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Abstract 

The purpose of this study was to evaluate whether topical application of superoxide dismutase with 

cell penetrating peptide (HIV-TAT) could protect against skin damage induced by UVB irradiation in 

human. The permeability through stratum corneum of large proteins linked to TAT peptide was firstly 

confirmed by confocal microscopy and tape stripping. Ten healthy volunteers with either Fitzpatrick 

skin type II or III were recruited in this clinical study. TAT-SOD (300 units/cm
2
) and vehicle cream 

were applied on two symmetric areas of both inner upper arms 1 hour prior to UVB irradiation. After 

one hour of pretreatment, subjects received 10 incremental doses of UVB on pretreated areas. 24 

hours later, erythema, blood flow and apoptotic cells were measured. Pretreatment with TAT-SOD 1 

hour prior to UVB radiation promoted a mean minimal erythema dose (MED) increase of 36.6 ± 18.4% 

(P = 0.013<0.05. n=10) compared to vehicle control. The median blood flow values of all subjects 

following 2 and 3-MED of UVB were 107.8 ± 51.0 units and 239.5 ± 88.0 units respectively, which 

accounts for 26 % and 25 % decrease with respect to vehicle groups. These data suggest that 

TAT-SOD significantly suppresses UVB induced erythema formation and blood flow rise. 

Furthermore, the pretreatment with TAT-SOD 1 hour prior to 2-MED of UVB irradiation reduced the 

apoptotic sunburn cell formation by 47.6 ± 8.6 % (p<0.0001) in all subjects. Evaluating results 

generated from all measurements, we conclude that topical application of TAT-SOD significantly 

attenuates UVB-induced skin damage in man. These biological effects of TAT-SOD are probably 



  

mediated via its free radical scavenging properties, clearly differentiating it from other physical 

sunscreen agents.  

 

INTRODUCTION  

 

Ultraviolet irradiation in sunlight generates reactive oxygen species (ROS) in skin that can oxidize 

nucleic acids, proteins and lipids, resulting in acute and chronic skin damage. The acute effects 

include erythema, tanning, and immune suppression. Long-term adverse effects of UV exposure are 

photoaging and photocarcinogenesis [1,2]. UVB (280-320nm) makes up around 5% of terrestrial 

ultraviolet radiation and is generally regarded as the prime cause for direct DNA damage in skin, but 

also generates reactive oxygen species (ROS), while the substantial amount of ROS generated by 

UVA (320-400nm) are more responsible for photoaging and photocarcinogenesis [3-5].  

 

To protect against ROS damage, the skin is well equipped with a large network of enzymatic 

antioxidants, such as superoxide dismutase (SOD) and catalase, and non-enzymatic antioxidants, 

which function in synergy to neutralize oxidative stress [6]. Numerous studies have shown that the 

SOD activity is drastically depleted after UV irradiation, leading to oxidative stress and the 

progression of chronic skin damage [7-10]. Nevertheless, the reduction can be compensated by 

exogenous supplementation or endogenous up-regulation of SOD, as a result of which keratinocytes 

are more resistant to oxidative stress induced injury. 

Indeed, previous studies have elicited many valuable clues indicating that the up-regulation of SOD 

level is an effective and promising strategy to combat UV-induced skin damage. Takahashi et al. 

found that the stable transfection of copper-zinc-SOD expression vectors into human keratinocytes 

could make them more resistant to UVB-induced apoptosis [10]. Decraene et al. reported that a SOD 

mimetic (EUK-134) provided a direct protection against UVB-induced oxidative stress by inhibition 

of the mitogen-activated protein kinase (MAPK) pathways, resulting in a significant increase in 

human keratinocytes survival in vitro [11]. Furthermore, Murakami et al. reported Cu, Zn-SOD 

deficient mice showed more serious atrophic morphology accompanied by the degeneration of 

collagen and elastic fibers in skin, which could be also induced by UV irradiation [12].  

Taking all of above evidence together, it appears that ROS plays a crucial role in mediating the 

deleterious effects induced by UV irradiation. The possibility to introduce exogenous SOD, the 

key intracellular antioxidant enzymes, into keratinocytes would contribute to protection against 

UV-induced skin damage. In an attempt to augment this naturally photoprotective strategy, topical 

application of SOD might be a promising one. To accomplish this goal, it is necessary to develop 

formulations that allow stability of this inherently unstable SOD protein. It is also necessary to 

develop formulations that allow SOD to penetrate through the stratum corneum (SC) in adequate 

concentrations, with few side effects. 



