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Background: The majority of human proteins are being modified by covalent attachment of complex oligosaccha-
rides— glycans. Both glycans and polypeptide parts of a protein contribute to its structure and function, but contrary
to polypeptide that is defined by the sequence of nucleotides in the corresponding gene, glycans are shaped by com-
plex dynamic interactions between hundreds of enzymes, transcription factors, ion channels and other proteins.
Scope of review:An overview of current knowledge about the importance of N-glycans in normal human physiology
and disease mechanisms, exemplified by IgG N-glycans.
Major conclusions: Recent technological development enabled systematic analysis of glycome composition in large
epidemiological cohorts and clinical studies. However, the majority of these studies is still missing any glycomic
component, and consequently also lacks this layer of biological information. Individual variation in glycosylation
is potentially important for individualized disease risk, disease course and response to therapy. Evidence in support
of this hypothesis is accumulating, but further studies are needed to enable understanding of the role of changes in
protein glycosylation in disease.
General significance: Glycans are involved in virtually all physiological processes. Inter-individual variation in
glycome composition is large, and these differences associate with disease risk, disease course and the response
to therapy. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor
Gordan Lauc.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Editor: Professor Gordan Lauc.

haride composed of 10–15 monosaccharide residues. Can be covalently attached to proteins to
s, or lipids to make glycolipids. Most glycans attached to proteins can be classified as N-glycans,
itrogen of asparagine, or O-glycans, attached through oxygen of mainly serine or threonine.
in an organism/tissue/cell, or even of a single glycoprotein.
omposed of a polypeptide and one or more glycans.
ms of all glycoproteins in an organism/tissue/cell.
amino acids in a protein sequence recognized by the cell's glycosylation machinery as the place
ans can be attached.
nt glycans to the same glycosylation site on a polypeptide chain.

t differs only with respect to glycan(s) attached. An average glycoprotein comes in hundreds of
s.
a specific monosaccharide to a growing oligosaccharide.
or a glycosyltransferase or other proteins directly involved in biosynthesis and degradation of

ctional carbohydrate recognition domain which binds specific glycan structures, regarding
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1. Glycans are essential for multicellular life

Glycans, alongside DNA, proteins and lipids, are one of four principal
components of the cell. They are essential for multicellular life, as the
complete absence of glycans is embryologically lethal [2]. They are the
most abundant and diverse natural biopolymers, composed of saccha-
rides that are typically added to nascent proteins and lipids within the
cell secretory pathway (endoplasmatic reticulum and Golgi apparatus).
The glycome represents the entire glycan repertoire of an organism/
tissue/cell/protein, and is studied systematically by glycomics, a
newly emerging field that has produced over 1.5 million scientific
publications in the last 5 years [3]. Due to the large extent of variation
in sugar monomer structure and inter-saccharide binding (bond type,
branching) combined with the variation in glycan attachment sites
the complexity of glycome exceeds that of the proteome by several
orders of magnitude [4].

Glycans are assembled from monosaccharide residues through a
carefully regulated enzyme-directed process of glycosylation. In con-
trast to polypeptides, which are defined by the sequence of nucleotides
in the corresponding genes, glycans are shaped by complex dynamic
interactions between hundreds of enzymes, transcription factors, ion
channels and other proteins [5,6], Since genetic background (reflected
in the proteins involved in glycan synthesis) and environmental factors
integrate at the level of glycan biosynthesis [7], the glycome represents
a form of cellularmemory, whichmodulates current cellular physiology
on the basis of past events in the cell [8,9].

The glycosylationmachinery is influenced by both genetic and envi-
ronmental factors. Severe glycan deficiencies caused by mutations in
the early stages of the glycan biosynthesis pathway (responsible for
core glycan structures) cause deficiencies in cellular growth and func-
tion and lead to a variety of debilitating diseases called congenital disor-
ders of glycosylation [10]. In contrast, great diversity in the terminal
glycan antennae is common. A well-recognized example of this is the
existence of AB0 blood groups, which differ between individuals in oli-
gosaccharide antigens attached to the proteins and lipids. The difference
between these sugar moieties stems from three allelic variants of a sin-
gle glycosyltransferase gene, each allowing for the synthesis of a differ-
ent carbohydrate antigen.

