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ABSTRACT 

 

Many methods have been applied to examining the capacity of existing distribution networks to 

accept distributed generation (DG). One aspect missing from existing approaches is the capability to 

efficiently site and size a predefined number of DGs. Here, a hybrid method employing genetic 

algorithms and optimal power flow aims to overcome this shortcoming. It could be applied by 

Distribution Network Operators to search a network for the best sites and capacities available to 

strategically connect a defined number of DGs among a large number of potential combinations. 

Some applications of the proposed methodology in the UK under current Ofgem financial 

incentives for DNOs confirmed its effectiveness in siting and sizing an assigned number of DG 

units. 

 

Keywords: — distributed generation, power flow analysis, optimization methods, power 

generation planning. 
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1 INTRODUCTION  

Distributed generation (DG) creates a variety of well-documented impacts on distribution network 

operation and implies significant changes to planning and design practices [1]-[4]. One area of 

interest is in providing Distribution Network Operators (DNOs) with the means to make best use of 

the existing network with DNOs encouraging development at the most suitable locations by issuing 

information to developers regarding the existence of spare connection capacity or from locational 

signals created by connection pricing. As such, DNOs require methods of quantifying the capacity 

of new DG that may be connected to distribution networks without the need for reinforcement.  

This task has attracted significant research interest with a wide range of methods, objectives and 

constraints being applied within two broad approaches. The first approach aims to site DG of 

discrete, pre-specified, capacities at the best sites, requiring the use of methods like genetic 

algorithms (GAs) able to handle discrete formulations [5], [9]–[13]. The discrete formulation of DG 

capacity will not provide a truly optimal solution, while the use of multiple capacities extends the 

search space significantly. The second approach requires network locations of interest to be pre-

specified with algorithms guiding capacity growth within network constraints. The methods tend to 

use continuous functions of capacity solved using methods like optimal power flow [4]–[6], linear 

programming [7] or gradient search [14] which are robust and repeatable. A downside is that where 

a large number of locations are searched the perceived optimal solution may contain a number of 

sites with very small available capacities. Although mathematically correct, the upfront costs of 

connection indicate that the very small plant would not be economic. However, the requirement to 

pre-specify locations is the major issue with this approach as the determination of the overall 

combination of locations is defined by nCr. With r DG to be located in a network of n buses, finding 

the best set is a significant effort beyond the feasibility of manual searches for even a small 

distribution network. 

Both approaches require capacity or location to be pre-specified. Here, a method is presented that 

overcomes these limitations. It is a hybrid method that uses a GA to search a large range of 

combinations of locations, employing OPF to define available capacity for each combination. 

Although this is achieved at the expense of requiring the number of DG units to be pre-specified 

this opens up the potential to examine the benefits of strategic placement of small numbers of DG. 

The paper is set out as follows: Section 2 sets out the basis for the hybrid DG capacity evaluation 

approach; Section 3 presents a case study using the tool which is discussed further in Section 4. 
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2 CAPACITY EVALUATION  

The capacity of the existing network to accept DG is defined by a range of constraints imposed by 

statute (e.g., voltage limits), equipment specification (e.g., thermal limits on lines and transformers) 

or other operational or planning limits. In line with existing DNO practice in the UK these 

assessments are made assuming the traditional worst case situation of maximum DG output at 

minimum load which provides the largest reverse power flows and voltage rise [1], [15]–[18].  

The hybrid method requires the user to define the number of DG units to be connected. The Genetic 

Algorithm generates combinations of locations from those available in the network. For each 

combination of locations, an optimal power flow is performed to define the capacity available; this 

information is fed back to the GA which searches for the ‘DNO optimal’ connectable capacity. In 

doing this the method should deliver the best locations as well as the capacities available for a user-

specified number of DG. The methodology is shown in Fig. 1 and explained in more detail as 

follows. 

2.1 UK Context 

The optimal DG capacity is deemed to be from the point of view of the DNO. Clearly, the attitude 

of the DNO is dependent on the actual or perceived benefits or costs associated with DG 

connection, and these will vary between systems. A significant driver of the costs and benefits will 

be the regulatory rules or incentives applicable to DG. Here, we are using the current arrangements 

in force in the UK as the basis for decision-making. 

