelt et al. 2015) that is not immediately reversed after re-illumination 

(Yazdanbakhsh et al. 2011). In the short period lhycca1 mutant, starch is exhausted 

prematurely (Graf et al. 2010) resulting in an inhibition of growth at the end of the night 

(Yazdanbakhsh et al. 2011) that can be overcome by exogenous sugar (Yazdanbakhsh et al. 

2011) or by growing the mutant in a short T-cycle (Graf et al. 2010). This emphasizes the 

importance of the clock for the regulation of C allocation and growth.  

The core clock in Arabidopsis thaliana can be schematized as a tightly-interconnected 

network three-loop structure of ‘dawn’ and ‘evening’ loops coupled around a repressilator 

(Nakamichi et al. 2011; Pokhilko et al. 2012; Carré & Veflingstad, 2013; Fogelmark & 

Troein, 2014). The ‘dawn’ loop includes the two MYB-related transcription factors LHY and 

CCA1. They are proposed to activate expression of the ‘day’ genes PRR9 and PRR7 (Farre et 

al. 2005; Salome & McClung, 2005) and inhibit expression of ‘dusk’ genes including PRR5 

and TOC1/PRR1. As LHY and CCA1 proteins fall, the dusk genes (PRR5, TOC1) are 

induced and reinforce the repression of the dawn genes. PRR9, PRR7, PRR5 and TOC1 are 

members of the pseudo-response regulator (PRR) family. Their negative action on the dawn 
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genes is predicted by modelling (Pokhilko et al. 2012; Pokhilko et al. 2010) and it has been 

demonstrated that these PRR proteins bind to the LHY and CCA1 promoters (Gendron et al. 

2012; Huang et al. 2012; Nakamichi et al. 2010; Nakamichi et al. 2012). LHY and CCA1 

also inhibit expression of ELF3, ELF4 and LUX (PCL1), whose protein products interact to 

form the Evening Complex (EC) (Dixon et al. 2011; Helfer et al. 2011; Herrero et al. 2012; 

Nusinow et al. 2011). The EC represses the morning loop by specifically binding to the 

promoters of PRR9 (Dixon et al. 2011; Helfer et al. 2011; Chow et al. 2012) and PRR7 

(Dixon et al. 2011; Mizuno et al. 2014). The EC is also thought to self-inhibit expression of 

at least two of its components, ELF4 and LUX (Pokhilko et al. 2012). GI is rhythmically 

expressed at about the same time as the dusk genes, and functions at a post-translational 

level, for example by stabilizing the TOC1-degradation factor ZTL (Kim et al. 2007). Thus, 

at the start of the 24 h cycle there is high expression of the dawn genes (LHY, CCA1), which 

sequentially induces the day (PRR9, PRR7) and dusk (PRR5, TOC1) genes, leading to 

repression of the ‘dawn’ genes and induction of the EC. Later in the 24 h cycle, decay or self-

repression of the ‘day’, ‘dusk’ and EC genes reverses the repression of LHY and CCA1, 

which rise to a peak at around the next dawn. It was recently proposed that this wave of 

negative feedback loops is complemented by a feedforward process, in which decaying 

activity of PRR9 and PRR7 leads to induction of RVE8, which is an activator of the dusk and 

EC genes (Hsu et al. 2013).  

Light signaling plays an important role in determining clock period and in synchronizing the 

internal rhythmicity of the clock oscillator with the external light-dark cycle (Edwards et al. 

2010; Kinmouth-Schutz et al. 2013; Staiger et al. 2013). In free-running conditions, clock 

period decreases in a fluence-dependent manner from about 30 h in continuous darkness to 

about 24 h in moderate light (Millar, 1995). In a light-dark cycle, light signaling entrains the 

clock such that LHY and CCA1 transcripts peak close to dawn (Kinmouth-Schutz et al. 2013; 

Staiger et al. 2013). Light transcriptionally regulates many core clock genes including PRR9 

(Makino et al. 2002: Ito et al. 2005; 2007), PRR5, GI and ELF4 (Fowler et al. 1999; Locke et 

al. 2006; Li et al. 2011) and, in the subjective night, PRR7 (Rugone et al., 2013). Light 

regulates transcript stability, for example by stabilizing CCA1 transcript (Seo et al. 2012). 

Light regulates the stability of many core clock proteins (Seo & Mas, 2014). Most core clock 

proteins are degraded via the proteasome (Van Ooijen et al. 2011) and, with the possible 

exception of CCA1 and LHY (Kim et al. 2003; Kangisser et al. 2013) show differential 

stability in light and darkness. Light inhibits degradation of PRR9 (Ito et al. 2007), PRR7 
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(Farré & Key, 2007), PRR5 (Kiba et al. 2007), TOC1 (Mas et al. 2003a; 2003b) and GI 

(David et al. 2006; Kim et al. 2007). In the case of PRR5, TOC1 and GI, dark dependent 

degradation is mediated via the light receptor ZTL, which is a regulatory component of an E3 

ligase complex (Kiba et al. 2007, Más et al. 2003a; Mas et al. 2003b; Kim et al. 2007). ELF3 

forms a complex with the COP1 E3 ubiquitin-ligase (Yu et al. 2008; Lau & Deng 2012). In 

the light, the ELF3-COP1 complex is inhibited by binding of CRY1, CRY2 (Wang et al. 

2001; Yang et al. 2001; Yu et al. 2008) and PHYB (Liu et al. 2001). In the dark, it mediates 

the targeted degradation of positive regulators of light signal transduction like GI (Yi & 

Deng, 2005). ELF3-COP1 complex activity is progressively attenuated during the night due 

to degradation of ELF3 protein by the ELF3-COP1 complex itself, and via a COP1-

independent route (Yu et al. 2008). Light signaling may also influence the stability or activity 

of core clock proteins more directly; it was recently shown that PHYB protein can potentially 

interact with many clock proteins including LHY, CCA1, GI, TOC1, LUX and ELF3, and 

that the interaction with CCA1, TOC1 and LUX depends on the ratio of red and far red light 

(Yeom et al. 2014). Thus, the clock is probably influenced by multiple light-signaling inputs, 

which act not only at dawn to entrain the clock but also later in the 24 h cycle, including 

destabilization of clock components after dusk. However, the interactions are challenging to 

analyze, and recently identified light inputs have not yet been integrated into the clock circuit.  

Although the plant clock is considered to be dawn-dominant, it is known that the phasing of 

some clock components depends on the photoperiod. Peak transcript abundance of GI 

(Fowler et al. 1999; Edwards et al. 2010), TOC1 (Matsushika et al. 2000; Edwards et al. 

2010), PRR3, PRR5, PRR7, PRR9 (Matsushika et al. 2000) LHY and CCA1 (Edwards et al. 

2010) show a 2-4 h delay in expression relative to dawn under long days compared to short 

days. However, each of these earlier analyses looked at a subset of clock genes. It is therefore 

not possible to perform an integrated analysis to test whether these photoperiod-dependent 

changes are consistent with current clock models (Pokhilko et al. 2010; 2012; Troein & 

Fogelmark, 2014). As almost all previous studies were restricted to two photoperiods, it is 

unclear whether core clock operation changes in a continuous manner across a wide range of 

photoperiods, or is modified when photoperiod duration moves outside a critical range. As 

most previous studies used sucrose-supplemented medium, it is unclear how photoperiod 

affects the clock in conditions where growth depends on appropriate allocation of 

photosynthate to reserves like starch. Further, although previous studies revealed that 

photoperiod length alters the timing or amplitude of individual clock outputs like expression 
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of CAB2 (Hicks et al. 1996; Millar & Kay 1996), CO, FT (Yanovsky & Kay 2002), FKF1, 

CDF1 (Niwa et al. 2009) PIF4 and PIF5 (Niwa et al. 2009; Nomoto et al. 2012) and a wider 

range of genes after a sudden decrease in photoperiod in poplar (Hoffman et al. 2010), the 

impact of photoperiod on global gene expression has not been systematically investigated.  

We previously showed that C is limiting for growth of Arabidopsis in a 4, 6 and 8 h 

photoperiod, close to saturation in a 12 h photoperiod and in excess in an 18 h photoperiod 

(Sulpice et al. 2014). Briefly, biomass increases progressively between a 4, 6, 8 and 12 h 

photoperiod but only increases slightly between a 12 h and 18 h photoperiod, and starch is 

almost completely exhausted at dawn in a 4, 6, 8 and 12 h photoperiod but not in an 18 h 

photoperiod. We also showed that diurnal changes in transcript abundance in a 12 h light-

dark cycle are generated by an interaction between clock-, C- and light-signaling (Bläsing et 

al. 2005; Usadel et al. 2008). We now report an exhaustive analysis of transcript abundance 

for ten core clock components in a wide range of photoperiods. We show that there are 

substantial and progressive photoperiod-dependent changes in the phasing of all core clock 

genes as the photoperiod is lengthened in the range where C is limiting for growth and in the 

range where growth is in excess, and investigate whether current clock models predict these 

progressive photoperiod-dependent changes in clock phase. We then perform expression 

profiling at dawn and dusk to assess whether there are major photoperiod-dependent changes 

in the global transcriptome, whether these changes are due to the altered clock phase, altered 

C availability at night or changes in light signaling, and how they contribute to the adjustment 

of metabolism and growth to different photoperiods.  

 

MATERIALS AND METHODS 

Plant growth and harvest conditions 

Arabidopsis thaliana Col-0 was grown on GS 90 soil mixed with vermiculite in a ratio 2:1 

(v/v). For qRT-PCR analyses wild type Col 0 was grown in 6h/18h, 8h/16h, 12h/12h and 

18h/6h photoperiod from germination (irradiance 160 µmol m-2, temperature 20°C and 18°C 

during the day and night respectively) and harvested after 21 days (Sulpice et al. 2014). 

Sampling was performed at 2 h intervals, starting just before dawn (ZT0). For microarray 

experiments, seedlings were grown for 1 week in a 16h light (250 µmol.m-2 s-1, 20°C) / 8h 

dark (6°C) regime, for 1 week in an 8 h light (160 µmol.m-2 s-1, 20°C) / 16 h dark (16°C) 

regime, and then replanted with 5 seedlings per pot, transferred for 1 week to growth cabinets 
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with an 8 h photoperiod (160 µmol.m-2 s-1, 20°C throughout the day/night cycle), and then 

distributed into small growth cabinets with a 18, 12, 8, 6 or 4 h photoperiod (all with a light 

intensity of 160 µmol.m-2 s-1 and 20/18°C in the day/night) (Sulpice et al. 2014). Plants were 

harvested 9 days later at the end of the night (EN) and at the end of the day (ED).  

For harvesting, rosettes were cut at ground level, placed in plastic scintillation vials and 

immediately frozen in liquid nitrogen. During the dark phase the plants were sampled in the 

presence of low-intensity green lamp. Plant material was stored at -80°C. Plant material was 

homogenized using a Ball-Mill (Retch, Germany). Around 50 mg of material from each 

sample was manually aliquoted into 2 mL Eppendorf tubes while frozen.  

Microarrays  

RNA was extracted with RNeasy Plant Mini Kit (QIAGEN) by following manufacturer’s 

instructions, and quality monitored with the Agilent 2100 Bioanalyzer. Hybridization on the 

GeneChip Arabidopsis ATH1 array was done by Altas Biolabs GmbH, Berlin, Germany. 

RMA normalization and data analysis were performed with Robin (Lohse et al., 2010). . 

Absolute quantification of clock gene transcripts using qRT-PCR  

Transcript abundance of core clock genes and clock outputs was monitored using qRT-PCR 

in 384-well plates (ABI PRISM 7900). For absolute quantification, 8 ArrayControl RNA 

Spikes (Applied Biosystems) were added before RNA extraction and cDNA synthesis 

(Piques et al. 2009). DNA was removed from samples using TURBO DNA-freeTM kit 

(Applied Biosystems) following the supplied protocol. The RNA concentration was 

determined using a Nano-Drop ND-1000 UV-Vis spectrophotometer (Nano-Drop 

Technologies). Reverse transcription was performed using SuperScript III First-Standard 

Synthesis System Kit (Invitrogen) in a 384 well 384-well plate with an ABI PRISM 7900 HT 

sequence detection system, Applied Biosystems Deutschland, Darmstadt, Germany). The 

PCR mix was prepared using Power SYBR Green PCR Master Mix (Applied Biosystems, 

Deutschland) and pipetted into the wells using pipetting robot PerkinElmer Evolution P3 

Precision Pipetting Platform (PerkinElmer Life Science, Rodgau-Jügesheim, Germany). 

Primers used for qRT-PCR were the same as described in Flis et al. (2015). Data analysis was 

performed using SDS 2.4 software (Applied Biosystems Deutschland).  