Glycans participate in numerous molecular processes, including
protein folding, cell-adhesion,molecular trafficking, signal transduction,
modulation of receptor activity and others [6]. As such, they play a
major role in all fundamental functions of the multicellular organ-
ism, including the immune system, particularly regarding mucosal
barrier maintenance, “self” vs. “non-self” discrimination and behav-
ior of immune cells. Human cells are covered with a dense layer of
glycans attached to membrane proteins and lipids — the glycocalyx
(literally meaning “sugar coat”), a structure at least 10, and sometimes
even 1000 times thicker than the cellular membrane itself (Fig. 1).
Glycocalyx represents a cell's fingerprint, a type of identifier that the
human body uses to distinguish between “self” and “non-self”. Foreign
glycan patterns present on transplanted tissues, invading organisms,
but also own diseased cells are recognized by soluble and cell
membrane glycan receptors that activate innate immune response
mechanisms.

Given the fact that glycans participate in many biological processes,
it is not surprising that molecular defects in glycan synthesis are recog-
nized as direct causes of an increasing number of diseases [10]. Many
specific glycan variants are now considered disease markers and repre-
sent diagnostic as well as therapeutic targets [11–13].

Glycans can be covalently attached to proteins to make glycopro-
teins, or lipids to make glycolipids. Two major groups of branched
glycans attached to various amino acids in the glycoprotein back-
bone comprise: N-linked glycans— attached to the nitrogen of aspar-
agine or arginine side chains; and O-linked glycans— attached to the
oxygen of serine, threonine, tyrosine, hydroxylysine or hydroxypro-
line side chains. Another group of glycoproteins are proteoglycans, that
consist of long, unbranched often sulfated carbohydrate structures (gly-
cosaminoglycans), attached to serine or threonine of protein backbone.
Due to the vast expanse of the topic and the fact that they are present in
about 90% of all glycoproteins [4], this review focuses on N-glycans as
the major and best studied class of carbohydrate protein modifications.
However, it should be noted that other types of glycosylation, in partic-
ular O-glycosylation, proteoglycans and glycolipids are also very impor-
tant and should be included in large population studies that look at
disease mechanisms.
• “Glycans are directly involved in the pathophysiology of every
major disease.”

• “Additional knowledge from glycoscience will be needed to
realize the goals of personalized medicine and to take advan-
tage of the substantial investments in human genome and
proteome research and its impact on human health.”

• “Glycans are increasingly important in pharmaceutical
development.”

US National Academies, 2012 [1]
2. Variation in protein glycosylation has functional significance

Nearly all human membrane and secreted, as well as numerous in-
tracellular proteins are co- and post-translationally modified by the co-
valent addition of complex oligosaccharides [5]. Glycoproteins therefore
represent more than a half of all proteins, such as most serum proteins
[4], with their glycan parts often playing an essential functional role. A
comprehensive report endorsed by the US National Academy of
Sciences stated that glycans serve as “on and off” switches that
modulate the functions of glycoproteins, the proteome predicting the
phenotype, but glycoproteome actually being the phenotype [1].

In contrast to the linear nature of nucleic acids (DNA, RNA) and pro-
teins, glycans attached to proteins are non-linear branched molecules.
Due to their structural complexity andmethodological difficulties asso-
ciated with the analysis of small amounts of glycans in diagnostic sam-
ples, knowledge about the role of glycans in disease mechanisms lags
significantly behind the knowledge about the role of genes and proteins.
However, asmore information about protein glycosylation emerges, it is
becoming increasingly clear that glycosylation is strictly regulated
and that glycan attachment to proteins is of paramount physiological
significance [5]. Glycan parts of glycoproteins are involved in virtually
all biological processes, from fertilization and embryogenesis, through
cell proliferation, differentiation and development, to immunity and
aging.

Despite their different biosynthetic origin, both polypeptide and gly-
can parts of glycoproteins participate as constitutive molecular entities
in the function of a glycoprotein (Fig. 1). Therefore, without the knowl-
edge about the structure and function of glycan parts of glycoproteins,
many aspects of their biology and involvement in disease mechanisms
will remain elusive. In principle, glycans contribute to protein function
in three ways: (1) representing an integral part of the protein and
thus being essential for protein's proper structure and/or function —
this refers to protein folding, solubility and stability; (2) fine-tuning
protein structure and thus modulating its function through alternative
glycosylation (addition of different glycans to the same attachment
site on the polypeptide chain) in order to tailor it to specific physiolog-
ical requirements; and (3) forming independent binding sites for
glycan-specific receptors called lectins. Through all three modes of
action glycans are directly involved in various disease mechanisms.