In the 2005 distribution price control [19], [20], the UK regulator, Ofgem set out the regulatory 

environment for DNOs for a five year period. An incentive scheme for connecting DG was 

introduced wherein DG developers pay annual distribution use of system charges to the DNO 

(rather than the full upfront cost of connection). These consist of a charge based on 80% of the total 

cost of the reinforcement works (if any) required to connect the DG, a capacity charge of £1.50/kW 

of DG capacity installed (in lieu of direct recovery of the remaining 20% of the reinforcement 

assets) and an operations and maintenance (O&M) charge of £1/kW of DG capacity installed to 

recover operational costs relating to the reinforcement. As such, where DG is connected such that 

no reinforcement is required the DNO directly benefits by £2.50/kW of capacity installed.  

The price control also introduced an incentive scheme to reduce losses. The regulator sets a target 

loss level for each DNO and DNOs are rewarded if losses are below this and penalised if they are 

above: each unit of loss is valued at £48/MWh (in 2004 values). While the impact of DG on losses 

is site and time specific, depends on the DG technology and control of reactive power, there is a 

tendency for losses to follow the U-shape trajectory, as Fig. 2 illustrates [21]. Specifically, losses 

begin to decrease when connecting small amounts of DG capacity until they achieve their minimum 
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level. If DG capacity still increases, then losses begin to rise. It is worth pointing out that at high 

DG capacities, losses can become larger than those without DG connected. As such, the DNO is 

financially exposed to the impact of significant volumes of DG connections and while there is some 

protection offered by limits on loss adjustment factors, this does not apply to 11 kV systems.  

2.2 Capacity evaluation with OPF 

For a given set of locations, the network capacity available for new DG can be found using OPF 

following the approach of [4] and [6]. The maximum DG capacity can be determined by modelling 

DG as generators with negative cost coefficients. By minimizing the (negative) cost of all these 

generators, the DG capacity and benefit resulting from it are maximized. The available capacity is 

dictated by a range of network planning and DG control constraints. 

Although there is great interest in active management of distribution networks (e.g., [15], [22]), 

there are difficulties associated with coordinating control of DG and other network elements. Here, 

the traditional approach of operating DG in power factor control mode is assumed, necessitating the 

power factor constraint [22]: 

2 2cos .g g g gP P Q constφ = + =         (1) 

The safe operation of power system equipment and quality of supply requires voltages to be 

maintained close to nominal: 

maxmin
bbb VVV ≤≤           (2) 

where min
bV  and max

bV  are the lower and upper bounds of the bus voltage Vb. The thermal capacity, 

max
tS , of each line or transformer, t, also sets a limit to the maximum apparent power, St, transfer: 

max
tt SS ≤           (3) 

For simplicity, other constraints on DG penetration such as fault levels are not considered here but 

could be included within the methodology as illustrated in [6] or [8]. 

Earlier versions of the OPF approach [4], [6], [8] provided an objective function that was dependent 

only on the capacity of the DG connected. It can be adapted, instead, for the specific DNO 

requirements in force in the UK specifying incentives for DG connection and losses: 

( ) ( )∑
=

−−=
n

g

ACT
L

BM
LLggOPF PPCPCf

1
        (4) 
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Here Cg(Pg) is the benefit or incentive (£/kW per year) of connecting a generator g of capacity Pg, 

CL represents the value of the loss incentive as applied to the difference between the actual level of 

losses ACT
LP  and the target losses, BM

LP . As the target losses are specified by the regulator, it has 

been assumed that the DNO’s target loss level is the same as those in the absence of new DG. The 

addition of loss incentives results in a more sophisticated problem than loss minimisation or 

capacity maximisation alone as there is a trade-off between extra DG capacity and loss reduction. 

2.3 Genetic Algorithm 

The genetic algorithm searches the combinations of DG locations arising from the specified number 

of DG. The GA randomly generates a population of solutions by defining a set of bus combinations 

with each combination represented by a vector of integers identifying individual buses. For each 

combination of locations in the population the nested OPF calculates the optimal capacities and 

losses considering the worst case of minimum load [15]-[18], according to the objective function 

defined in (4). 

For each generation, a new set of improved individuals is created by selecting individuals according 

to their fitness according to a normalized geometric ranking scheme. After the new population is 

selected genetic operators are applied to selected individuals: simple crossover (randomly selected 

cut-point dividing each parent into two) and binary mutation (changes each of the bits of the parent 

based on the probability of mutation). An elitism mechanism ensures the survival of the best 

performing combination. The iteration process continues until the process reaches the maximum 

number of iterations or the best individual fails to improve beyond a specified amount over a 

specified number of generations.  