Statistics 

Clock gene transcript abundance (log2 copy number cell-1) was normalized to a 0 – 1 scale 

(or maximum = 1 scale). A heat map was constructed using the heatmap.2 function in gplots 
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package in R software (R CoreTeam, 2014). Smooth curves were fitted between measured 

data points using a polynomial spline function using smooth.spline function (R CoreTeam, 

2014). Amplitude and peaks in transcript abundance were quantified using quantmod package 

in R software (R CoreTeam, 2014). PCA analysis was performed using the Systat 13 (Systat 

software, San Jose, USA) and Over Enrichment Analysis with Pageman (Usadel et al., 2006).   

Model comparisons and normalization 

Ten sets of model simulations were performed: 2 with the “P2011” model (old and new 

parameter sets, labelled “P2011.1”, “P2011.2”, respectively) (Pokhilko et al., 2012; Flis et 

al., 2015) and eight times using the different parameter sets for the “F2014” model (“P1”-

“P8”) (Fogelmark & Troein, 2014). The results of were in arbitrary units, but were rescaled to 

match the scale of the data. For each transcript, these time series were rescaled by a constant 

factor such that the RMSD between simulations and data was minimized (note: for each 

transcript, the same rescaling factor was used in all photoperiods). The costing of individual 

time series (i.e. a particular species in a particular photoperiod) is then the RMSD between 

model simulation and data. The averages of these are then also calculated on a per-transcript, 

per-photoperiod, and per-model-parameterization basis. In order for RMSD between different 

transcripts to be comparable, the data were normalized such that the average level of each 

transcript across all time points (i.e. across all four photoperiods) was 1. This prevents high-

abundance transcripts from dominating the cost calculation. In order to produce 

comprehensible plots summarizing the 10 simulations, they were combined to give a median 

value, along with an upper decile (i.e. the second-highest value) and lower decile (i.e. the 

second-lowest value). This was done on a time point-by-time point basis. 

Data and Model accessibility 

qRT-PCR data for clock gene RNA profiles are available from the ‘public’ account in the 

BioDare repository (www.biodare.ed.ac.uk) with identifier 3967, or at the following direct 

link: https://www.biodare.ed.ac.uk/robust/ShowExperiment.action?experimentId=3967 

Models P2011.1 and P2011.2 (Flis et al., 2015) are available from the Plant Systems 

Modelling Repository (www.plasmo.ed.ac.uk) using identifier PLM_71, or at the following 

direct link: http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?accession=PLM_71  

The microarray dataset supporting the results of this article is available from ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress, accession number E-MTAB-3143).  

 

http://www.biodare.ed.ac.uk/
https://www.biodare.ed.ac.uk/robust/ShowExperiment.action?experimentId=3967
http://www.plasmo.ed.ac.uk/
http://www.plasmo.ed.ac.uk/plasmo/models/model.shtml?accession=PLM_71
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RESULTS  

Photoperiod-dependent changes in the phase and amplitude of the core genes 

Arabidopsis Col-0 was grown in a 6, 8, 12 and 18 h photoperiod for 21 days, and duplicate 

samples then harvested at 2 h intervals though a 24 h cycle to determine the abundance of ten 

core clock genes (LHY, CCA1, PRR9, PRR7, PRR5, GI, TOC1, ELF4, ELF3, LUX) and two 

output genes (PIF4, PIF5) by qRT-PCR. Eight artificial rRNA species were added to the 

plant material before RNA extraction and cDNA synthesis to allow absolute quantification of 

transcripts (Piques et al. 2009; Flis et al. 2015). Transcript abundance was calculated as copy 

number.cell-1, using a conversion factor of 25x106 cells g-1FW. To estimate peak timing, 

missing values between the measured 2 h intervals were modelled using a polynomial spline 

function (Supplemental Table S2). This is more reliable than visual inspection, which can be 

affected by single noisy data points. The data are provided in Supplemental Table S1 and at 

the BioDare online resource. Selected examples are shown in Fig. 1, and a full display in 

Supplemental Fig. S1. The results were analyzed to generate heat maps (Fig. 2A), 

information about peak transcript abundance and phase (Fig. 2B) and phase plots 

(Supplemental Fig. S2, selected examples are shown in Fig. 3). Fig. 2B uses a linear scale for 

abundance, whereas Figs. 1, 2A, and 3 and Supplemental Fig. S1 and S2 use a log2 scale.  

All clock genes showed a delay in their expression peak as photoperiod was lengthened (Figs. 

1, 2, Supplemental Fig. S1,  see Supplemental Table S2 for calculated delays). As data are 

plotted relative to dawn, if their response was dawn-tracking (i.e., perfectly dawn-dominant), 

the transcript peak times would be completely independent of photoperiod. The extent of the 

delay indicates the extent to which each gene is sensitive to the timing of dusk. The time of 

dusk changes by up to 12 h. The estimated delay of the expression peak was largest for PRR9 

and TOC1 (4.5 and 3.7 h, respectively), intermediate for CCA1, LUX, ELF4, PRR5, GI and 

LHY (2.7, 2.9, 2.5, 2.0, 1.8 and 1.3-0.9, h, respectively, for LHY the delay was largest for the 

12 h photoperiod), and smallest for PRR7 where the delay was negligible until a 12 h 

photoperiod and only 1 h in an 18 h photoperiod) (Figs. 2A, 2B; see also Supplemental Table 

S1). ELF3 showed a broad peak making estimation difficult. Peak transcript abundance was 

less affected (Fig. 2B). Lengthening the photoperiod led to a large decrease in peak transcript 

abundance for PRR9, a small decrease for PRR7, PRR5 and TOC1, and an increase for ELF4.  

Estimated peak transcript abundance for the dawn components CCA1 and LHY was 1.9 and 

1.3 h before dawn in the 6 h photoperiod, and 0.8 h after dawn and close to dawn in an 18 h 
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photoperiod, respectively. PRR9 expression is positively regulated by light (Makino et al. 

2002: Ito et al. 2005; 2007). Correspondingly, PRR9 transcript did not rise until after dawn, 

except for a very small rise at dawn in the 6 h photoperiod (Supplemental Fig.1). Although  

reported to be light-induced (Farre & Kay, 2007). PRR7 transcript started to rise before dawn 

and this pre-dawn rise became increasingly marked in short photoperiods.  

GI, PRR5, TOC1 and LUX showed secondary peaks (Figure 2, Supplemental Figure S1, 

Supplemental Table S3). GI had a secondary peak at about ZT2 with a larger amplitude in 

short photoperiods (50% of the major peak) than long photoperiods, again emphasizing that 

the acute light response is stronger in short photoperiods. A post-dawn peak of GI transcript 

was reported previously (Locke et al. 2005; Edwards et al. 2010). The secondary peaks for 

PRR5, TOC1, and LUX occurred at about ZT16-18, after the major peak for these genes. The 

secondary peak was found in all photoperiods for PRR5, three photoperiods for LUX and two 

for TOC1. Secondary peaks have been observed in some earlier studies, for example for 

TOC1 (Strayer et al. 2000) and PRR5 (Hsu et al. 2013)  

Phase plots (Fig. 3, Supplemental Fig. S2) reveal shifts in the expression patterns of genes 

relative to each other. Whilst many transcript pairs kept similar general relationships, there 

were some marked changes, especially for PRR9 (examples shown in Figs. 3A-C). This 

reflects the large photoperiod-dependent changes in PRR9 phase (see above).There was also a 

large displacement between PRR7 and ELF4 (Fig. 3D). ELF4 contributes to the EC repressor, 

which inhibits both PRR7 and ELF4 expression (see Introduction). PRR7 was more 

effectively repressed under long than short photoperiods during the falling phase of ELF4 

expression at ZT8-14, which occurred in the light in long and in the dark in short 

photoperiods. Occasionally photoperiod-dependent changes reversed the direction of the 

phase plot, for example in the LUX vs ELF4 plot (Fig. 3F).  

The two clock output genes PIF4 and PIF5 showed a strong phase delay as photoperiod was 

lengthened (Supplemental Fig. 1). In particular, PIF4 was at its minimum at dawn in LD but 

near to its maximum at dawn in extreme SD. As PIF4 and PIF5 are inhibited by EC 

(Nusinow et al. 2012) their delayed rise in LD can be at least partly explained by the phase 

delay of EC transcripts, as well as the probable earlier post-translational destabilization of 

dusk and EC transcripts and proteins by darkness in short photoperiods (Seaton et al. 2015).  

Modelling the photoperiod-dependent changes in core clock transcript abundance 
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We asked if these photoperiod-dependent changes in core clock transcript abundance could 

be simulated by mathematical clock models. This allows us to assess whether known 

molecular mechanisms are sufficient to describe the clock’s response to changing 

photoperiods. Simulations were performed for a 6, 8, 12 and 18 h photoperiod. We ran the 

simulations with the clock model in Pokhilko et al. (2012) (P2011.1), with this model after 

re-parameterization using data from two wild-types (Col-0; Ws-2) and five clock mutants 

(lhycca1, prr7prr9, toc1, gi, elf3) growing in a 12 h photoperiod and after transfer to free-

running light (Flis et al. 2015) and the current data set (P2011.2), as well as a revised model 

(Fogelmark & Troein, 2014) (F2014) that also includes BROTHER OF LUX ARRHYTHMO 

(NOX/BOA) (Dai et al. 2011) and the newly proposed activator RVE8 (Hsu et al. 2013). The 

F2014 model was run eight times: once for each of the eight parameter sets that were 

identified as providing good fits to available data in Fogelmark & Troein (2014). 

Comparison with the measured data allowed ‘costs’ (which are inverse to the quality of fit) to 

be calculated (Fig. 4A). The re-parameterized P2011.2 model showed lower costs for all 

photoperiods than the original P2011.1 model. The F2014 model showed further 

improvement for all eight alternative parameter sets. Comparison of the simulated responses 

and experimental data on a gene-by-gene basis reveals which genes and conditions the 

models describe well, and which are not matched well. Fig. 4B summarizes the average 

performance of the F2014 model with all eight parameter sets, and Fig. 4C and Supplemental 

Fig. S3B compare the measured and simulated transcript abundance for each transcript and 

photoperiod. The simulated responses of LHY, TOC1 and ELF3 were consistently the most 

accurate (Fig. 4B) with the phase advances of these components in shorter photoperiods 

being well simulated (see Fig. 3C for LHY and Supplemental Fig. S3B for TOC1 and ELF3). 

The response of PRR7 was well simulated except in the 6 h photoperiod (Fig. 3B). However, 

there were also features that the models could not explain. The phase advance and increasing 

amplitude of PRR9 in short photoperiods was always poorly described (Figs. 4B-C). As 

already noted, PRR9 transcript showed the largest photoperiod-dependent changes in phase 

and amplitude. The secondary peaks of LUX, TOC1, and PRR5 were matched by models only 

for TOC1 (Supplemental Figure S3B). A rapid rise GI after dawn was present in model 

simulations, but the secondary peak at ZT2 in the 6 h photoperiod was underestimated 

(Supplemental Figure S3B). Comparison across photoperiods indicates the models perform 

less well in a 6 h than longer photoperiods (Fig 4A), mainly due to high costs for PRR9 and 
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PRR7 in the 6 h photoperiod (Fig. 4B). These qualitative differences between simulations and 

data highlight the existence of additional forms of regulation that remain to be characterized. 

Large photoperiod-dependent changes in global gene expression at dawn and dusk 

Diurnal changes in transcript abundance in a 12 h light-dark cycle are generated by an 

interaction between clock-, C- and light-signaling (Usadel et al. 2008). This led us to ask if 

there are major photoperiod-dependent changes in the transcriptome and if these are due to 

the altered clock phase, altered C availability or changes in light signaling.  

ATH1 arrays were performed on biological triplicates harvested at dawn and dusk in Col-0 

growing in a 4, 6, 8, 12 or 18 h photoperiod. The data is provided in Supplemental Table S4. 

Whilst all dawn samples were harvested at the same ZT (ZT24/0), dusk samples were 

harvested at a progressively later ZT as the photoperiod was lengthened. On the assumption 

that the clock is subject to dawn-dominant regulation, we would expect small changes in gene 

expression at dawn but large changes at dusk, reflecting the large changes found as a plant 

progresses through the circadian and diurnal cycle (Harmer et al. 2000; Edwards et al. 2006; 

Usadel et al., 2008). We therefore analyzed the dawn and dusk data sets separately.  