This review presents examples of the paramount importance of
glycans in immunity, cancer and activity of biological therapeutics.
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3. Glycans are necessary for interaction of pathogenic and commensal
microbes with host cells

Pathogen infection typically begins with host glycan recognition
and binding by one or more of viral, bacterial, or protozoan numer-
ous lectins. The first identified microbial lectin was the hemaggluti-
nin from the influenza virus. A glycoprotein itself, its name originates
from the ability to crosslink red blood cells by binding to terminal
sialic acids on their surface. Influenza hemagglutinin is one of the
best studied lectins and its specific recognition of distinct glycan
structures, namely the type of covalent bond between 2 monosac-
charide units (sialic acid-2,3-galactose, vs. sialic acid-2,6-galactose)
on the surface of host target cells is the main barrier requiring genetic
conversion for influenza viruses to cross between species [14]. The
importance of this feature became apparent during the spreading
of the most pathogenic bird influenza virus H5N1 in the last 15
years, raising global public concern over a possible human pandemic
threat. Interestingly, both letters in the name of the virus are related
to glycans, thus underlining the importance of glycans in viral infec-
tion. The H stands for the aforementioned hemagglutinin, necessary
in the initial stages of viral infection, while the N stands for neur-
aminidase, i.e. sialidase, necessary for the release of viral progeny
from infected cells by cleaving terminal sialic acid residues on host
glycoproteins.

The specificity of rotaviruses, an important cause of childhood death
(from dehydration secondary to acute gastroenteritis) in developing
countries, also lies in the specificity of their glycan attachment. Host sus-
ceptibility to specific human rotavirus strains and disease pathogenesis
appear to be influenced by the expression of different ABO blood group
antigens [15], also recognized as susceptibility and cell attachment
factors for other gastric pathogens like Helicobacter pylori [16] and
noroviruses [17]. It is generally thought that the development of ABO
polymorphic surface presentation system has an evolutionary advan-
tage in limiting the spread of pathogens that specifically recognize its
glycoantigens. Even when pathogens do not bind directly to ABO gly-
cans, their alteration of the presentation of cognate ligands on the
cell surface can modulate binding of pathogens such as Plasmodium
falciparum malarial parasite and limit their transmission between indi-
viduals [18].

The inhibition of pathogen binding to host cell ligands is an impor-
tant element of protection against microbial pathogens. In breastfed
newborns it is interestingly rendered by a complex repertoire of glycans
that represents the third largest component of human mother's milk.
The glycome composition in mother's milk is therefore found to be
significantly associated with the risk of infectious diseases in breastfed
infants [19].

Long after the discovery of human glycans glycoscience was
unaware of the existence of glycosylation machinery in bacteria. It is
now known that N- and O- glycans on the surface of many pathogenic
bacterial genera (Campylobacter, Helicobacter, Clostridium, Haemophilus,
Escherichia, Neisseria, Mycobacterium, Streptomyces etc.) are indispens-
able for their motility and adherence to surfaces, therefore playing a
major role in their virulence and representing putative therapeutic
targets [20]. In symbiotic bacteria glycans are extensively involved in
homeostasis maintenance, playing a key role in symbionts' colonizing
capacity, survival advantage and attenuation of the host's immune
response [21]. In case of intestinal microbiota they at the same time
serve as a nutrient foundation that helps organize initial colonization
of different regions of the postnatal intestine. [22] Modulation of
the intestinal epithelial glycome is a fascinating example of the role
that host glycans play in the interaction between higher organisms
and microbes. The exact mechanisms of this phenomenon are still
being elucidated, but it has been shown that signals from specific
non-pathogenic commensal bacteria affect the host's glycosylation
machinery and instruct it to produce glycans that promote successful
symbiosis [22,23].
4. Inflammation is initiated by glycans