Further, an alternative chromosome representation of individuals, considering both the number and 

location of DG units, without the number constraint [23], suggests that the methodology should be 

entirely flexible. 

The entire method has been implemented in the Matlabenvironment, incorporating some features 

of the MATPOWER suite [24]. Its use is illustrated in the following case study to identify the best 

combinations of a specified number of DG within the network.  

3 CASE STUDY  

The method was applied to an 11-kV radial distribution system comprising two substations, four 

feeders, 69 nodes and 78 branches (including normally open tie lines) [25]. The network is shown in 

Fig. 3 while detailed network data is given in the Table 1. The system was assumed to be operated 

under UK regulation voltage limits of ±6% of nominal with thermal limits of 3 MVA for all lines. 
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All DG units were assumed to have fixed 0.9 lagging power factors. The total active and reactive 

power are 4.47 MW and 3.06 MVAr respectively, while the loss target, evaluated for conditions 

without any DG unit installed on the network, is 0.228 MW. The objective functions use the 

incentives currently in force in the UK: a benefit of £2.50 per year for every kW of new DG 

connected as well as a penalty/reward of 4.8p/kWh for losses increase/reduction relative to the 

target. 

The GA has a population size of 30 and the algorithm stops if improvement of the best objective 

function value is below a threshold of £0.01/hour over 50 generations or the number of generations 

exceeds 300. These values were found to guarantee the convergence of the algorithm to a 

satisfactory solution.  

3.1 Analyses 

In demonstrating the approach, several analyses explore a series of issues: identification of spare 

capacity in the network foe accommodating DG; the benefit of larger numbers of DG; and the 

impact of the loss incentive on optimal capacity.  

A series of simulations were run to define the optimal connection points and capacities for sets of 3, 

5, 7 and 9 potential DG units. Given the 67 possible sites these represent search spaces of 4.79×104, 

9.66×106, 8.70×108 and 4.28×1010 combinations, respectively. Each simulation is a fairly lengthy 

process, but the duration is reasonable given the strategic nature of the process. 

3.2 Results 

The optimal locations and capacities for the four simulations are shown in Table 2 and illustrated in 

Fig. 4. Bus 35 appears in all four cases, while buses 40 (e.g., for 5, 7 and 9 DG search) and 62 (e.g., 

for 3, 5 and 9 DG search) appear in three assessments. Five other locations appear in two of the 

assessments.  

It appears that many of the optimal locations are near to the centre of the feeders, often close to 

branch points. There is logic to this as they will tend to supply load at the end of the feeders whilst 

exporting modest amounts to the loads nearer to the sub-station. It is also apparent that the law of 

diminishing returns applies as, although overall connectable capacity increases with the number of 

DGs, the rate of increase falls. This will mainly be due to the opportunity to ‘spread’ capacity by 

connecting more but smaller DG and, to a large extent, will be influenced by the loss incentive 

which will tend to promote a more even spread of capacity. This finding supports the logic of 

promoting micro-generation within domestic and commercial properties, at the extreme end of the 

distributed generation spectrum. 
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The change in DNO incentive resulting from the connection and loss incentives is shown in Table 

3. It is clear the overall incentive payments increase with the number of DGs increase, albeit by just 

over £2.79/hour. The interesting issue is the much larger contribution from the loss improvement 

incentive relative to that for connection. In saying that, the imbalance reduces as the number of DGs 

goes up: the ratio of the loss and connection incentives drops from 10.48 to 7.34 when DG numbers 

increase from 3 to 9. This occurs as the connection incentive rises by nearly 81% over this range 

while the loss incentive rises by only 27%. This would appear to suggest a law of diminishing 

returns as far as loss improvement goes.  

The impact of the loss incentive can be explored by contrasting the results from the GA-OPF 

procedure with the optimal capacities suggested by an OPF applied to the same nodes with only the 

connection incentive as an objective. While this may not represent the best combinations of 3, 5, 7 

and 9 DGs anywhere in the system, Table 4 does show some significant differences with the earlier 

results. Firstly, the connectable capacities are universally bigger than before while the benefit from 

the loss incentive becomes a significant penalty in the four cases so that the total incentive becomes 

a penalty for the cases with 5, 7 and 9 DGs because the loss penalty exceeds the connection 

incentive. The improvement in DG capacity from considering more locations seems less clear, 

particularly as the maximum capacity across the four cases occurs when considering 5 locations. 