At dawn, 1109, 169, 35 and 3 transcripts showed >2-, >4-, >8- and >16-fold changes, resp-

ectively, between a 4 and 18 h photoperiod (Fig. 5A, Supplemental Table S4). There were 

about half as many changes between a 4 and 12 h photoperiod. Thus, expression at dawn 

changes across the range of photoperiods where C is limiting (4-12 h) and in the range where 

C is not limiting growth (12-18 h) (Sulpice et al., 2014). We compared photoperiod-

dependent and diurnal changes in expression. More transcripts changed between dawn and 

dusk in short photoperiods (Fig. 5B). Strikingly, the number of transcripts that showed 

photoperiod-dependent changes at dawn between a 4 h and 12 or 18 h photoperiod (Fig. 5A) 

was comparable to the number that showed a diurnal change between dawn and dusk in short 

photoperiods. Thus, photoperiod has a major and progressive impact on transcript abundance 

at dawn. Indeed, slightly more transcripts showed changes at dawn than at dusk (Fig. 5A).  

Principle components analysis reveals progressive changes in global gene expression  

Fig. 6A-B shows a principle component (PC) analysis of the dawn and dusk data sets. The 

triplicates for a given treatment grouped together. The genes that contribute to each principal 

component (PC) represent an objectively-ranked set of the most responsive transcripts (see 

Supplemental Table S4 for weightings) and analysis of these smaller sets of genes will best 

describe changes in the global transcriptome.  
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At dawn (Fig. 6A), PC1 accounted for 46% of the variance and separated the treatments into 

three groups: 18 h, 12 h and the 8, 6 and 4 h photoperiods, which grouped together. PC2 

accounted for 26% of the variance: the 12 and 18 h photoperiod were separated from the 8, 6 

and 4 h photoperiods. The distribution in the PC plot reflects the relation between the supply 

of C and its utilization for growth in these different photoperiods (see Introduction). At dusk 

(Fig. 6B), PC1 accounted for 39% of the variance and separated the treatments in the order 18 

h, 12 h, 4 h, and 8 and 6 h. PC2 accounted for 30% of the variance. Weightings at dawn and 

dusk were negatively correlated for PC1 (R2 = 0.68) but unrelated for PC2 (R2 = 0.01) 

(Supplemental Fig. S4). Thus a partly overlapping set of genes, many with opposite responses 

at dawn and dusk, distinguishes the transcriptomes in long and short photoperiods. 

Gene categories and individual genes with strong photoperiod-responses at dawn  

We asked which types of gene show photoperiod-dependent changes in expression. 

Enrichment analyses were performed using the MapMan ontology (Thimm et al. 2004; 

Usadel et al. 2009; http://mapman.gabipd.org/web/guest/home) (Supplemental Table S6). At 

dawn, 67 categories were under or over-represented in PC1 or PC2, with 30 being shared 

(Fig. 6C). Shared over-represented categories included carbohydrate metabolism (especially 

starch degradation), ribosomes (especially BRIX proteins for ribosome assembly), secondary 

metabolism (in particular glucosinolate, anthocyanin and flavonoid), hormone metabolism 

(especially auxin), light signaling and transcription (especially MYB, CONSTANS-LIKE, 

AP2/EREBP transcription factors). Categories over-represented in only PC1 included 

trehalose metabolism, heat stress, glutaredoxins, ethylene signal transduction, jasmonate 

metabolism and PRR transcription factors. Categories overrepresented in only PC2 included 

cytosolic glycolysis, nitrate metabolism and metal chelation and storage.  

Examples of individual genes with a high weighting at dawn are listed in Supplemental Table 

S6. Genes with a positive weighting in PC1 (separating 4-8 h, 12 h and 18 h photoperiods) 

included clock dawn components (CCA1, LHY), transcription factors (MYB, DOF, NAC, 

bZIP and CONSTANS-LIKE family members), E3 ligases, protein kinases and phosphatases 

(including SnRK1 kinase regulatory subunit KINβ-1), light-signaling components (PAR7, 

PKS2, HFR1, AFR, PIL6, HYH) and trehalose phosphate synthase (TPS) class 2 genes (TPS8, 

TPS10, TPS11). Genes with a high negative weighting in PC1 included day, dusk and 

evening clock genes (PRR9, PRR5, TOC1, GI, ELF4), transcription factors, E3 ligases, 

protein kinases and genes in starch metabolism (APL3, AMY3, PHS2, ISA3). Genes with a 

positive weighting in PC2 (separating 4-8 h and 12-18 h photoperiods) included dawn clock 
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components (CCA1, LHY) and genes associated with clock output pathways (CO, COL1, 

COL2, RVE/CIR1), light signaling (ELIP1, HYH) and sucrose export (SUC1, SWEET12). 

Genes with a high negative weighting in PC2 included clock components (PRR9, PRR7, 

PRR5, GI, ELF4), light signaling components (PIF4, CCL, ELI, EPR1) and protein kinases.  

Summarizing, first, there are large photoperiod-dependent changes in the transcriptome at 

dawn, second, these broadly recapitulate the relation between the C supply and utilization for 

growth, third, changes in core clock gene transcript abundance are an important component 

of the photoperiod-dependent change in global expression at dawn and, fourth, there are 

changes in transcript abundance for many further regulatory and metabolic genes.  

Patterns of responses of transcript abundance 

To provide another overview of the impact of photoperiod on gene expression, we adapted an 

approach used in Baerenfaller et al. (2012). Based on the response as photoperiod was 

lengthened from 4 to  18 h, we classified genes into eight classes whose transcripts went up at 

dusk and dawn (UU), down at dusk and dawn (DD),  up at dusk and down at dawn (UD), 

down at dusk and up at dawn (DU), up (U0) or down (D0) at dusk but did not show a major 

change at dawn, or did not show a major change at dusk but went up (0U) or down (0D) at 

dawn (criteria for a change was a > 3-fold change and FDR <0.05, for no larger change was 

<0.8-fold change, all between a 4 and 18 h photoperiod) (Supplemental Table S4). All classes 

were found; examples are summarized in Supplemental Fig. S5. Many genes showed 

qualitatively similar changes at dusk and dawn (UU, 58 genes; DD, 26 genes) or changed 

only at dawn (0U, 33 genes; 0D, 160 genes). Fewer genes changed only at dusk (U0, 25 

genes; D0, 48 genes). A few showed opposing changes at dusk and dawn (UD, 6 genes; DU, 

8 genes). The latter included the KINβ-1 subunit of SnRK1 and genes involved in ribosome 

structure and assembly. Other examples are given in Supplemental Fig. S5.  

Contribution of the clock to photoperiod-dependent changes in the dawn transcriptome  

We next used data at the DIURNAL web site (http://diurnal.mocklerlab.org/, 

ftp://www.mocklerlab.org/diurnal/) to investigate if genes that show a photoperiod-dependent 

change in expression at dawn are subject to diurnal or to circadian regulation. DIURNAL 

collates time series for light-dark cycles including one in a 8 h photoperiod (Ler seedlings on 

3% sucrose, Michael et al., 2008), three in a 12 h photoperiod (Col-0 seedlings in a 12 h 

photoperiod, Michael et al., 2008; and 29 and 25 day old Col-0 on soil , Smith et al., 2004; 

Blaesing et al., 2006) and one in a 16 h photoperiod (Ler seedlings on 3% sucrose, Michael et 



16 
 

al., 2008) (for details see Supplemental Table S6A). The free-running time series include Ler 

seedlings entrained to a 12 h photoperiod and temperature cycle (Michael et al., 2008) or a 

temperature cycle (Michael et al., 2008) and two series with Col-0 seedlings entrained to a 12 

h photoperiod (Harmer et al., 2000; Edwards et al., 2006) Supplemental Fig. S6A). The clock 

exhibits robust dynamics in seedlings and older plants, and in the presence and absence of 

sucrose (Flis et al., 2015). This encouraged us to carry out a meta-analysis across all data 

sets. We used (i) the 200 most strongly up-regulated and the 200 most strong down-regulated 

transcripts at dawn in our 4 vs.18 h photoperiod comparison, which we term the 400 most 

strongly responding genes, and (ii) the 200 most positively and the 200 most negatively 

weighted genes in a PC, which we term the 400 most strongly weighted genes in the PC.  

There was a strong correlation (R2 = 0.56) between the response of the 400 most strongly 

responding genes at dawn in our study and the response of these genes in the  6 vs 16 h 

photoperiod treatments from Michael et al. (2008) (Supplemental Figure S6B). There was 

also a strong correlation (R2 = 0.53) between the response of the 400 most strongly affected 

genes in Michael et al. (2008) and the response of these genes in our study (Supplemental 

Fig. S6B). Some  responded in one study but not the other, possibly because our study used 3 

week-old Col-0 on soil whereas Michael et al (2008) used Ler seedlings on 3% sucrose.  

We next asked how many of the 400 most strongly responding genes in our 4 vs 18 h 

comparison were classified by Michael et al. (2008) as showing rhythmicity in an 8, 12 or 16 

h photoperiod. In this comparison we retained the cut off (0.8) used on the DIURNAL web 

site. For the 12 h photoperiod comparison we required that a gene be identified as rhythmic in 

at least two of the three time series on the DIURNAL site. Our 400 genes showed strong 

overlap with diurnally rhythmic genes in the 8 h photoperiod dataset (343/400 = 86%), and 

the 12 h photoperiod treatments (321/400 = 80%) and slightly lower overlap with the 16 h 

photoperiod dataset (266/400 = 67%) (Supplemental Fig. S6C).  

We next asked how many of the 400 most strongly responding genes in our 4 vs 18 h 

comparison were classified by Michael et al. (2008) as showing a circadian response. For this 

comparison we retained the same filter (0.8) and required that a gene show rhythmicity in at 

least two of the four free running time series at the DIURNAL site. Of our 400 genes, 237 

(59%) were circadian regulated (Supplemental Fig. S6D). Furthermore, 210 (52%) were both 

diurnally and circadian-regulated in the DIURNAL data sets (Supplemental Fig. S6D). 
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We also inspected overlap between the  most highly weighted genes in the PC analysis of our 

dawn data set and genes classified as ‘diurnally regulated’ or ‘circadian regulated’ in the 

DIURNAL data sets, according to the criteria outlined above (Supplemental Fig. SE). A high 

proportion of the genes with a high positive or negative weighting in PC1 (70-92%) or a high 

negative weighting in PC2 (71-88%) and a slightly lower proportion of the genes with a 

positive weighting in PC2 (53-64%) were diurnally regulated. Between 57-75% of the genes 

with a high positive or negative weighting in PC1 or a high negative weighting in PC2 and 

44% of the genes with a positive weighting in PC2 were circadian regulated. The high 

proportion of circadian genes in PC1 and PC2 is consistent with changed clock phase (Figs. 

1-4) making a major contribution to photoperiod-dependent changes in expression at dawn.  

If the earlier phase of entrainment in short photoperiods makes a large contribution to the 

changes in dawn transcript abundance, we would expect genes that are induced or repressed 

at dawn in short compared to long photoperiods to show opposing phases in a free running 

cycle. We would also expect that their transcript levels to be rising or falling at subjective 

dawn. We used radar plots to investigate circadian phase of the 400 most strongly responding 

genes in the 4 vs. 18 h photoperiod comparison. (Supplemental Fig. S6F). These plots show 

the numbers of transcripts that peak at a given time in the free running cycle. Most transcripts 

that are induced at dawn in a 4 compared to an 18 h photoperiod show a peak 3-8 h after 

subjective dawn in free running cycles. Most transcripts that are repressed at dawn in a 4 

compared to an 18 h photoperiod show a peak in the 5 h preceding subjective dawn in free-

running cycles. We performed analogous analyses on the most highly weighted genes in PC1 

(Supplemental Fig. S7G) and PC2 (Supplemental Fig. S7H). Positively- and negatively-

weighted genes in PC1 showed opposing phases in most treatments, and positively- and 

negatively-weighted genes in PC2 showed opposing phases in all treatments.  

We also used a regression-based approach to examine expression patterns of photoperiod-

dependent genes in a free-running cycle (Supplemental Fig S7, Fig. 7). We regressed the 

change in dawn abundance of the 400 most responsive transcripts between a 4 and 18 h 

photoperiod against z-score normalized transcript abundance of these genes at different times 

in a free running cycle in the data set of Edwards et al. (2006) . Many genes that are induced 

at dawn in a 4 h compared to a 18 h photoperiod are repressed before and induced after 

subjective dawn in a free-running cycle, whilst many genes that are repressed at dawn in a 4 h 

compared to an 18 h photoperiod are induced before and repressed after subjective dawn in a 

free running cycle (Supplemental Fig, S7A). This results in a switch from a positive 
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correlation before subjective dawn to a negative correlation after subjective dawn (Fig. 7). 