Selectins are a family of cell surface lectins originally identified as
key initiators of inflammation [24–26]. All selectins function by binding
to specific glycoprotein and glycolipid ligands on the cell surface in a
calcium-dependent manner [27]. They play a significant and a well-
documented role in leukocyte recruitment and migration to sites of in-
flammation, initiating tethering and rolling of circulating leukocytes
that leads to their activation, adhesion and subsequent extravasation
into tissues, aswell as signal transduction. Thismakes selectins essential
for mounting a functional immune response, which includes immune
surveillance and inflammation. Their importance has been further rec-
ognized in various processes requiring cell adhesion, including blood
cell homeostasis, metastasis [28] and maternal-fetal interactions [29].

Threemembers of the selectin family have been identified, L-, P-, and
E-selectins. L-selectin (CD62L, LAM-1, LECAM-1) is constitutively
expressed on all classes of peripheral blood leukocytes and is rapidly
shed by proteolytic cleavage upon their activation [30]. It functions as
a homing receptor, mediating binding of lymphocytes to high endothe-
lial venules of peripheral lymphnodes, whichmakes it indispensable for
constitutive lymphocyte trafficking. It is also included in leukocyte
homing to the inflammation sites after activation. P-selectin (CD62P,
LECAM-3, GMP-140, PADGEM) is expressed and translocated to the
cell surface within minutes of an inflammatory stimulus in activated
platelets and inflammed endothelial cells. E-selectin (CD62E, ELAM-1,
LECAM-2) is expressed on endothelial cells after de novo synthesis,
within a few hours of activation. P-selectin (in acute injury) and
E-selectin (in inflammatory conditions) mediate the initial leukocyte
capture and rolling along the wall of post-capillary and collecting
venules [31].

Dysregulation of selectins or their glycoprotein ligands can lead to
exacerbation of a variety of disease processes, including atherosclerosis,
restenosis (recurrence of stenosis), deep venous thrombosis and tumor
metastasis, while pharmacological blockade of selectins has been dem-
onstrated to ameliorate disease pathology [32]. Since selectins function
through recognition of glycans on the cell surface, any alterations in the
presentation of glycans can have significant effects on this interaction.
For example, the presence of monosaccharide fucose in the form of
Sialyl Lewis X (sLeX or CD15s) or sialyl Lewis A (sLeA) is required for
proper binding and subsequent selectin-dependent leukocyte adhesion
and trafficking [33]. 90% of cellular fucose, necessary for selectin ligand
synthesis, is supplied by a fucose-generating FX enzyme. Its importance
in lymphocyte migration is manifested in knock-out mice, which dis-
play an immunodeficient phenotype due to impaired leukocyte recruit-
ment, similar to patients with the rare congenital disease leukocyte
adhesion deficiency type II (LAD II) [34]. These patients suffer from se-
vere recurrent bacterial infections caused by defective fucose processing
that prevents the production of functional fucosylated selectin ligands
on the cell surface [35,36].

The effects of thewide inter-individual variation in protein glycosyl-
ation patterns in human populations [37,38] on the function of selectins
and their participation in disease mechanisms remain to be elucidated.

5. Glycosylation regulates antibody function

Almost all key molecules involved in the processes of innate and
adaptive immunity, including immunoglobulins (Ig) of all five classes,
are glycoproteins [39]. Depending on the class, carbohydrate content
makes up to 15% of antibody weight, and is critical for the appropriate
functioning of all immunoglobulins. Due to its extensive involvement
in immunological processes, IgG is one of the mostly studied glyco-
proteins and represents an excellent example of protein function
modulation by alternative glycosylation. While the Fab parts of IgG
are responsible for the recognition of antigenic structures, the Fc
part executes further actions for the removal or destruction of recog-
nized objects through interaction with different Fcγ and other



Fig. 1.Glycans are important structural and functional component of the majority of proteins. Two examples of glycoprotein structure: Fc fragment of immunoglobulin G (A) and toll like
receptor 8 (B) are provided in the form of molecular models. The polypeptide backbone is shown in gray, and glycans in color. Despite their different biosynthetic origin, both glycan and
polypeptide parts participate in their structure and function. Glycans are particularly important at the cell membrane where they form a glycocalyx (C), a complex layer of glycoproteins
and proteoglycans that is 20–30 times thicker than the phospholipid bilayer of the cell membrane (from Vogel at al, Journal of Cerebral Blood Flow & Metabolism 20:1571, 2000).