  

 

Transdermal drug therapy is an attractive route of administration because it provides higher patient 

acceptance and compliance and also avoids the first-pass hepatic metabolism. However, a relative 

lack of effective methods to deliver active agents efficiently through the relatively impermeable SC 

has been a major hindrance. Over recent decades, several physical methods, such as electroporation 

and iontophoresis, have been designed to tackle this poor transdermal efficiency, but the results were 

disappointing.  A recent promising technique to deliver bioactive drugs across the epidermal barrier 

is the use of cell penetrating peptides (CPPs), including HIV-TAT peptide (
47

YGRKKRRQRRR
57

) 

[13]. Since the first discovery of HIV-TAT peptide, the cell penetrating peptides have been shown to 

facilitate delivery of a wide variety of biomolecules across cell membrane [14,15]. The potential of 

this technology resides in the high efficiency and relatively low toxicity of CPPs conjugated to 

bioactive cargoes. A remaining challenge is to elucidate their exact uptake mechanisms and 

particularly their transdermal delivery [16]. 

 

Accumulating studies are showing that CPPs can successfully enhance the transdermal absorption of 

therapeutic molecules for the treatment of various skin diseases. Uchida et al. reported that the 

combination of TAT and the tight junction opening AT1002 peptide, effectively accelerated 

transdermal siRNA delivery in mice and strongly suppressed symptoms of atopic dermatitis. [17]. 

Furthermore, Kashio et al. reported that an artificial antiapoptotic protein, FNK, mediated with TAT 

peptide could enter the cochlea and effectively attenuate aminoglycoside-induced apoptosis of 

cochlear sensory hair cells in a guinea pig model [18]. More recently, Ookubo et al. used 

poly-arginine (R11) to enhance transdermal delivery of several tyrosinase inhibitors on a guinea pig 

model and found the fusion protein efficiently penetrated through the SC and significantly inhibited 

UV-induced melanin synthesis [19]. 

 

Although convincing evidence shows that the successful transdermal delivery of various 

biomolecules can be mediated by CPPs in animal or ex vivo models, no transdermal study related 

with SOD has been reported so far. Furthermore, no clinical study based on transdermal application 

of SOD against UV-induced skin damages has yet been investigated. The aim of this study is to 

evaluate whether pretreatment with stratum corneum permeable TAT-SOD protein could 

subsequently attenuate UVB-induced skin damage in man. 

 

2. MATERIALS AND METHODS 

Chemicals 

All reagents used were from Sigma Aldrich unless mentioned. Freeze-dried TAT-SOD recombinant 

protein (310,000 units/mg protein, purity > 98%) was kindly provided by Institute of Biotechnology, 



  

Fuzhou University, China. The TAT-SOD protein is a 164-residue monomeric form of human 

Cu/Zn-SOD fused with HIV-TAT peptide (
47

YGRKKRRQRRR
57

). Molecular weight of this protein 

is 17 kDa. Purified GFP and TAT-GFP recombinant protein were also provided by Institute of 

Biotechnology, Fuzhou University, China. Molecular weights of these two proteins are 26.9 and 28.5 

kDa, respectively. 

 

Ex-vivo skin permeation of TAT-GFP by confocal microscopy  

To evaluate the skin penetration of wild-type GFP and recombinant TAT-GFP, redundant human skin 

from patients who had undergone abdominal plastic surgery was used. Great care was taken to 

maintain the integrity of the skin. The subcutaneous fatty tissue was removed using a scalpel. Skin 

explants of 20 mm in diameter were punched out, sterilized in 70% alcohol for 10s, rinsed in DMEM 

culture medium with antibiotics (Gibco, Paisley, England) 3 times and transferred onto a 6-well 

culture plate. Finally, skin explants were submerged into DMEM culture medium in presence of GFP 

or TAT-GFP at a final protein concentration of 20 μM, and cultured in the 5% CO
2
 incubator at 37℃ 

for up to 2 hours. 

At different endpoints of the penetration experiment (0.5, 1 and 2 hours), 2mm punch biopsies were 

obtained from the center of skin explants with TAT-GFP or GFP pretreatment. The biopsies were 

snap frozen using liquid nitrogen, embedded in O.C.T. embedding medium (Tissue-Tek, Pelco 

International, USA), and sectioned (8 μm, perpendicular to the skin) using a cryostat microtome 

(Leica, Wetzlar, Germany). The sections were visualized with a confocal microscope (Leica, TCS 

SP5, German) at a 20X objective, PMT 800 V, and eGFP filter set (ex 488nm / em 592nm). 