We also regressed the weightings of the most strongly weighted genes in PC1 or PC2 against 

the z-score normalized transcript abundance of the corresponding genes at different times in 

the circadian cycle. Genes with a positive weighting in PC1 showed low expression before 

and high expression after subjective dawn, whilst genes with a negative weighting in PC1 

showed the opposite response (Fig. 7, see Supplemental Fig. 7B for plots). Genes with a 

positive weighting in PC2 showed high expression before and lower expression after 

subjective dawn and genes with a negative weighting in PC2 showed the opposite response 

(Supplemental Fig. 7c). This again resulted in a switch in the direction of the correlations 

before and after subjective dawn (Fig. 7). 

Contribution of C-signaling to photoperiod-dependent changes in transcript levels at dawn 

As the photoperiod becomes shorter the plant enters an increasingly long night with a 

decreasing amount of starch, and the clock slows starch breakdown to ensure C reserves are 

not exhausted before the end of the night (see Introduction). We hypothesized, firstly, that 

this decrease in the C supply at night contributes to the photoperiod-dependent changes in 

transcript abundance at dawn and, secondly, that the resulting changes should resemble the 

response to moderate changes in C rather than acute C starvation.  

To test these predictions, we compared the photoperiod-dependent changes in transcript 

abundance with the response of transcript profiles to changes in C, using data collated by 

Usadel et al. (2008) (http://mapman.mpimp-golm.mpg.de/supplement/xn/figures.shtml). To 

exclude complicating effects due to the clock, we compared treatments in which plants have a 

contrasting C status at the same time in the T cycle. One comparison was the response to 

illumination in the presence of ambient or sub-compensation point CO2 to prevent 

photosynthesis. The other comparison was the difference between Col-0 and the starchless 

pgm mutant at dawn, which provides information about the response to more extreme C-

starvation. The analyses are shown in Supplemental Fig. S8 and summarized in Fig. 7A.  

We first compared the published C responses with the responses of the 200 most strongly 

induced and 200 must strongly repressed genes in a 4 h compared to an 18 h photoperiod. 

The photoperiod-dependent response showed a relatively high negative correlation with the 

response to illumination in the presence of ambient CO2 compared to sub-compensation point 

CO2  (R = -0.48)  and a much weaker correlation to the difference between wild-type Col-0 

and pgm (R = -0.15) (Supplemental Fig. 8A-B, Fig. 7). We also compared the two C 



19 
 

responses with the weightings of genes in PC1 and PC2, using the 200 most positively 

weighted genes and the 200 most negatively weighted genes in the respective PC; (Fig. 7A, 

Supplemental Fig S9A-B). PC1 was negatively correlated to the response to illumination in 

the presence of ambient CO2 compared to sub-compensation point (50 ppm) CO2 (R = -0.46) 

but was almost unrelated to the difference between wild-type Col-0 and pgm at the end of the 

night (R = +0.13) (Supplemental Fig. S10. PC2 did not correlate with either C response 

(R<0.003 and -0.05) (Fig. 7A, Supplemental Figs. S10A-B).  

The poor agreement with the Col-0 vs. pgm comparison indicated that photoperiod-dependent 

changes in gene expression at dawn differ from those under acute C-starvation. This is further 

illustrated by Fig. 8, which compares GDH1 and ASN1 transcript abundance at dawn in 

different photoperiods with transcript abundance in Col-0 after an extended night and in pgm 

at dawn. GDH1 and ASN1 are canonical examples of transcripts that are induced by C-

starvation (Melo-Oliveira et al. 1996; Lam et al. 1996; 1998; Gibon et al. 2004b). GDH1 and 

ASN1 transcript levels were very low at dawn in an 18, 12, 8 and 6 h photoperiod and, 

although they rose in the extreme 4 h photoperiod (note log scale) they only reached 10-15% 

of the level found in Col-0 after an 8 h extension of the night or in pgm at dawn. ASN1 

transcript showed a somewhat larger response than GDH1 transcript. 

Slow relaxation of light-regulated transcripts contribute to photoperiod-dependent changes 

in transcript abundances at dawn  

We hypothesized that the increased length of the night in short photoperiods would allow 

more complete reversion of light signaling before dawn. This was tested by comparing our 

photoperiod data with another treatment in Usadel et al., 2008); the difference between 

darkness and illumination for 2 h in the presence of sub-compensation point CO2. There was 

a strong negative correlation (R = -0.69) with the impact of photoperiod on the 400 most 

strongly-responding transcripts, a strong negative correlation with weighting in PC1 (-0.69) 

and no correlation with weighting in PC2 (R = 0.11) (Supplemental Figs 8C, 9C, 10C). 

Transcripts that are primary targets of light signaling respond rapidly to changes in the light 

regime (Devlin & Kay, 2001; Jiao et al. 2007). However, downstream targets of light-

signaling pathways might respond more slowly. We inspected the diurnal response of light 

regulated genes that had a high weighting in PC1 to learn how quickly their transcripts revert 

during the night. To do this, we re-sorted the highly weighted genes in PC1 to identify the 

transcripts that showed the strongest response to light in the dark vs 4 h illumination at 50 
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ppm CO2 treatment of Usadel et al. (2008) and then inspected their response during a 12 h 

night. Most of these transcripts changed gradually during a 12 h night (Fig. 9, Supplemental 

Fig. S11A). This indicates that light-signaling contributes to photoperiod-dependent changes 

in gene expression at dawn because the impact of light on transcript abundance is more 

completely reversed in short photoperiods. We also considered whether slow reversal of 

light-responsive transcripts might be partly due to the clock buffering their reversal at the 

beginning of the night and accelerating their reversal at the end of the night. Inspection of 

their responses in the subjective night in a free running cycle (data from Edwards et al. 2006) 

indicated that the clock contributes in some, but not all, cases (Supplemental Fig. S11B).  

Inspection of the response of photoperiod-dependent genes in time series data of diurnal, 

circadian and light responses  

These analyses reveal that interaction between clock-, C- and light signaling interact to 

generate photoperiod-dependent changes of genes in PC1 whilst the clock dominates for 

genes in in PC2. This interaction can be visualized using time series data collated by Usadel 

et al. (2008). One time series is for transcript abundance in a 12h light/12 h dark cycle and 

extended night in Col-0. The C supply is high in the light, shows a moderate decrease during 

the night and a marked decrease after starch is exhausted in an extended night (Gibon et al. 

2004a; 2006; 2009; Sulpice et al. 2014). In this time series, many transcripts respond to the 

moderate decrease in C during the night, but others do not start to respond until 2-4 h into the 

extended night, when starch is exhausted and sugars fall to low levels. The second time series 

is transcript abundance at six times during a 12h light / 12 h dark cycle in the starchless pgm      

mutant (Blaesing et al., 2006; Usadel et al., 2008). pgm has high sugar levels in the light that 

fall rapidly to very low levels after dusk, resulting early in the night in a transcript profile like 

in severely starved wild-type Col-0. The following plots also show transcript abundance in a 

free-running cycle (Edwards et al. (2006), illumination for 4 h with sub-compensation point 

[CO2] compared to extension of the night for 4 h, illumination for 4 h at the start of the light 

period in ambient and sub-compensation point [CO2], as well as responses of etiolated 

seedlings to light, and C-starved seedlings to sucrose addition (from Blaesing et al., 2006).  

Fig. 7B (see also Supplemental Fig. S12A-B) shows transcript abundance for the 40 most 

positively and the 40 most negatively weighted genes in PC1. Shorter photoperiods resulted 

in an increase and decrease in dawn transcript abundance for genes with a positive and 

negative weighting, respectively. As seen in the PC analysis (Fig. 6A), there were large 

changes between the 18, 12 and 8 h photoperiods, and only small changes between the 8, 6 
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and 4 h photoperiods. Fig. 7B identifies characteristic regulatory inputs that are shared by 

highly weighted genes, and which together explain the profiles across photoperiods. Most 

genes with a high positive weighting in PC1 are rhythmic under constant light with a peak in 

the subjective day and hence rising transcript abundance before and at subjective dawn, and 

almost all are repressed by light and by C (Fig. 7B). The net effect is that in Col-0 all 40 

genes show peak expression at dawn in a 12 h photoperiod (Supplemental Fig. S12A). These 

responses are exaggerated in pgm (Supplemental Fig. S12A). In short photoperiods, 

expression at the end of the night will be increased by the advance in clock phase, supported 

by the weaker repression by light and C. Most genes with a high negative weighting in PC1 

are rhythmic in free running conditions with a peak in transcript abundance in the subjective 

night and falling transcript abundance before and at subjective dawn, are induced by light but 

show diverse responses to C (Fig. 7B; Supplemental Fig. 12B). In a 12 h photoperiod, the net 

effect is to drive peak expression of all 40 genes at ZT8-12 (Supplemental Fig. S12B). In 

short photoperiods, expression at dawn will be decreased by the advance in clock phase, 

reinforced by the fuller reversion of light signaling at the end of the night. Thus, for genes in 

PC1, clock-, C- and light-signaling interact to drive diurnal changes in expression and to 

drive changes in expression at dawn in different photoperiods.  

An analogous analysis was performed for PC2 (Supplemental Figs. S12C-D). The 40 genes 

with the highest positive and negative weighting in PC2 show a strong circadian rhythm with 

a trough or a peak near dawn, respectively, but very disparate responses to C and light. This 

mirrors the strong correlation of the weightings in PC2 with clock responses near dawn, and 

the poor correlation with various C and light responses (see Fig. 7A)  

Starch and sucrose synthesis 

We next analyzed the responses of genes in some categories that are overrepresented in PC1 

and PC2 at dawn, in particular, starch metabolism, secondary metabolism and growth. In 

short photoperiods the rate of starch synthesis increases and the rate of degradation decreases 

(see Introduction). We asked whether these changes in C allocation might be explained by 

photoperiod-dependent changes in gene expression.  

Starch synthesis is regulated by ADP glucose pyrophosphorylase (AGP) (Stitt et al., 2010). 

AGP transcript abundance and activity are lower than in short than long photoperiods (see 

Supplemental Fig. S13A), which is opposite to the response of starch accumulation. 

Alternatively, starch synthesis might be increased in short photoperiods by inhibiting sucrose 
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synthesis. Sucrose synthesis is regulated by the cytosolic fructose bisphosphatase (cFBP) and 

sucrose phosphate synthase (SPS) (Stitt et al. 2010; Lunn et al. 2008). There s a progressive 

2-fold decrease in SPS activity as photoperiod is shortened (Gibon et al. 2009; Sulpice et al. 

2014). SPS is encoded by a family of four genes (Supplemental Fig. 13B). There was no 

change in transcript abundance for cFBP or the major leaf isoform SPS1F/SPS5b 

(Supplemental Fig. 13B) but transcript abundance for SPS4F/SPS4 in decreased in short 

photoperiods (see Discussion).  

Starch degradation 

The rate of starch degradation increases 4-fold between a 4 and 18 h photoperiod (Sulpice et 

al. 2014; see insert in Supplemental Fig. S14A). Starch degradation is initiated by a cycle of 

glucan phosphorylation and dephosphorylation (Stitt & Zeeman, 2012). Long photoperiods 

led to a significant 2- to 3-fold increase in dawn transcript abundance for three genes 

involved in glucan dephosphorylation (SEX4/PipKis1, LSF2, LSF1) (Fig. 10A, Supplemental 

Fig. S14A) and a small non-significant increase for two genes involved in glucan 

phosphorylation (SEX1/GWD1, PWD). There was also a trend to increased transcript 

abundance for all these genes at dusk.  

The next step involves β-amylolytic attack. There is a large family of β-amylases in 

Arabidopsis. BAM3 encodes a catalytically-active plastid β-amylase that is involved in starch 

degradation (Fulton et al. 2008). BAM4 and BAM9 lack β-amylase activity but are plastid-

localized and bam4 and bam9 mutants show a starch excess phenotype indicating they have a 

regulatory role (Fulton et al. 2008; Herlithy et al. 2011). Lengthening the photoperiod led to a 

>3-fold increase in transcript abundance for BAM3 at dawn and dusk and for BAM9 at dawn 

and dusk, whilst BAM4 transcript abundance decreased slightly at dawn (Fig. 10A, 

Supplemental Fig. S14A). BAM5 and BAM6 transcript also increased, but these are unlikely 

to contribute to degradation of assimilatory starch. BAM5 is localized in the phloem (Wang 

et al. 1995; Lany et al. 2001) and BAM6 is localized outside the plastid (Yu et al. 2005).   