This is as a direct result of these locations not being the optimal ones under the altered objective 

function. In the 5 DG case, the connection of a large DG unit of 3.35 MW at bus 35, and of three 

medium DG units, namely a 1.13 MW unit at bus 4, a 1.32 MW unit at bus 62 and a 1.26 MW unit 

at bus 26, creates significant losses due to the reverse power flows and this explains the larger 

decrease of loss incentive for the DNO in this case. 

4 DISCUSSION 

The method presented here attempts to overcome limitations in evaluating network capacity to 

absorb DG by avoiding the pre-specification of unit size or location within approaches described in 

the literature. This hybrid of OPF and GA techniques provides a means of finding the best 

combination of sites within a distribution network for connecting a predefined number of DGs. As 

such, it would allow DNOs to search a given network for the best sites to strategically connect a 

small number of DG among a large number of potential combinations. While current UK incentives 

have been used as a basis for guiding the search, alternative objective functions would make its 

application in other systems feasible [21]. 

The simulation results showed the method allowing the DNO to improving earnings, primarily by 

reducing network losses. On the basis of the simulation results DNOs could guide DG connections 

during time to achieve better network exploitation and avoiding network ‘sterilisation’ [4]. 
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It is clear that the use of both connection and loss-reduction incentives alters the ‘optimal’ 

capacities and locations. Given the much larger incentive offered for loss reduction it is apparent 

that this tends to limit DG penetration relative to that allowed by the network constraints. It would 

be natural therefore for the DNO to seek to guide development at locations most favourable to it. 

These sites, however, may not be optimal from the environmental point of view which is likely to 

benefit from the connection of greater amounts of renewable energy sources. This issue clearly 

warrants further investigation and the authors are currently investigating appropriate means of 

exploring this issue [26]. A key limitation of the approach is that it does not consider the benefit of 

the DG in deferring network upgrades, nor consider the benefits associated with network upgrading 

in terms of enhanced DG capacity. 

The method developed to analyse the optimal connection of essentially deterministic energy sources 

(e.g., CHP) within the deterministic network constraints applicable in the UK. However, it could be 

adapted to cope with variable energy sources and probabilistic network constraints in order to 

develop a cost-benefit model for network capacity. 

5 CONCLUSIONS 

A method combining optimal power flow and genetic algorithms aims to provide a means of 

finding the best combination of sites within a distribution network for connecting a predefined 

number of DGs. In doing so it overcomes known limitations inherent in current available techniques 

to optimize DG capacity. Its use would be to enable DNOs to search a network for the best sites to 

strategically connect a small number of DGs among a large number of potential combinations. 
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Fig. 3. Radial distribution system 
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Table 1: 69-bus system data 

 

n.line s-bus r-bus 
R 

(Ω) 
X 

(Ω) 
P (r-bus) 

(kW) 
Q (r-bus) 
(kVAr) 