Fig. 2. Functional implications of alternative glycosylation of IgG.
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receptors. Each IgG heavy chain carries a single covalently attached
bi-antennary N-glycan that is an essential structural component of the
Fc region. The attachment of different glycans can significantly change
conformation of the Fc with dramatic consequences for IgG effector
functions [40] (Fig. 2).

Population studies have found high levels of inter-individual varia-
tion in total plasma and immunoglobulin G (IgG) glycome [37,41].
Both total plasma and IgG glycome composition have been shown to
be longitudinally quite stable in homeostatic conditions [42]. However,
they change significantly but at a slow pacewith age [37,43], and can be
rapidly altered in situations of disturbed homeostasis [44]. The variety
and dynamic in glycome composition can thus represent both an evolu-
tionary advantage and a means to quickly respond to environmental
stimuli.

Over 95% of circulating human IgG contains a fucose residue
attached to the first N-acetylglucosamine in the IgG glycan core (core-
fucose) [41]. This is an unusual feature of IgG, since the majority of
other plasma proteins are not core-fucosylated [37]. The presence of
core-fucose is known to dramatically reduce IgG binding to FcγRIIIA
[45–47], an activating Fc receptor specific for IgG Fc region and
expressed on the surface of innate immune cells, such as natural killer
(NK) cells and macrophages. It initiates antibody dependent cellular
cytotoxicity (ADCC) by NK cells and antibody dependent cellular
phagocytosis (ADCP) by macrophages upon antigen binding. The pres-
ence of a high proportion of IgG which is core-fucosylated therefore
represents a “safety switch” which attenuates potentially harmful
ADCC activity [48]. By contrast, ADCC induced by non-fucosylated IgG
seems to be one of the primary modes of function of therapeutic anti-
cancer monoclonal antibodies, since IgG molecules lacking core-fucose
are over 100 timesmore effective in initiatingADCC [45,49,50]. Interest-
ingly, high affinity binding between FcγRIIIA and antibodies lacking
core fucose requires unique carbohydrate-carbohydrate interactions
between IgG glycans and glycans attached to FcγRIIIA [51,52], further
reinforcing the importance of glycosylation in the regulation of ADCC.

Another important structural feature of IgG glycans is the addition of
galactose, which seems to be regulated in a very complex manner. It
changes gradually in association with physiological factors (such as
age and hormonal status), but can also change rapidly in an “on and
off mode” in acute inflammation [44]. A decrease in IgG galactosylation
is also noted in many autoimmune and inflammatory diseases, where it
probably plays a functional role causing a decrease in the immunosup-
pressive potential of IgG. Fc galactosylation has recently been found a
prerequisite for the efficient association between FcγRIIB and dectin-1,
leading to IgG anti-inflammatory activity [53]. Likewise immune
complexes rich in galactose residues have been found to inhibit the
pro-inflammatory activity of the complement component C5a [54,
55]. This may represent another mechanism by which decreased
IgG galactosylation participates in the pathology of autoimmune
and inflammatory diseases.

The presence of glycans with terminal sialic acid converts IgG func-
tion from pro-inflammatory to anti-inflammatory in some mouse
models. This is confirmed by the finding that the hyper-sialylated Fc
fraction, recognized by the DC-SIGN (CD209) receptor, is responsible
for the anti-inflammatory property of intravenous immunoglobulins
administered at high doses (g/kg) [56,57]. The anti-inflammatory and
immunosuppressive activities of highly sialylated IgG molecules are
thought to be one of the key elements in immune homeostasis and pre-
vention of autoimmune and inflammatory diseases [55,58].

6. Protein glycosylation in autoimmune and inflammatory diseases

Autoimmune diseases are triggered by aggressive responses of the
adaptive immune system to self-antigens, resulting in tissue damage
and pathological sequelae [59]. Among other mechanisms, autoanti-
bodies are responsible for the chronic inflammation and destruction of
healthy tissues by interaction with the complement network and Fc
receptors on innate immune effector cells. [60] The class/subclass and
glycosylation status, particularly in the case of IgG, are important in de-
termining the pathogenicity of autoantibodies in autoimmune diseases
[61]. Removal of IgG glycans leads to the loss of pro-inflammatory activ-
ity, suggesting that in vivo modulation of antibody glycosylation might
be a strategy to interfere with autoimmune processes [60].