SEX4/PIPKIS1, LSF2, LSF1, BAM3 and BAM9 were highly weighted in PC1 and PC2 at 

dawn (Supplemental Table S4), indicating that clock-, C- and light-signaling contribute to the 

photoperiod dependent changes in expression at dawn. In a free running cycle, 

SEX4/PipKis1, LSF2, LSF1 and BAM3 show a trough at or just after subjective dawn and 

BAM9 peaks near subjective dawn (Supplemental Figure S14B) making it likely that the 

increase in expression in long photoperiods is partly due the delay in clock phase. BAM4 does 
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not show a marked circadian rhythm; the decrease in expression at dawn in long photoperiods 

might be due to BAM4 being repressed by C and light. Correlation analysis in the combined 

data set for photoperiod, clock, light, C and diurnal responses revealed a coordinated 

response for genes involved in glucan phosphorylation and dephosphorylation, glucan 

degradation (disproportionating enzymes, DPE; glucan phosphorylases, PHS) and maltose 

export( MEX) (Fig. 10B, Supplemental Figure S14C). A disparate pattern was found for 

catalytic (BAM1, BAM2, BAM3) and putative regulatory (BAM4, BAM9) β-amylases.  

Secondary metabolism 

Flavonoid, anthocyanin and glucosinolate metabolism were overrepresented in the set of 

photoperiod-responsive genes (see Fig. 6C). We identified genes in these categories that 

showed significant changes (Bonferoni-Hochberg corrected p<0.05) in abundance at dawn 

between a 4 and 18 h photoperiod and compared their photoperiod response with their clock-, 

C-, light-signaling and diurnal responses (Supplemental Fig. S15). 

Transcripts for flavonoid and anthocyanin biosynthesis showed a progressive increase in 

abundance at dawn as the photoperiod was lengthened (Supplemental Fig. S15A). This 

increase could be partly explained by circadian regulation with transcript abundance rising 

across subjective dawn in plants entrained to a 12 h photoperiod, and also rising strongly in 

response to light and C. At dusk, transcript abundance was high in short and long 

photoperiods and low in intermediate photoperiods; the latter was probably due to circadian 

repression at ZT8-12. This pathway is positively regulated by the transcription factors PAP1 

and PAP2 (Borewitz et al. 2000; Tohge et al. 2005). PAP1, but not PAP2, exhibited a 

remarkably similar photoperiod, diurnal, clock, light and C response to the flavonoid pathway 

genes (Supplemental Fig. S15B). The lateral boundary domain family members LBD37, 

LBD38 and LBD39 exert negative control on PAP1 (Rubin et al. 2009). They showed a 

weakly reciprocal photoperiod response to PAP1 at dawn and, in part, opposite responses to 

light and C, but did not show a circadian oscillation (Supplemental Fig. S15B). These data 

suggest that photoperiod-dependent change in expression of the flavonoid and anthocyanin  

biosynthesis pathway may be mediated via circadian regulation of PAP1, possibly supported 

by light and C regulation of PAP1, including possible upstream effects on LBD37-39.  

Transcripts for biosynthesis of aliphatic (Supplemental Fig. S15C) and indolic (Supplemental 

Fig. S15D) glucosinolates increased at dawn and, more weakly, at dusk as photoperiod was 

lengthened. Their responses to the clock, C and light are more varied than for flavonoid 
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metabolism, but many show weak regulation by the clock with a peak at or after subjective 

dawn, and many are induced by light and C. Aliphatic glucosinolate biosynthesis is 

transcriptionally regulated by MYB28, MYB29 and MYB76 (Gigolashvili et al. 2007; 2009). 

MYB28 and, to a lesser extent, MYB29 showed very similar photoperiod-, clock-, light- and 

C-responses (Supplemental Fig. S15E) to those of the aliphatic glucosinolate pathway genes. 

MYB28 and MYB29 show slightly different phases, which may explain the difference in phase 

between different pathway genes. Correlation analyses in the combined photoperiod, 

circadian, C and light response data set revealed significant correlations between pathway 

genes and MYB28 and MYB29 (Fig. 11). Indolic glucosinolate biosynthesis is 

transcriptionally regulated by the DOF family member OBP2 (Skirycz et al. 2006), IQD1 and 

MYB34, MYB51 and MYB122 (Gigolashvili et al. 2009; Frerigmann & Gigolashvili, 2014). 

OBP2 exhibited similar photoperiod, clock, light, C and diurnal responses to the indolic 

glucosinolate pathway genes (Supplemental Fig. S15F). Thus, photoperiod-dependent 

expression of aliphatic and indolic glucosinolate synthesis pathway may be mediated via 

combined action of clock-, C- and light-signaling on MYB28. MYB29, and OBP2. 

Translation machinery  

Protein synthesis represents a major component of cellular growth (Warner 1999; Pal et al. 

2013). It is known that the majority of genes that encode ribosomal proteins are induced by 

sucrose (Price et al. 2004) and show strong diurnal changes in a 12 h light /12 h dark cycle 

with a peak at dusk (Blaesing et al. 2005; Usadel et al. 2008; Pal et al. 2013). Expression of 

genes for the translation machinery was very photoperiod-dependent. Most transcripts for 

cytosolic ribosomal proteins were higher at dusk than dawn in short photoperiods, showed a 

progressive shift towards lower expression at dusk and higher expression at dawn as the 

photoperiod was lengthened, and in a 18 h photoperiod showed higher abundance at dawn 

than at dusk (Fig. 12A, Supplemental Fig. 16A). This pattern was discernible though less 

marked for plastid ribosomal proteins (Supplemental Fig. 16A), initiation factors 

(Supplemental Fig. 16B) and elongation and termination factors (Supplemental Fig. 16C). 

We inspected the response of 237 genes annotated as ribosome biogenesis (RiBi) factors at 

the KEGG data base (Supplemental Fig. 16D). RiBi transcripts showed higher abundance at 

dusk in short photoperiods and higher abundance at dawn in long photoperiods. The BRIX 

gene family plays an important role in ribosome biogenesis (Eisenhaber et al. 2001). Their 

peak transcript abundance showed a very marked shift from dusk to dawn as the photoperiod 

was lengthened (Fig. 12B, Supplemental Fig. 16E).  
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Transcript abundance for most ribosomal proteins shows only weak circadian changes, is 

relatively insensitive to light, but is increased by C (Pal et al. 2013). A similar pattern is 

found for ribosomal biogenesis and BRIX proteins (Supplemental Fig. S16F). The low 

transcript abundance at dawn in short photoperiods can be explained by the low rate of starch 

breakdown and low sugar levels during the night (Sulpice et al. 2014). In long photoperiods, 

there is a high rate of starch breakdown, sugars remain high at night, and transcript 

abundance of this large set of genes remains high or even rises at night  

SnRK1 

SnRK1 has been implicated in C-starvation signaling (Baena Gonzalez et al., 2007; Polge et 

al. 2008; Jossier et al. 2009). It consists of a catalytically active α-subunit and a regulatory β-

subunit encoded by two small gene families (AKIN10, AKIN11; KINβ-1, KINβ-2, KINβ-3) 

and a hybrid βγ protein (Ramon et al. 2013). Shortening the photoperiod led to a progressive 

increase of KINβ-1 transcript at dawn and decrease at dusk, but had no effect on other SnRK1 

components (Supplemental Fig. 17A). KINβ-1 transcript showed a circadian rhythm with a 

peak at ZT4-ZT8 and was strongly induced by low C (Supplemental Fig S17B). KINβ-1 was 

a member of the small UD group (Supplemental Fig. S5). These groups were defined using 

>3-fold change at dusk and dawn. We used a relaxed filter (>2-fold change) to generate 

extended UD and DU groups (Supplemental Fig. S19C). Genes in the extended UD group 

were repressed by C, most showed a circadian peak at ZT4-8, decreased in the light period 

and increased in the night and further in an extended night in Col-0, and showed exaggerated 

diurnal changes in pgm (Supplemental Fig. S17C), and genes in the extended DU set showed 

reciprocal responses (Supplemental Fig. S17C). Correlation analysis in the combined 

photoperiod, clock, light, sugar and diurnal cycle data sets revealed that KINβ-1 correlated 

positively (R2>0.3, often with R2 >0.67 with 21 of 25 genes in the extended UD set and 

negatively with 132 of 135 genes in the extended DU set (Supplemental Fig. 17C). Many 

genes in the latter class are annotated as ribosomal proteins, initiation factors or ribosome 

biogenesis factors (Supplemental Fig. 17D). 

KINβ-1 has been proposed as a candidate for a ‘dark sensor’ that integrates information about 

the light regime and the time of day to regulate starch turnover (Pokhilko et al., 2014).  We 

inspected the relation between transcript abundance for KIN-β1 and for genes of starch 

degradation (Fig. 10C, Supplemental Fig. S14D). KIN-β1 correlated negatively with 

SEX4/PipKis1, LSF2, LSF,1, MEX, DPE2 and PHS2, and positively with BAM4 and BAM9.   
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DISCUSSION 

Most studies of photoperiod responses have focused on how the clock regulates binary 

developmental transitions like floral induction, senescence, bud hardening and bud break to 

ensure they occur at the appropriate time of year. These developmental transitions are 

triggered by a critical photoperiod, in which an upstream clock output coincides with a time 

in the light-dark cycle at which downstream transcripts or proteins are stable and active 

(Hayama & Coupland, 2003; Andres & Coupland, 2013). Less is known about how the clock 

regulates processes that depend on light as a source of energy and respond progressively 

across a wide range of photoperiods. We asked three questions. First, the ‘external 

coincidence model’ requires that progression of the core clock and the timing of clock 

outputs are largely buffered against changes in the duration of the light period. Despite the 

generally dawn-dominant entrainment in Arabidopsis, there is evidence that the phase of 

many clock components may be slightly advanced in short photoperiods (see Introduction). 

We asked whether this is a general phenomenon affecting all clock genes, and whether it 

occurs in a progressive manner across a wide range of photoperiods. Second, whether 

photoperiod-dependent changes in clock progression are predicted by current clock models, 

or if it may be necessary to postulate new inputs. Third, we asked whether there are large 

photoperiod-dependent changes in global expression at dawn, what role the clock plays 

compared to C- and light-signaling in generating these changes, and whether they provide 

insights into the regulation of C allocation and growth in different photoperiods  

Short photoperiods lead to phase advance of the core clock and anticipation of dawn  

Comprehensive qRT-PCR analysis of core clock gene expression revealed a progressive shift 

forward in the phase of all clock genes as the photoperiod is shortened. This finding points to 

perceptible dusk sensitivity of the clock. Further evidence for dusk-sensitivity in plants was 

provided by Deng et al. (2015), with putative clock genes such as HvCCA1, HvTOC1, HvGI 

and HvPRR73 showing a response to photoperiod. Nevertheless, the timing of dusk alters 

transcript peak times by only 0.9-4.6 h even though the photoperiod differed by up to 12 h. 

This is the pattern expected if entrainment is mainly dawn-dominant. The dawn-sensitivity 

for individual genes can be assessed by inspection of Figs 1-2 and Supplemental Fig S1  

where the light-dark cycles are plotted relative to dawn (see also Supplemental Table S1). 

PRR9 has a relatively high dusk sensitivity (4.6 h shift, the peak level of the transcript also 

changes most in PRR9), as does TOC1 (3.7 h), whilst PRR7 shows low dusk sensitivity. 

Transcripts for the dawn components show intermediate dusk-sensitivity. This mainly dawn-
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dominant response allows the clock provide to provide an internal reference for daylength 

measurement even though the rhythms of output components like CO may be brought 

forward slightly. On the other hand, as discussed below, these small changes in clock phase 

have a large impact on expression of rhythmic genes with steeply rising or falling profiles 

around dawn, and this effect is often amplified by changes in C- and light-signaling.   