 

Skin permeability of TAT-SOD by tape stripping 

Five healthy volunteers were recruited in this part of study. 2 mg/cm
2
 of two creams were applied on 

two symmetric areas of their both inner upper arms, one containing TAT-SOD protein at 300 

units/cm
2
 (150 units SOD/mg cream), the other a vehicle. After 1 hour pretreatment, the test areas 

were carefully cleaned with ethanol and warm water several times. D-Squame® (CuDerm Corp., 

Dallas, TX, USA) strips, diameter 22 mm, surface area 3.8 cm
2
, were used to sample the SC. Strips 

were placed on the skin, which was outlined with a permanent pen to ensure sampling from the same 

site. Equal pressure was applied to each strip by pressing with a spring-loaded stamp for thirty 

seconds. The comparatively high pressure was a prerequisite for obtaining reproducible amounts of 

SC. Then the strips were removed with tweezers in a single rapid movement and stored on a 

cellophane sheet at -80°C for further analysis. The specific SOD activity was evaluated on a series of 

20 tape stripping samples collected from each subject (n=5).  

 

Detection of SOD activity on tape strips 

The SOD assay was adapted from a well plate method. A D-squame® tape strip was perforated with 



  

a punch and three small pieces (=5 mm) were lined at the bottom of a well of an opaque 96-well 

plate (Corning, Costar, Acton, MA). SOD from bovine erythrocytes was used as an external standard, 

in which case a blank strip was put in the well. SOD activity was assayed using Sigma SOD assay kit 

(19160, Sigma, USA) following the manufacturer's instructions. The reaction started immediately 

when 220 μl of reaction mixture was added to each well. This assay is based on the xanthine/ 

xanthine oxidase catalytic system. After SOD measurement, the tape strips were removed and stored 

in an Eppendorf tube for protein analysis. Specific SOD activity was obtained after normalizing to 

the total protein content on the stripping. 

Protein analysis on tape strips 

The total amount of protein on the D-squame® tape strip was quantified after acid hydrolysis at 

elevated temperature. Each removed tape strip was incubated in an Eppendorf tube containing 1.5 ml 

HCl (6 mol/L) at 120°C for 20 hours for complete hydrolysis. After centrifugation, the supernatant 

was diluted (1: 20) in 1 mol/L borate buffer pH 9. The total protein content was the determined using 

a colorimetric Bradford protein assay (Bradford reagent, Bio-Rad Labs., Hercules, CA) according to 

the microplate working protocol. In the experimental setup, the protein assay was conducted by 

adding 250 μl of cold Bradford Reagent to 25 μl of sample. After 5 minutes incubation at room 

temperature, the optical density was measured with a microplate reader at a wavelength of 595 nm 

(Multiskan EX; Thermo Electron Corporation Vantaa, Finland). The protein content of each removed 

adhesive tape was analyzed in triplicate (n = 3), and the mean value was used for further evaluation. 

Three blank adhesive tapes (n = 3) were respectively extracted in exactly the same fashion as the 

protein-covered tapes, and analyzed with every round of analysis. The mean value of these blank 

tapes served as the respective control to account for background noise. The total protein amount was 

always determined on the same strip as the SOD activity analysis occurred. 

 

UVB source 

A custom made UVB radiation source by Professor Brian Diffey (Regional Medical Physics 

Department, Newcastle, UK) was used for the following UV irradiation experiments. This unit 

consisted of a broadband UVB lamp housed within an enclosed unit, with 10 apertures of 9 mm 

diameter anterior to the UVB lamp to enable 10 incremental doses (38 to 300 mJ/cm
2
) to be 

delivered simultaneously. All 10 apertures were within an area of 7 cm × 3 cm. The maximum dose 

aperture did not contain any metal foil filter, while the other 9-dose apertures were backed by 

perforated metal foil with grids containing holes of differing sizes to allow for the nine increasing 

doses. The UVB lamp casing was made of UV opaque plastic. The unit also consisted of a digital 

photodiode that switched the lamp off automatically when appropriate doses at the apertures were 

delivered. A Philips UVB broadband PL-S 9w/12 (Philips, Eindhoven, Netherlands) lamp with a 

main emission between 275 and 365 nm and maximum at 313 nm was used as UVB source. All 

lamps and doses were calibrated to national and European standards. 