Decreased galactosylation of IgG in rheumatoid arthritis (RA)
is well established [62,63]. It has been shown that incompletely
galactosylated IgG can activate complement via the mannose-
binding protein, thus taking part in the underlying pathological
mechanism of rheumatoid arthritis via lectin complement pathway
[54]. Decreased IgG galactosylation has also been reported to
precede the development of RA [64,65], indicating that this more
pro-inflammatory form of IgG may be either a predisposing factor, or
a functionally relevant change that contributes to the RA development.
Decreased IgG galactosylation has also been reported in inflammatory
bowel disease (IBD) [66,67] and systemic lupus erythematosus (SLE)
[68,69]. In SLE, changes in IgG glycosylation also associated with symp-
tom severity. The cross-sectional nature of these studies did not allow
for any inference of causality, but the significant pleiotropic effects of
a number of genes on both IgG glycome and IBD and/or SLE, as well
as the very high heritability of the IgG glycome [70] suggest that
glycoforms which decrease immunosuppressive activity of IgG may be
a predisposing factor for autoimmune and inflammatory disease.

The leukocyte and endothelial glycocalyx is of paramount impor-
tance in the process of inflammation underlying the autoimmune dis-
eases' pathogenesis. Membrane glycoproteins show very complex and
sophisticated glycosylation patterns and their glycans play numerous
important roles in the immune response [71], such as leukocyte activa-
tion, migration and tissue infiltration. Altered protein glycosylation and
antibodies that recognize endogenous glycans have been associated
with various autoimmune diseases. For example, mouse strains with
deficiencies in glycan branching, are hypersensitive to autoimmune dis-
ease [72], while modification of sialic acids on membrane glycoproteins
by sialic acid acetylesterase is important in peripheral B cell tolerance
[73] and functionally deficient germline variants of this gene represent
a strong genetic link to susceptibility in some relatively common
human autoimmune disorders [74].

7. Glycosylation in cancer

Since hundreds of genes are involved in glycan biosynthesis [75],
this process is inherently sensitive to alterations in cellular physiology.
Consequently, extensive genetic alterations that are associated with
malignant transformation are inevitably accompanied by changes in
protein glycosylation, as evidenced by changed glycoprofiles of many
cancermarkers. Glycans are known to play a role in tumor proliferation,
invasion, haematogenous metastasis and angiogenesis [11]. Some as-
pects of protein glycosylation (glycan branching in particular) appear
to be of great importance for cancer progression and metastasis, cell to
cell contact, and epithelial-mesenchymal transition [12]. The epigenetic
regulation of glycosyltransferases in cancer cells results in the creation
of novel glycan structures that appear to be one of the mechanisms
used by cancer cells to evade the host immune response [76]. A recent
comprehensive study of genetic variants thatmediate breast cancerme-
tastasis to the brain identified α-2,6-sialyltransferase ST6GALNAC5 as
the key gene specifically mediating brain metastasis [77]. Normally
restricted to the brain, the expression of ST6GALNAC5 in breast cancer
cells enhances their adhesion to brain endothelial cells and their pas-
sage through the blood–brain barrier. This highlights the potential
wider role of cell-surface glycosylation in organ-specific metastatic in-
teractions. The majority of currently used protein cancer biomarkers
are actually glycoproteins and their glycosylation is significantly altered
in cancer (Table 1). However, despite significant biomarker potential of
changes in glycosylation [78,79], this type of analytics still needs to find
its way to routine clinical practice. Acknowledging the importance of



Table 1
Glycosylation of clinically used cancer biomarkers. Themajority of FDA-approved protein tumormarkers currently used in clinical practice are actually glycoproteins and formany of them
itwas shown that their glycosylation changes in cancer. However, despite significant biomarker potential, [78,79] changes in cancer biomarker glycosylation are currently not used in rou-
tine clinical practice.