The photoperiod-dependent shift in clock phase relative to dawn is largely reproduced by 

current clock models 

We simulated the photoperiod-dependent changes in clock gene expression using the clock 

model of Pokhilko et al. (2012), a version of this model after reparameterisation with 

expression data from the current photoperiod treatment and an extensive data set for several 

clock mutants (Flis et al., 2015), and the model of Fogelmark & Troein (2014). All three 

models simulated the progressive shift forward of phase  in short photoperiods, with the latter 

giving the best fit. The fit was better in an 18, 12 and 8 h photoperiod than a 6 h photoperiod 

The phase advance of LHY in short photoperiods provides an illustrative example of how the 

modelled molecular mechanisms lead to changes in phase. LHY is repressed by PRRs, 

including PRR7, PRR5, and TOC1 (Huang et al. 2012; Nakamichi et al. 2010; 2012). This 

regulation is represented in the Pokhilko et al. (2012) and Fogelmark & Troein (2014) 

models. Crucially, the encoded proteins are stable in the light and unstable in the dark; this 

affects PRR9 (Ito et al. 2007), PRR7 (Farré & Key, 2007), PRR5 (Kiba et al. 2007) and 

TOC1 (Mas et al. 2003a; 2003b) , GI (David et al. 2006; Kim et al. 2007) and ELF3 (Yu et 

al. 2008). Although peak transcript abundance of dusk and EC genes advances in short 

photoperiods, this advance is much smaller than the advance of dusk. This means that 

transcripts for PRR5, TOC1, ELF3, ELF4 and LUX peak in the dark in a 6 h photoperiod, at 

around dusk in an 8 h photoperiod and in the light in a 12 and 18 h photoperiod. The encoded 

proteins are stable in the light and unstable in the dark; this affects PRR9 (Ito et al. 2007), 

PRR7 (Farré & Key, 2007), PRR5 (Kiba et al. 2007) and TOC1 (Mas et al. 2003a; 2003b) , 

GI (David et al. 2006; Kim et al. 2007) and ELF3 (Yu et al. 2008). As the models include the 

impact of light on protein stability, the predicted levels of PRR7, PRR5, and TOC1 protein 

are determined in part by the timing of dusk. PRR5 and TOC1 repress CCA1 and LHY 

(Gendron et al. 2012; Huang et al. 2012; Nakamichi et al. 2010; Nakamichi et al. 2012). In 

short photoperiods the models predict these proteins are depleted relatively early in the night, 

allowing LHY (and CCA1 which in the models is not distinguished from LHY) transcript to 

increase with an earlier phase.  
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A similar principle operates for the EC, where interactions between GI, ELF3 and COP1 lead 

to degradation of GI and ELF3 protein in the dark (David et al. 2006; Kim et al. 2007, Yu et 

al. 2008; Pokhilko et al. 2012). The earlier decline of transcripts for the dusk components and 

EC in short photoperiods may also be partly due to feedback regulation of their own 

expression (Pokhilko et al. 2012). This earlier decay of the EC will then relieve the 

repression of PRR9 (Dixon et al. 2011; Helfer et al. 2011; Chow et al. 2012) and PRR7 

(Dixon et al. 2011; Mizuno et al. 2014). 

PRR9 transcript showed a particularly large phase shift, which was poorly simulated by the 

models. The observation that PRR9 transcript does not rise until after dawn, except slightly in 

the 6 h photoperiod, is in agreement with the notion that light induces PRR9 (Makino et al. 

2002: Ito et al. 2005; 2007). However, the rise of PRR9 after dawn is delayed in long 

photoperiods, suggesting that a factor that counteracts the positive effect of light on PRR9 has 

decayed by dawn in short photoperiods, but does not decay until later in long photoperiods. 

One possibility is the proposed activation of PRR9 by LHY and CCA1 (Farre et al. 2005; 

Salome & McClung, 2005), which could occur later in long photoperiods due to the delay in 

induction of the dawn genes. This activation is absent from the model of Fogelmark & Troein 

(2014) and minimal (less than one-tenth as effective as light activation) in the model of 

Pokhilko et al. (2012). There is stronger and more direct evidence that PRR9 is repressed by 

the EC (Dixon et al. 2011, Helfer et al. 2011, Chow et al. 2012) which might persist until 

dawn or later in long photoperiods. This repression is included in all the models. However, 

these may not be the only factors, as none of the simulations reproduced the large shift in the 

timing of PRR9 expression.  

PRR7 transcript starts to rise before dawn, with the pre-dawn increase becoming increasingly 

marked as the photoperiod is shortened. It was recently reported that PRR7 is repressed by 

sugar (Haydon et al. 2013), although the treatments used were rather extreme and would 

probably have led to C starvation. PRR7 transcript abundance increases slightly before dawn 

in the starchless pgm mutant, consistent with the possibility that PRR7 may be induced by 

extremely low C at the end of the night. The rate of starch degradation and sucrose levels at 

night decrease progressively as the photoperiod is shortened (Smith & Stitt 2007; Gibon et al. 

2009; Sulpice et al. 2014), raising the possibility that earlier rise of PRR7 transcript in short 

photoperiods may reflect an earlier release from sugar-repression. However, this advance in 

PRR7 phase was simulated by the & Fogelmark & Troein (2014) model except in the very 

short 6 h photoperiod, indicating that C-related inputs and activation by LHY and CCA1 may 



29 
 

not be required for this behavior, as these factors are not explicitly represented by this model. 

Together, these results demonstrate that current mechanistic understanding, as embodied in 

the models, is sufficient to understand many aspects of clock responses to photoperiod.  

Large photoperiod-dependent changes in global gene expression at dawn  

Transcript profiling revealed large photoperiod-dependent changes in transcript profiles at 

dawn and dusk. Changes at dusk are expected due to sampling dawn-dominant rhythms at 

different times after dawn. The large changes at dawn point more directly to the strong 

impact of photoperiod on global expression. Unexpectedly, photoperiod had a slightly larger 

impact on global transcript abundance at dawn than at dusk. Further, the difference between 

global transcript abundance at dawn in short and long-photoperiods was larger than the 

difference between dawn and dusk in a given photoperiod. These changes were progressive, 

with changes between 4 and 12 h photoperiods, where metabolism and growth is C-limited 

(Sulpice et al. 2014), and between 12 and 18 h photoperiods when plants are not C-limited.  

Overrepresented pathways 

Photoperiod impacted on the transcript abundance at dawn of many transcription factors, E3 

ligases, protein kinases and phosphatases and TPS type-2 genes. Overrepresented processes 

included important metabolic pathways like starch degradation, glycolysis and nitrate 

metabolism, secondary metabolism especially glucosinolate and flavonoid metabolism, as 

well as ribosomal proteins and ribosome assembly. Overall, our data points to a major and 

progressive transcriptional adjustment of metabolism and growth in response to photoperiod. 

This underlies the progressive coordinated changes in growth rate, sucrose and amino acid 

levels and trehalose 6-phosphate (Tre6P) as photoperiod changes (Sulpice et al. 2014)  

Clock-, C- and light-signaling contribute to photoperiod-dependent changes in global 

transcript abundance at dawn  

We showed previously that clock-, C- and light-signaling make a large contribution to the 

diurnal regulation of gene expression (Blaesing et al. 2005; Usadel et al. 2008). We now 

show that these three inputs make a major contribution to the large photoperiod-dependent 

changes in global expression at dawn. First, the advance in clock phase in short photoperiods 

advances the responses of downstream genes that are regulated by the clock. Second, lower 

levels of sugars at night lead to C-signaling becoming increasingly marked in short 

photoperiods. This is partly due to their being less starch at dusk relative to the duration of 

the coming night, but also reflects an indirect input from the clock, which sets a lower rate of 
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starch breakdown in short photoperiods such that starch is not prematurely exhausted before 

dawn (Graf et al. 2010, Scialdone et al. 2013) and as a result decreases the availability of C 

during the night (Sulpice et al. 2014). Third, light-signaling becomes increasingly weak at the 

end of the night in short photoperiods. This is partly because the increased duration of the 

night allows more complete relaxation of light-dependent changes before dawn. The large 

secondary peak for GI is at about ZT2 in short photoperiods and the higher peak of PRR9 in 

short photoperiods compared to long photoperiods is consistent with greater relaxation of 

light signaling in the night and a stronger light-signaling response after dawn in short 

photoperiods. Hoffman et al. (2010) also noted higher transcript abundance of light regulated 

gene like the poplar homolog of ELIP after a sudden decrease in photoperiod from 18 to 12. 

The above three factors also partly explain why there are large changes between transcript 

abundance at dawn and dusk in short photoperiods, but not in long photoperiods.  

Our analysis identifies these three inputs at the level of the total transcript set and after 

dimensionality reduction using PC analysis. PC1 represented almost 50% of the variation in 

the entire data set, capturing changes generated by an interaction between the clock, and 

moderate changes in C and light-signaling. Gene categories overrepresented in PC1 included 

starch degradation, secondary metabolism including glucosinolate, anthocyanin and flavonoid 

metabolism and ribosome and ribosome assembly, as well signaling processes like trehalose 

metabolism. A combination of clock-, C- and light-signaling leads to genes with a positive 

and negative weighting in PC1 showing a maximum and minimum of transcript abundance at 

dawn, respectively, in a 12 h photoperiod (Supplemental Fig. S13). The photoperiod response 

is driven by the same combination (Fig. 7B). Most genes with a high positive weighting in 

PC1 show a circadian minimum in the subjective night and rise to a peak after dawn in a free 

running cycle after entrainment to a 12 h photoperiod, consequently the advance in clock 

phase in short photoperiods will increase their dawn expression. Most genes with a strong 

positive weighting in PC1 are also repressed by C and light, and this repression will be 

weakened in short photoperiods, reinforcing the action of the clock. Most genes with a strong 

negative weighting in PC1 show a circadian minimum close to dawn in a free-running cycle 

after entrainment to a 12 h photoperiod, and the advance in clock phase in short photoperiods 

will tend to decrease their dawn expression. Most of these genes are also induced by light and 

in some cases C, and more complete relaxation of light-signaling and the lower C in short 

photoperiods will reinforce the decrease in expression at dawn.  
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PC2 captured about 27% of the variation, and represented mainly clock regulation. Nitrate 

metabolism was overrepresented in PC2, pointing to a particular role for the clock in 

regulating nitrate assimilation.. In both PC1 and PC2, genes were highly weighted that show 

large circadian changes around subjective dawn when plants are entrained in a 12 h 

photoperiod and then released to free running conditions. These components included core 

clock components as well as known important upstream output genes  

Overall, these analyses point to a major role for the clock in regulating dawn transcript 

abundance, as it is involved in PC1, plays a dominant role in PC2, and is also indirectly 

involved in setting the rate of starch degradation and hence the C supply during the night. 

They also point to important roles for C- and light-signaling. Their relative importance may 

vary depending on the process involved, for example, C-signaling may play a dominant role 

in the expression of the transcriptional machinery (see below).  

C-starvation does not make a major contribution to the photoperiod-dependent change in 

global transcript abundance at dawn 

Net daily C gain decreases 5-fold between a 12-18 h photoperiod and a 4 h photoperiod 

(Sulpice et al. 2014). Despite this large decrease in the C supply, the dawn transcriptional 

response did not show a strong signature of C-starvation. This is consistent with starch 

mobilization being paced until dawn (Graf et al. 2010; Scialdone et al. 2013), leading  to a 

decrease in C availability throughout the night in short photoperiods rather than C starvation 

at the end of the night. The latter only occurs when plants contain too little starch at dusk to 

meet the costs of maintenance (Pilkington et al. 2014). Analyses of metabolite and enzyme 

profiles in short photoperiods also showed similarities to changes seen in response to 

moderate changes of C, rather than C-starvation (Gibon et al. 2009).  

Contribution of transcriptional regulation to the adjustment of sucrose and starch 

metabolism to photoperiod duration 

In short photoperiods there is a shift in allocation of fixed C away from sucrose and towards 

starch, which acts as a reserve to support metabolism and growth at night (Smith & Stitt 

2007; Gibon et al. 2009; Sulpice et al. 2014). However, the abundance of transcripts for 

starch and sucrose biosynthesis did not respond strongly to photoperiod, indicating that 

increased allocation of fixed C to starch synthesis in short photoperiods is due to post-

transcriptional or post-translational regulation. This is in agreement with the findings that 

periods of low C at the end of the night lead to post-translational redox activation of AGPase 
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(Gibon et al. 2004a; Lunn et al. 2006) and that allosteric regulation of AGPase is crucial for 

the stimulation of starch synthesis in short photoperiods (Mugford et al. 2014). Post-

translational and allosteric regulation will allow starch accumulation to respond rapidly to 

day-to-day changes in light intensity and the rate of photosynthesis. The only exception was 

an increase in transcript abundance for SPS4F/SPS4 in long photoperiods. Long photoperiods 

will increase the rate of starch degradation and require a higher rate of sucrose synthesis at 

night. Interestingly, transcript abundance for SPS4F/SPS4 is highest at night (Gibon et al. 

2004a, Blaesing et al. 2005) and silencing a homolog in tobacco inhibited starch degradation 

(Chen et al. 2005) indicating a specific role in sucrose synthesis at night.  

The rate of starch degradation decreases in short photoperiods (Smith & Stitt, 2007; Gibon et 

al. 2009; Sulpice et al, 2014). Photoperiod duration affected transcript abundance for several 

but not all of the enzymes involved in the pathway of starch degradation. This mirrors the 

complex diurnal expression pattern of these genes, with many showing similar but some 

showing disparate patterns (Smith et al. 2004). Hoffmann et al. (2010) also observed gene-

specific changes in transcript abundance for enzymes involved in starch degradation after a 

sudden switch from an 18 to a 12 h photoperiod in poplar. The initial step in starch 

degradation is a cycle of glucan phosphorylation and dephosphorylation to disrupt the 

crystalline structure, followed by β-amylolysis (Stitt & Zeeman 2012). Long photoperiods 

lead to a large increase in transcript abundance for three proteins involved in glucan 

dephosphorylation (SEX4/PipKis1, LSF2, LSF1), the catalytically active β-amylase BAM3 

and the putative regulatory protein BAM9. These changes in expression may allow a higher 

maximum rate of starch degradation in long photoperiod, permitting fuller mobilization of 

starch during the short night, and restrict the rate of starch degradation in short photoperiods. 