  

 

Clinical protocol 

Ten healthy volunteers with either Fitzpatrick skin type II or III were recruited in this part of study. 

None of the subjects had been exposed to recreational UV radiation or sun beds at least 3 months 

prior to participation, and were using neither topical nor systemic medication at the time of the study. 

The age range was 23~30 y (median, 24 y), and there were three males and seven females. The 

procedures were explained in detail to all subjects. They had provided signed informed consent prior 

to participation. The clinical study was undertaken in accordance with the Declaration of Helsinki 

(http://www.wma. net/e/policy/b3.htm) and was given a favorable ethical opinion by the Lothian 

Regional Ethics Committee (reference number: 10/S1103/38) and the NHS Lothian R&D office 

(reference number: 2010/R/DER/03). The study was performed at the Department of Dermatology, 

University of Edinburgh. 

Before any treatment, two templates with a 7 cm × 3 cm area were marked on two symmetric areas 

of both inner upper arms. Each template contained ten irradiated sub-sites and one non-irradiated 

sub-site. 2 mg/cm
2
 of two creams were applied on the skin, one Dermabase® cream (Paddock 

Laboratories Inc., USA) as a vehicle, the other containing TAT-SOD protein at 300 units/cm
2
 (150 

units SOD/mg cream). To avoid any disruption and maximize the transdermal absorption, two 

pretreated areas were covered by Tegaderm® films (3M Health Care, USA). After one hour 

pretreatment, subjects were instructed to carefully clean the treated areas with ethanol and warm 

water for several times. Then subjects received 10 incremental doses of UVB on two symmetric 

areas of both inner upper arms. Irradiances were from 38 to 300 mJ/cm
2
 of UVB. 24 hours later, 

subjects underwent erythema, blood flow and sunburn cells measurement on pretreated areas.  

 

Determination of minimal erythema dose (MED) 

For all studies requiring assessment of the MED prior to commencement, subjects attended on day 

one when they received ten incremental doses of UVB on both inner upper arms. Subjects returned 

24 hours later to have their MED read. A subject’s MED was defined as the minimal dose producing 

uniform erythema with clearly defined template margins. A Minolta spectrophotometer CM-2600d 

(Minolta Co., Ltd, Osaka, Japan) was used to measure skin color according to a 3-dimensional color 

system (L, a, and b values). The L value referred to lightness of skin; the b value (blue-yellow axis) 

was an indicator of pigmentation; the a value (red-green axis) was a measure of erythema formation 

and the Δa value (a value 24 hours after irradiation minus a value before irradiation) was used to 

measure skin responses to UV irradiation [20]. Each spot was measured in triplicate.  

Blood flow measurement 



  

Cutaneous blood flow, measured as red blood cell flux, was used as another index of erythema. 24 

hours after UVB challenge, the cutaneous blood flow at each irradiated site and adjacent 

non-irradiated skin was measured by a laser Doppler perfusion monitor (MoorLAB, Moor 

Instruments Ltd., Axminster, UK). The perfusion monitor with two satellite units connected to the 

server allowed flux readings from three laser probes to be recorded simultaneously. The perfusion 

monitor was linked to a computer and recordings displayed continuously by MoorSoft v1.31 for 

Windows. During the measurement, the three laser probes were secured to the overlying test sites of 

the skin using a ring of double sided adhesive tape and data were collected for at least 10 minutes, 

from which an average flux was calculated. 

Full thickness punch biopsy 

After MED quantification by colorimetry, four 4 mm punch biopsies were taken from each subject 

under sterile conditions and local anesthesia (Lidocaine 1% + Adrenaline). One was taken from 

non-irradiated, vehicle pretreated skin and served as a negative control. A second biopsy was taken 

from vehicle pretreated skin that had been irradiated with 2 MED of UVB and served as a positive 

control. A third biopsy was taken from non-irradiated, TAT-SOD pretreated skin. A fourth biopsy was 

taken from TAT-SOD pretreated skin that had been irradiated with 2 MED of UVB. In all 

experiments where skin biopsies were taken a 4mm diameter sterile disposable punch biopsy was 

used (Stiefel® Laboratories, Bucks, UK). Biopsy wounds were closed using 4/0 ethilon sutures 

(Ethicon, Johnson and Johnson medical Ltd., W Lothian, UK). All full thickness skin punch biopsies 

were fixed in 4% buffered formaldehyde for 24 hours and embedded in paraffin prior to processing 

for immunohistochemistry. 