Biomarker Cancer type Reference showing relevance of glycosylation

Prostate specific antigen (PSA) Prostate Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M., and O'Kennedy, R. J. (2013) Aberrant PSA glycosylation—a
sweet predictor of prostate cancer. Nature reviews. Urology 10, 99–107.

Alpha-fetoprotein (AFP) Liver cancer and germ cell
tumors

Sato, Y., Nakata, K., Kato, Y., Shima, M., Ishii, N., Koji, T., Taketa, K., Endo, Y., and Nagataki, S. (1993) Early
recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N. Engl. J. Med.
328, 1802–1806.

Beta-human chorionic
gonadotropin (Beta-hCG)

Choriocarcinoma and testicular
cancer

Lempiainen, A., Hotakainen, K., Blomqvist, C., Alfthan, H., and Stenman, U. H. (2012) Hyperglycosylated
human chorionic gonadotropin in serum of testicular cancer patients. Clin Chem 58, 1123–1129.

MUC-1 (CA15-3/CA27.29) Breast cancer Brockhausen, I., Yang, J. M., Burchell, J., Whitehouse, C., and Taylor-Papadimitriou, J. (1995) Mechanisms
underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233, 607–617.

Carbohydrate antigen 19.9
(CA19-9)

Pancreatic cancer, gallbladder
cancer, bile duct cancer, and
gastric cancer

Yue, T., Goldstein, I. J., Hollingsworth, M. A., Kaul, K., Brand, R. E., and Haab, B. B. (2009) The prevalence and
nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin
sandwich arrays. Mol Cell Proteomics 8, 1697–1707.

MUC16 (CA-125) Ovarian cancer Jankovic, M. M., and Milutinovic, B. S. (2008) Glycoforms of CA125 antigen as a possible cancer marker.
Cancer biomarkers : section A of disease markers 4, 35–42.

Carcinoembryonic antigen
(CEA)

Colorectal cancer and breast
cancer

Saeland, E., Belo, A. I., Mongera, S., van Die, I., Meijer, G. A., and van Kooyk, Y. (2012) Differential glycosylation
of MUC1 and CEACAM5 between normal mucosa and tumor tissue of colon cancer patients. Int. J. Cancer 131,
117–128.

Chromogranin A (CgA) Neuroendocrine tumors Gadroy, P., Stridsberg, M., Capon, C., Michalski, J. C., Strub, J. M., Van Dorsselaer, A., Aunis, D., and Metz-
Boutigue, M. H. (1998) Phosphorylation and O-glycosylation sites of human chromogranin A (CGA79-439)
from urine of patients with carcinoid tumors. J. Biol. Chem. 273, 34,087–34,097.

HE4 Ovarian cancer Hua, L., Liu, Y., Zhen, S., Wan, D., Cao, J., and Gao, X. (2014) Expression and biochemical characterization
of recombinant human epididymis protein 4. Protein expression and purification 102, 52–62.

Thyroglobulin Thyroid cancer Di Jeso, B., Formisano, S., and Consiglio, E. (1999) Depletion of divalent cations within the secretory pathway
inhibits the terminal glycosylation of complex carbohydrates of thyroglobulin. Biochimie 81, 497–504.

Plasminogen activator
inhibitor (PAI-1)

Breast cancer Gils, A., Pedersen, K. E., Skottrup, P., Christensen, A., Naessens, D., Deinum, J., Enghild, J. J., Declerck, P. J.,
and Andreasen, P. A. (2003) Biochemical importance of glycosylation of plasminogen activator inhibitor-1.
Thromb Haemost 90, 206–217.
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glycans in malignant transformation, The National Cancer Institute has
begun an initiative to discover, develop and clinically validate glycan
biomarkers for cancer (http://glycomics.cancer.gov/) [80–85].