However, it will be necessary to show that these changes in transcript abundance lead to 

changes in the levels of the encoded proteins, in particular as it is known that proteins in the 

starch degradation pathway are turned over slowly (Skeffington et al. 2014). It was recently 

proposed that, in the context of flowering in long photoperiods, clock regulation of GBS1 at 

the start of the light period may contribute to the regulation of starch turnover (Ortiz-

Marchena et al., 2014; 2105). However, the rate of starch degradation responds almost 

immediately in response to changes in the amount of starch at dusk, sudden changes in the 

duration of the night (Graf et al. 2010, Scialdone et al. 2013), interruptions of the night 

(Scialdone et al. 2013) and sudden changes in the night temperature (Pyl et al. 2012). These 

rapid responses are probably mediated by post-translational regulation.  
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Photoperiod-dependent changes in expression of genes for secondary metabolism 

Genes involved in flavonoid, anthocyanin and glucosinolate biosynthesis were highly 

enriched in the set of genes that showed photoperiod-dependent changes in transcript 

abundance at dawn, with progressively stronger expression as the photoperiod became 

longer. Expression of genes in phenylpropanoid metabolism was also decreased in poplar 

after a sudden shift from an 18 h to a 12 h photoperiod (Hoffman et al. 2010). These findings 

point to increased allocation to defense in long photoperiods. 

The increase in expression of genes in secondary metabolism in long photoperiods is 

probably driven by a combination of clock-, light and C-signaling. This is in agreement with 

them being overrepresented in both PC1 and PC2. Comparison with the responses of known 

upstream transcriptional regulators indicated that the increase of the flavonoid and 

anthocyanin  pathway might be due to induction of PAP1 (Borewitz et al. 2000; Tohge et al. 

2005), the increase of aliphatic glucosinolate pathway genes to induction of MYB28 and 

MYB29 (Gigolashvili et al. 2007; 2009), and the increase of indolic glucosinolate pathway 

transcripts to induction of OBP2 (Skirycz et al. 2006). In all cases, the upstream activators 

are potentially regulated by the clock, light and C.  

PAP1 transcript was highlighted as an important clock output in Harmer et al. (2000), 

changing reciprocally to PIF4 transcript, and was subsequently listed at a potential target for 

PIF repression (Zhang et al. 2013) and identified as having diurnal dynamics consistent with 

PIF repression (Seaton et al. 2015). In our study, the shift in clock phase leads to transcript 

abundance at dawn for PIF5, and especially PIF4, being high in short photoperiods and low 

in long photoperiods, whilst PAP1 transcript shows broadly reciprocal changes (compare Fig. 

1D and Supplemental Fig. 1B with Supplemental Fig. S15B). Further, at dusk PAL1 

transcript abundance is high in short photoperiods, lower in intermediate photoperiods and 

high in long photoperiods, again changing reciprocally to dusk levels of PIF4 and PIF5 

transcript. This indicates that PIF4 and PIF5 provide a clock output that regulates flavonoid 

and anthocyanin in response to photoperiod. In addition, induction of PAL1 by C may 

contribute to the increase in increase in PAL1 transcript at dawn in long photoperiods. 

Regulation of the timing of ribosome assembly 

Faster growth in long photoperiods will require a higher rate of protein synthesis. This is not 

achieved by an increase in ribosome abundance, which is similar in short and long 

photoperiods (Sulpice et al. 2014). Instead, polysome loading is high both in the daytime and 
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the night in long photoperiods, but decreases strongly at night in short photoperiods (Sulpice 

et al. 2014). This decrease is probably due to the decreased availability of C (Pal et al. 2013).  

We now report an analogous shift in the timing of ribosome biogenesis. Transcripts for 

ribosomal proteins and ribosome assembly factors are high at dusk and low at dawn in short 

photoperiods, and are at higher levels at dawn than at dusk in long photoperiods. C may be a 

major driver of this progressive photoperiod-dependent shift. Expression of these large sets of 

genes is strongly correlated with C availability, but is not strongly clock- or light-regulated 

(Price et al. 2004; Pal et al. 2013; Figure 10, Supplemental Fig. 16F). Protein synthesis and 

ribosome assembly are energy-intensive processes (Warner 1999). Our data indicate that 

these costly processes are increasingly restricted to the light period in short photoperiods, 

whereas in long photoperiods they occur at similar rates in the light and dark, or even more 

rapidly in the dark.  

High rates of protein synthesis and ribosome biogenesis in the night may be important to 

achieve the large stimulation of growth observed in long photoperiods. Between a 4 and 12 h 

photoperiod there is a 3-fold increase in the duration of the light period but an almost 4-fold 

increase in growth rate (Sulpice et al. 2014). This will require an even larger increase in the 

rate of protein synthesis and ribosome biogenesis, as protein content rises slightly in long 

photoperiods (Gibon et al. 2009; Hanneman et al. 2009). Our analyses of polysome loading 

(Sulpice et al., 2014) and the expression of  ribosomal proteins and ribosome biogenesis 

factors (Fig. 12) indicate that this is not achieved by increasing the rates of protein synthesis 

and ribosome biogenesis in the light but, rather, by increasing the rates at night. This may 

contribute to efficiency of growth because it allows a higher average rate of ribosome 

biogenesis and protein synthesis over a 24 h cycle. As ribosomes represent a large part of the 

total protein and RNA in growing cells, (Warner, 1999) it may be advantageous to increase 

growth rates by using the translation machinery for a larger part of the 24 h cycle rather than 

by increasing the amount of translation machinery 

Potential role of SnRK1 in photoperiod responses 

SnRK1 plays a central role as an energy sensor in plants (Baena Gonzalez et al. 2007; Polge 

et al. 2008; Jossier et al. 2009; Ramon et al. 2013), in analogy to related protein kinases like 

SNF1 in yeast and the AMP-regulated protein kinase in mammals (Hardie et al. 2012). 

Transcript for the KINβ-1 regulatory subunit of SnRK1 showed a progressive increase in 

abundance at dawn and decrease in abundance at dusk as the photoperiod was shortened. 
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Polge et al. (2008) have shown that KINβ-1 is induced in a continuous manner as C 

decreases. This may explain the increase in KINβ-1 transcript abundance at dawn in short 

photoperiods; as already discussed, shorter photoperiods lead via a clock-dependent decrease. 

in the rate of starch degradation (Graf et al. 2010) to a progressive decrease in sucrose levels 

(Sulpice et al. 2014). However, the decrease in KINβ-1 transcript abundance at dusk in short 

photoperiods cannot be explained by C-signaling, because daytime sucrose levels are lower 

in short than long photoperiods (Sulpice et al. 2014). It is also not easily explained by clock 

regulation. KINβ-1 transcript abundance shows a circadian peak at ZT4-8 in continuous light. 

The KINβ-1 promotor contains multiple putative binding sites for CCA1 and TOC1 (http:// 

diurnal.mocklerlab.org). This circadian response would be expected to lead to higher KINβ-1 

transcript at dusk in short photoperiods when dusk coincides with this circadian peak than in 

long photoperiods, which is opposite to our results. This indicates that further factors act to 

regulate KINβ-1 transcript abundance at dusk. One possibility is that KINβ-1 responds to 

changes in C availability rather than C levels per se. This would explain why KINβ-1 

transcript shows large changes between dawn and dusk in short photoperiods, when there are 

large changes in C availability between the daytime and night, and little or no change in long 

photoperiods when C availability is high throughout the 24 h cycle.  

KINβ-1 was recently proposed as a potential component in a regulatory network that 

coordinates C availability, starch turnover and C utilization within and between successive 

diurnal cycles (Pokhilko et al. 2014). We found that KINβ-1 transcript abundance correlates 

to transcripts for genes involved in starch degradation and ribosome assembly (Fig. 10). 

These correlations might be explained if changes in KINβ-1 expression and SnRK1 

composition regulate expression of these genes. Alternatively, KINβ-1 expression and the 

expression of these genes may be under the common control of upstream regulators.  

In conclusion (Figure 13), progressive photoperiod-dependent changes in the timing of clock 

gene expression lead to the clock anticipating dawn in short photoperiods but requiring light 

to trigger dawn responses in long photoperiods. Most of the changes in clock phase are 

captured by the latest clock models, with the exception of a large shift in phase and amplitude 

for PRR9. There are large photoperiod-dependent changes in global gene expression at dawn, 

whose magnitude is larger than the more widely studied diurnal changes in gene expression. 

These large changes in the dawn transcriptome are the result of the change in clock phase, 

changes in the C supply during the night, and the extent to which light-dependent changes in 

expression relax during the night. The clock plays a large role in orchestrating these 



36 
 

photoperiod-dependent changes both directly, and indirectly via modulation of starch 

turnover. The magnitude of the global transcriptional response is magnified by interactions 

between clock-, C- and light-signaling. This interaction can be seen at the level of global 

gene expression and the level of individual processes like starch degradation, flavonoid and 

glucosinolate biosynthesis and ribosome biogenesis, and in some cases can be traced back to 

upstream transcription factors. These widespread and coordinated changes in gene expression 

play an important role in gauging central metabolism, secondary metabolism and cellular 

growth to large changes in photoperiod length and net daily C gain, whilst avoiding harmful 

periods of C starvation. It can be envisaged that whilst clock phase and light signaling 

respond to external and often reproducible changes in the environment, like photoperiod, C-

signaling also may tune the response to the physiological status of the plant. At the same 

time, rapid responses, like those seen for starch turnover, cannot be understood solely in 

terms of transcriptional regulation but are likely to require post-transcriptional and post-

translational responses. 
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FIGURE LEGENDS 

 

Figure 1. Photoperiod responses of selected core clock genes. Plants were grown from 

germination in a 4, 6, 8, 12 or 18 h photoperiod for 21 days. Duplicate samples (each 11-14 

plants for the 18 h photoperiod and up to 100 plants for the 6 h photoperiod) were collected at 

2 h intervals. 6_18, 8_16, 12_12 and 18_6 refer to a 6, 8, 12 and 16 h photoperiod, 

respectively. The original data are provided in Supplemental Table S1, and plots of all 

investigated genes in Supplemental Figure S1. The results are given as mean ± S.E., the scale 

on the y-axis is log2. 

Figure 2. Photoperiod-dependent changes in the core clock expression in a 6 h, 8 h, 12 h and 

18 h photoperiod. (A) Heat map of diurnal changes in transcript abundance for LHY, CCA1, 

PRR9, PRR7, PRR5, TOC1, GI, LUX, ELF3 and ELF4 genes in Col-0 normalized to 0-1 

(log2 scale , see insert for color scale). The responses for each transcript are shown as a 

subpanel, in the order (top to bottom) 6, 8, 12 and 18 h photoperiod). The black vertical lines 

indicate the timing of the light-dark transition. (B) Timing of the peak (ZT) and the maximum 

transcript abundance (number of copy per cell) of LHY, CCA1, PRR9, PRR7, PRR5, TOC1, 

GI, LUX, ELF3 and ELF4 in Col-0 grown in 6 (square), 8 (circle), 12 (triangle) and 18 h 

(diamond) photoperiod. Time is given as ZT (time after dawn). The color code for genes is 

given a sub-panel. As LHY transcript abundance was higher than others, the values are 
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multiplied by 0.1. Peak transcript abundance and timing of the peak were estimated by fitting 

smooth curves between measured data points using a polynomial spline function (see 

Methods). Expression levels between measured values were interpolated from the resulting 

curve. Unlike Figs. 1 and 2A, abundance is shown on a numeric and not log2 scale. 

Figure 3. Phase plots. (A) PRR9 vs LHY, (B) PRR9 vs PRR7, (C) PRR9 vs ELF3, (D) PRR7 

vs ELF4, (E) ELF4 vs LUX, (F) CCA1 vs ELF4. The x- and y-axes represent the transcript 

abundance (log2 number of copies per cell). For each gene pair, the abundance of each 

transcript pair is plotted time point by time point. Sequential time points are connected by a 

line; arrows indicate the direction of the time vector, dawn (ZT0) is indicated by the large 

square, and ZT12 by the large circle. In panel F, only the 6 and 18 h photoperiods are shown. 

A full display of all pairwise phase plots is provided in Supplemental Figure S2. Color coding 

for photoperiod is as in Figure 1 (see also insert in panel C).  

Figure 4. Clock model comparison and analysis. Photoperiod-dependent changes in core 

clock gene expression could be simulated once using a mathematical models of the clock 

(Pokhilko et al. 2012) (P2011.1), once using a re-parameterization of the Pokhilko model 

(Flis et al., in review) (P2011.2) and eight times using a revised model (Fogelmark et al. 