1 1 2 1.0970 1.0740 100 90 
2 2 3 1.4630 1.4320 60 40 
3 3 4 0.7310 0.7160 150 130 
4 4 5 0.3660 0.3580 75 50 
5 5 6 1.8280 1.7900 15 9 
6 6 7 1.0970 1.0740 18 14 
7 7 8 0.7310 0.7160 13 10 
8 8 9 0.7310 0.7160 16 11 
9 4 10 1.0800 0.7340 20 10 
10 10 11 1.6200 1.1010 16 9 
11 11 12 1.0800 0.7340 50 40 
12 12 13 1.3500 0.9170 105 90 
13 13 14 0.8100 0.5500 25 15 
14 14 15 1.9440 1.3210 40 25 
15 7 68 1.0800 0.7340 100 60 
16 68 69 1.6200 1.1010 40 30 
17 1 16 1.0970 1.0740 60 30 
18 16 17 0.3660 0.3580 40 25 
19 17 18 1.4630 1.4320 15 9 
20 18 19 0.9140 0.8950 13 7 
21 19 20 0.8040 0.7870 30 20 
22 20 21 1.1330 1.1100 90 50 
23 21 22 0.4750 0.4650 50 30 
24 17 23 2.2140 1.5050 60 40 
25 23 24 1.6200 1.1100 100 80 
26 24 25 1.0800 0.7340 80 65 
27 25 26 0.5400 0.3670 100 60 
28 26 27 0.5400 0.3670 100 55 
29 27 28 1.0800 0.7340 120 70 
30 28 29 1.0800 0.7340 105 70 
31 1 30 0.3660 0.3580 80 50 
32 30 31 0.7310 0.7160 60 40 
33 31 32 0.7310 0.7160 13 8 
34 32 33 0.8040 0.7870 16 9 
35 33 34 1.1700 1.1450 50 30 
36 34 35 0.7680 0.7520 40 28 
37 35 36 0.7310 0.7160 60 40 
38 36 37 1.0970 1.0740 40 30 
39 37 38 1.4630 1.4320 30 25 
40 32 39 1.0800 0.7340 150 100 
41 39 40 0.5400 0.3670 60 35 
42 40 41 1.0800 0.7340 120 70 
43 41 42 1.8360 1.2480 90 60 
44 42 43 1.2960 0.8810 18 10 
45 40 44 1.1880 0.8070 16 10 
46 44 45 0.5400 0.3670 100 50 
47 42 46 1.0800 0.7340 60 40 
48 35 47 0.5400 0.3670 90 70 
49 47 48 1.0800 0.7340 85 55 
50 48 49 1.0800 0.7340 100 70 
51 49 50 1.0800 0.7340 140 90 
52 1 51 0.3660 0.3580 60 40 
53 51 52 1.4630 1.4320 20 11 
54 52 53 1.4630 1.4320 40 30 
55 53 54 0.9140 0.8950 36 24 
56 54 55 1.0970 1.0740 30 20 
57 55 56 1.0970 1.0740 43 30 
58 52 57 0.2700 0.1830 80 50 
59 57 58 0.2700 0.1830 240 120 
60 58 59 0.8100 0.5500 125 110 
61 59 60 1.2960 0.8810 25 10 
62 55 61 1.1880 0.8070 10 5 
63 61 62 1.1880 0.8070 150 130 
64 62 63 0.8100 0.5500 50 30 
65 63 64 1.6200 1.1010 30 20 
66 62 65 1.0800 0.7340 130 120 
67 65 66 0.5400 0.3670 150 130 
68 66 67 1.0800 0.7340 25 15 
69 9 50 0.9080 0.7260 - - 
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70 9 38 0.3810 0.2440 - - 
71 15 46 0.6810 0.5440 - - 
72 22 67 0.2540 0.2030 - - 
73 29 64 0.2540 0.2030 - - 
74 45 60 0.2540 0.2030 - - 
75 43 38 0.4540 0.3630 - - 
76 39 59 0.4540 0.3630 - - 
77 21 27 0.4540 0.3630 - - 
78 15 9 0.6810 0.5440 - - 
79 67 15 0.4540 0.3630 - - 

 

 

 

 

 

 

TABLE 2 OPTIMAL DG LOCATION/CAPACITIES  
 

BUS 
CAPACITY ADDED [MW] 

3 DG 5 DG 7 DG 9 DG 

4  0.9421  0.4686 

5   0.6404  

6    0.2315 

13   0.2679 0.2436 

21    0.2647 

26 0.7395 0.7606   

27   0.7337 0.6775 

35 1.0314 0.7638 0.7639 0.7641 

40  0.7106 0.7178 0.7243 

57   0.7892 0.7519 

62 0.8904 0.8903  0.7072 

65   0.6529  

Total 2.6614 4.0674 4.5658 4.8334 
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TABLE 3 Optimal capacity and incentives 

 3 DG 5 DG 7 DG 9 DG 

TOTAL CAPACITY [MW] 2.6614 4.0674 4.5658 4.8334 

CAPACITY/M INIMUM LOAD RATIO (%) 59.53% 90.99% 102.14% 108.13% 

DG INCENTIVE [£/HOUR] 0.7595 1.1607 1.3030 1.3795 

LOSS INCENTIVE [£/HOUR] 7.9607 9.5705 9.9700 10.1293 

TOTAL INCENTIVE [£/HOUR] 8.7202 10.7314 11.2729 11.5991 

 

 

 

 

TABLE 4 Capacities and incentives with losses omitted from objective function 

 3 DG 5 DG 7 DG 9 DG 

TOTAL CAPACITY [MW] 5.647 6.987 6.9763 6.9572 

DG INCENTIVE [£/HOUR] 1.6118 1.9939 1.9910 1.9855 

LOSS INCENTIVE [£/HOUR] -0.7156 -3.0800 -3.9612 -3.7217 

TOTAL INCENTIVE [£/HOUR] 0.8960 -1.1011 -1.9703 -1.7362 

 

 

 