8. The importance of glycans for therapeutics

Many recombinant pharmaceuticals, including therapeutic mono-
clonal antibodies, are glycoproteins (Table 2), and their specific
glycoforms are the key to their bio-activity and half lives in circula-
tion. Improper glycosylation, like, for example, the presence of N-
glycolylneuraminic acid in recombinant therapeutic glycoproteins can
Table 2
Top 10 best selling drugs in 2008 and 2013. Eight out of 10 best selling drugs in Europe are
glycoproteins (IMS Health,MIDAS, MAT June 2013)
cause severe adverse reactions in some individuals [86]. Glycans
attached to Fc domainmodulates effector functions of monoclonal anti-
bodies and tuning of glycosylation to desired effector functions can
improve efficacy of the drug. For example, it was recently shown that
glycoengineered CD20 antibody obinutuzumab activates neutrophils
and mediates phagocytosis through CD16B more efficiently than ritux-
imab [87]. Recombinant erythropoietin is another example where
glycosylation is of paramount importance for therapeutic activity.
Glycans constitute about 40% of its molecular weight and differentiate
between different glycoprotein variants sharing the same polypeptide
sequence. It was glycan engineering (mostly increasing sialic acid con-
tent) that led to the production of the improved hyperglycosylated var-
iant: novel erythropoiesis stimulating protein with prolonged serum
half-life, resulting in increased bio-activity and reduced administration
frequency [88]. For example, the introduction of two additional
N-glycosylation sites increased the half-life of darbepoetin from 7 to
8 h to approximately 22 h, thus making this glyco-engineered form of
erythropoietin a more potent and much more convenient drug [89]. It
is to be expected that the potential of glyco-engineering strategies
will be further used in the future for the optimized production of
glycoconjugates for therapeutic and vaccination purposes.

The anti-flu virus blockbuster drugs, Relenza™ and Tamiflu™ are
analogs of sialic acids that inhibit the influenza virus neuraminidase
and hence the transmission of the virus [90]. Natural heparin, a sulfated
glycosaminoglycan, and chemically defined synthetic heparin oligosac-
charides, are widely used in the treatment and prophylaxis of multiple
thrombosis-related diseases. Hyaluronic acid, a non-sulfated glycosami-
noglycan, is used in the treatment of arthritis. Recently, the first
sialylated intravenous immunoglobulin preparation with consistent
anti-inflammatory potency has been found suitable for clinical
development [91].

The other aspect of importance of glycans for therapeutics is their
role in the individualization of patient's response to drug. Glycosylation
regulates the membrane half-life of numerous membrane receptors
[92], including GLUTs [93], cytokine receptors [94], TGF-beta receptor
[95], EGF receptors [96], GABAA receptors [97] and others. Many drugs
either bind directly on these receptors, or include them in the signaling
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pathway. The existence of multiple common polymorphisms in the gly-
cosylation pathway results in specific glycoforms modulating receptor
function and consequently drug efficacy in a given individual. For exam-
ple, it has been recently shown that success of IVIG therapy in Kawasaki
disease depends on the glycosylation of host IgG [98]. Another example
of importance of individual differences in glycosylation is the finding
that spontaneous control of HIV and improved antiviral activity are
associated with a dramatic shift in the global antibody-glycosylation
profile toward agalactosylated glycoforms [99]. New methods for high
throughput screening of the individual's glycome appear to be a prom-
ising tool for patient stratification, which could contribute to the field of
precision medicine through enabling individualization of the therapeu-
tic approach according to an individual's glycomic profile [100]. Extend-
ed research is still required on glycan analysis andmodulationmethods
aiming at production of more effective and reliable therapeutics.

9. Conclusions

Glycans are one of the four principal components of the cell and as
such play important roles in most physiological processes and diseases.
Knowledge about glycans and their functions in health and disease lags
significantly behind knowledge about nucleic acids and proteins.
However, the field of glycoscience is developing rapidly and awareness
about the importance of glycans in disease mechanisms is growing.
Since their structures are not hard-wired in the DNA sequence, the
principal role of glycans seems to be the modulation of biological inter-
actions - for example, through changing the function of immunoglobu-
lins or the cell surface half-life of specific membrane receptors. Some of
the most important drugs on the market are glycoproteins and glycan
analysis andmodulation is now considered a necessary step in the pro-
duction of bio-therapeutics. Population studies have demonstrated that
inter-individual differences in glycosylation are large and these differ-
ences may explain at least some elements of individual variation in dis-
ease course or response to therapy. Any study attempting to understand
a disease mechanism, which does not account for individual variations
in protein glycosylation, will therefore miss an essential part of its
underlying biology. With its potential to classify patients according to
disease predisposition, prognosis, and response to therapy, glycan anal-
ysis today has an immense capacity to contribute to the evolving field of
precision medicine.
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