2014) (F2014.1 – F2014.8). Whereas parameters in the P2011.1 and P2011.2 models are set, 

those in the F2014 model are chosen automatically; eight different sets of parameters were 

selected and all performed similarly well across the entire data set. (A) Comparison of the 

costs of the three models; for F2014 one typical simulation is shown, the results of all 8 are 

shown in Supplemental Figure S3a. (B) Costs of the F2014 model for each clock gene in 

simulations of the data for the 6, 8, 12and 18 h photoperiod (L6_D18, L8_D16, L12_D12 and 

L18_D6, respectively). The cost represents the mean for simulations with 8 parameter sets. 

(C) Measured (circles) and simulated (lines) responses of LHY and PRR9 transcript 

abundance. The shaded region indicates the range of simulated responses, excluding the 

largest deviations from the median in either direction. More comparisons are shown in 

Supplemental Fig. S3b.  

Figure 5 Large progressive photoperiod-dependent changes in global transcript abundance at 

dawn and dusk. (A) Overview of changes in gene expression at dawn and dusk between a 4 h 

and a 18 h photoperiod (left hand pairs of columns) and a 4 h and a 12 h photoperiod (right 

hand pairs of columns). Genes whose transcripts increase at dawn (or dusk) in a 12 or 18 h 

photoperiod compared to a 4 h photoperiod are designated ‘up’, and genes whose transcript 
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decreases at dawn (or dusk) in a 12 or 18 h photoperiod compared to a 4 h photoperiod are 

designated ‘down’. The size of the change is indicated in the panel.  (B) Changes in gene 

expression between dawn and dusk in a 4, 6, 8, 12 or 18 h photoperiod. Genes that increase at 

dusk compared to dawn are designated ‘up’ and genes that decrease at dusk compared to 

dawn are designated ‘down’. The original data are provided in Supplemental Table S4, and 

the numbers of genes showing >2, >4, >8 and >16 fold changes in Supplementary Table S5. 

Figure 6. Principle components analysis of photoperiod-dependent changes in global 

expression patterns at the end of the night and the end of the day. (A) Principle components 

analysis of the end of the night data set. PC1 and PC2 accounted for 48% and 26% of the 

total variation. PC = principle component. (B) Principle components analysis of the end of 

the day data set. PC1 and PC2 accounted for 39% and 30% of the total variation. C)  

Overrepresented and underrepresented gene classes in PC1 and PC2 of the dawn data set. The 

original data, the PC analysis and weighting of transcripts in the PC is provided in 

Supplemental Table S4. A comparison of the weighting of genes in PC1 and PC2 in the data 

sets for the end of the night and the end of the day is provided in Supplemental Figure S4. 

The original data for the overrepresentation analysis is provided in Supplemental Table S6. 

Figure 7. Major inputs that drive photoperiod-dependent changes of the global expression 

profile at dawn. (A) Similarity between photoperiod responses at dawn and responses to the 

clock, C and light. Three parameters were used to characterize the photoperiod response at 

dawn: the response of the 200 most strongly induced and the 200 most strongly repressed 

transcripts between 4h and 18h, the 200 positively weighted transcripts and the 200 most 

negatively weighted transcripts in PC1 and the 200 positively weighted transcripts and the 

200 most negatively weighted transcripts in PC2 (see Figure 4A). Each of these was 

compared in a scatter plot with responses at six times during a free running cycle in Col-0 

(upper part, ‘circadian’, sampled at ZT46, 50, 54, 58, 62, 66, the data are from Edwards et al. 

(2006) and were z-score normalized on the average during the cycle), two treatment from 

Usadel et al. (2009) that provide information about the response to C (ambient vs 50 ppm 

CO2 in light; Col-0 vs pgm at dawn)middle part), and one treatment from Usadel et al. (2008) 

that provides information about the response to light (bottom part, dark vs light with 50 ppm 

CO2). The weightings of genes in PC1 and PC2 and the data used to generate the regression 

coefficients are provided in Supplemental Table S4, examples of the regression plots are 

provided in Supplemental Figs. S7-S10. (B) Illustration of clock, C and light responsiveness 

for the 40 genes with the most positive and the 40 genes with the most negative weighting in 
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PC1. The left hand panel (‘Photoperiod’) shows transcript abundance at dawn in (from left 

right) an 18, 12, 8, 6 and 4 h photoperiod transcript abundance is normed on the average for 

that gene at dawn in all five photoperiods. The next panel (‘Light’) shows the response to 4 h 

illumination with 50 ppm CO2 compared to darkness, the next panel (‘Carbon’) shows the 

response to illumination for 4 h at 350 ppm CO2 compared to 50 ppm CO2, and the response 

3 h after adding 30 MM sucrose to starved seedlings, and the right hand panel (‘Clock’) 

shows the response at ZT38, 42, 46, 50 and 54 after transfer from a 12 h photoperiod to free 

running light; transcripts are normed on the control treatment, for the ‘clock’ series on the 

average between ZT46 and ZT50. In the clock series, the arrow indicates subjective dawn. A 

fuller display is provided in Supplemental Fig. S12 and more details about the treatments in 

Supplemental Text 1.  

Figure 8. Transcript abundance for C-starvation induced genes ASN1 and GDH1 at dawn in a 

4, 6, 8, 12 and 18 h photoperiod treatment (original data in Supplemental Table S4) and after 

an 8 h extension of the night in Col-0 and at dawn in the starchless pgm mutant (Usadel et al., 

2008) (A) ASN1. (B) GDH1. The result is the mean ± S.D. (n = 3).  

Figure 9. Temporal kinetics of reversion of light-dependent changes in transcript abundance 

during the night. Light-regulated genes in PC1 were identified and ranked based on the 

direction and magnitude of their  response in the comparison of a 4 extended dark treatment 

and 4 h illumination with sub-compensation point CO2 (see Supplemental Table S4). Their 

response was then inspected during the night in a 12 h light / 12 h dark cycle. (A) Response 

of the 20 highest ranked light-induced genes. (B) Response of the top 12 ranked light-

repressed genes. The original data is from Usadel et al (2008). A fuller analysis is provided in 

Supplemental Figure S11, including plots of the responses of these genes during the 

subjective night in a free running light cycle. 

Figure 10. Correlation matrix for starch degradation. (A) Genes showing significant 

photoperiod responses and for which genetic evidence exists for a major role in starch 

degradation. Abundance is normalized on average abundance for all photoperiods at dawn, or 

at dusk. (B) Correlation matrix, based on the combined data sets for dawn and dusk 

expression in different photoperiods, circadian responses (Edwards et al. 2006) and C and 

light responses (Usadel et al. 2008)  The genes are ordered according to their function during 

starch degradation. See Supplemental Fig S14 for details. (C) Correlation between transcripts 
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for KIN-β1 transcript and transcripts for proteins involved in starch degradation; color coding 

as in panel C.  

Figure 11. Correlation matrix for transcript abundance of genes involved glucosinolate 

metabolism. See Supplemental Fig. S15 for details of the clusters.  

Figure 12. Photoperiod dependent changes in transcript abundance of cytosolic ribosomal 

protein genes and BRIX family genes that are involved in ribosome assembly. (A) Cytosolic 

ribosomal proteins. (B) BRIX family genes. A more complete analysis of protein synthesis-

related genes is provided in Supplemental Fig. S1. 

Figure 13. Impact of photoperiod on clock phase, C signaling, light signaling and the 

transcriptional regulation of metabolism and growth. The diagram schematically depicts the 

progressive change in clock phase, C availability at night and relaxation of light signaling 

during the night. These factors interact, in an analogous manner to their interaction during 

diurnal cycles, to generate large and progressive changes in the transcriptome at dawn, as 

well as at other times during the 24 h cycle. This transcriptional regulation creates a 

framework to restrict metabolism and growth in short photoperiods and progressively 

increase flux to secondary metabolism and growth as photoperiod duration increases. 

Photoperiod-dependent changes in clock phase and light signaling respond to external and 

often reproducible changes in the environment, whilst the input from C-signaling may 

additionally tune the response to the physiological status of the plant (not shown). In addition, 

post-transcriptional mechanisms are required adjust metabolism and growth to rapid and less 

predictable changes in the environment, one example being starch synthesis and degradation .  
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Supplemental Figures 

Supplemental Figure S1. Photoperiod responses of core clock genes and PIF4 and PF5.  

Supplemental Figure S2. Phase plots for all core clock gene pairs.  

Supplemental Figure S3. Clock model comparison and analysis.  
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Supplemental Figure S4. Principle component analysis of global transcript profiles at dawn 

and dusk: comparison of the weightings in PC1 and in PC2 at dawn and dusk. 

Supplemental Fig. S5. Response patterns of genes at dawn and dusk.  

Supplemental Figure S6. Comparison of genes with strong photoperiod-dependent changes 

in expression at dawn in our study with the responses and classification of these genes as 

diurnally regulated in light-dark cycles or showing circadian regulation in free-running light 

in the analysis of Michael et al. (2008).  

Supplemental Fig. S7. Photoperiod-dependent changes in dawn transcript abundance and the 

weighting of transcripts in PC1 and PC2 compared to circadian changes in global transcript 

abundance in continuous light.  

Supplemental Figure S8. Difference in global transcript abundance at dawn between a 4h 

and 18h photoperiod compared to the changes in global transcript abundance in three 

treatments from Usadel et al. (2008) that display the response to different extents of C 

starvation, and to light.  

Supplemental Fig. S9. Weighting of transcripts in PC of the PC analysis of global transcript 

abundance at dawn in 5 photoperiods compared to the change in glob al transcript abundance 

in four treatments from Usadel et al. (2008) that display the response in Arabidopsis Col0 

rosettes to different extents of C starvation, and to light.  

Supplemental Fig. S10. Weighting of transcripts in PC2 of the PC analysis of global 

transcript abundance at dawn in 5 photoperiods compared to the change in global transcript 

abundance in four treatments from Usadel et al (2008), which display the response in 

Arabidopsis Col0 rosettes to different extents of C starvation, and to light.  

Supplemental Figure S11. Time series for circadian, C and light responsiveness and diurnal 

changes of the set of genes that have a high weighting in PC1 and PC2 for photoperiod-

dependent changes in gene expression at dawn.  

Supplemental Figure S12. Temporal kinetics of reversion of light-dependent change in 

transcript abundance during the night. 

Supplemental Figure S13. Photoperiod-dependent response of genes involved in starch 

synthesis and sucrose synthesis.  
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Supplemental Figure S14. Photoperiod-dependent response of genes involved in starch 

degradation.  

Supplemental Figure S15. Photoperiod-dependent changes of genes in secondary 

metabolism.  

Supplemental Figure S16. Photoperiod-dependent changes in the diurnal regulation of the 

transcripts encoding components of the protein synthesis machinery.  

Supplemental Fig. S17. Response of transcript abundance for KINβ-1 in photoperiod, clock, 

light, C and diurnal responses, and comparison with the responses of other sets of genes in 

these treatments. 

 

Supplemental Tables  

Supplemental Table S1. qRT-PCR analyses of transcript abundance of ten core clock genes 

and two output genes (PIF4, PIF5) in samples harvested at 2 h intervals from 21 day-old 

Arabidopsis Col-0 growing in a 6, 8, 12 or 18 h photoperiod. The results are the mean of 2 

biological replicates.  

Supplemental Table S2. Analysis of the timing and amplitude of transcript peaks. The 

original data is in Supplemental Table S1.  

Supplemental Table S3.  Analysis of secondary peaks in clock gene transcript abundance. 

The original data is in Supplemental Table S1.  

Supplemental Table S4. ATH1 profiling of global transcript abundance at dawn and dusk in 

Arabidopsis Col-0 growing in a 4, 6, 8, 12 or 18 h photoperiod.  The table provides RMA-

normalized values. The results are the mean ± SD (n = 3). The table also provides the 

weighting of each gene in principle component 1 and principle component 2.  Principle 

components analysis was performed separately for the dawn and the dusk data sets.  

Supplemental Table S5. Fold-changes transcript abundance between short and long 

photoperiods at dawn and dusk, compared to fold-changes between dawn and dusk in a 12 h 

photoperiod; the original data is provided in Supplemental Table S4. 
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Supplemental Table S6. Overrepresentation analyses for genes with a high weighting in 

principle component 1 and principle component 2. The principle components analysis was 

performed separately for the dawn and the dusk data sets.  

Supplemental Table S7. Genes with a high weighting in principle component 1 and 

principle component 2 from the principle components analysis with the dawn data set. 

 

Supplemental Text 

Supplemental Text S1. Explanation for Supplemental Figs S12, S14, S15, S16 and S17.  
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