 

Measurement of apoptotic sunburn cells 

4 m paraffin-embedded sections of each skin biopsy were deparaffinized through graded alcohol 

and routinely stained with hematoxylin and eosin (H&E) to allow quantification of sunburn cells 

(SBCs). SBCs were identified in the epidermis by their shrunken eosinophilic cytoplasm and 

condensed nuclei. Sections were examined microscopically by two independent counters in a blinded 

fashion for specific histopathological alterations, and images were captured using a 

Hamamatsu CCD camera (C4742095, Hamamatsu, Japan) mounted on a Leica DMR microscope 

with the Leica application suit (ver. 2.8.1, Leica Microsystems, Solms, Germany). Positive cells were 

counted in randomly chosen high power fields (20-fold magnification) from the entire 20-mm length 

of epidermis for each skin section. The results were expressed as the mean number of SBCs per 

section. Positive cells in hair follicles and in the dermis were not included in the quantitative analysis, 

and a non-irradiated site was always served as a negative control for each series of experiments. 

 

Statistical analysis 



  

The significance of difference between TAT-SOD and vehicle pretreated groups was analyzed using 

paired, two-tailed, Student’s t-test. Differences between data sets were defined as being significant (*, 

0.05>p>0.01), highly significant (**, 0.01>p>0.001), or very highly significant (***, p<0.001). Data 

were analyzed using Excel 2000 software. All data were presented as mean ± SD. 

 

3. RESULTS AND DISCUSSION 

 

UV absorption spectrum of TAT-SOD protein  

 

Figure 1: (A). UV absorption spectrum of TAT-SOD protein used in this study. (B). Philips 

Broadband UVB PL-S 9w/12 lamp spectrum. (Adapted from Philips phototherapy lamps brochure). 

As can be observed from the absorbance spectrum of protein, some absorption of UV radiation 

occurs at shorter (<300nm) wavelengths of UVB.  Consideration was therefore given to whether 

adding a protein to the cream would produce a biologically protective effect against UVB by simple 

absorption.  

To confirm that the protection of TAT-SOD against UVB irradiation was mainly due to the 

superoxide radical scavenging properties of SOD rather than the physical sunscreen effect of protein 

itself the UV absorption spectra of TAT-SOD protein at different concentrations was first considered. 

In the clinical study 2 mg of TAT-SOD cream (150 units SOD/mg cream) was applied per square 

centimeter of the test area. The concentration of TAT-SOD protein in the cream was 0.5x10
-3

 mg/mL 

which was 200 times lower than the lowest concentration in which the absorption spectrum was 

measured (0.1 mg/mL). Absorption of UVB at this low level would be undetectable. The broadband 

UVB source used for the clinical study emits radiation from 275 to 365 nm with a peak at 313 nm, 

and thus mostly at longer wavelengths than those absorbed by TAT-SOD protein. It is therefore 

unlikely that any biological effects of TAT-SOD could be caused by a physical sunscreen effect.  

 

Visualization of skin penetration of TAT-GFP by confocal microscopy 

To investigate whether TAT peptide could serve as a carrier for transdermal delivery of proteins, 



  

green fluorescent protein (GFP) fused with TAT peptide was used and the skin permeability of GFP 

and TAT-GFP were tested and compared ex vivo. Results examined by confocal microscopy are 

shown in figure 2. As expected, the treatment of skin with wild-type GFP (20 μM) resulted in 

fluorescence that was predominantly localized to the surface of SC and no fluorescence was 

observed in the deeper epidermis and dermis at all time points investigated (figure 2, upper panel). 

This indicates that wild-type GFP has very poor ability to penetrate the SC layer. Conversely, in 

TAT-GFP treated skin (20 μM), strong fluorescence was clearly found in the SC layer and weak 

signals were also observed in the epidermis and dermis at the shortest time of treatment (0.5 hour). 

When the incubation time increased, the fluorescence in epidermis and dermis region was stronger 

and deeper (figure 2, lower panel). Strongest fluorescence was found at the incubation period of 2 h. 

These ex-vivo results demonstrate that TAT-GFP was able to penetrate through the SC layer and 

reach the lower layers of skin. Therefore, we conclude that the skin permeability of TAT-GFP is 

superior to wild-type GFP and this activity is in a time-dependent manner, which strongly indicate 

that the topical application system mediated by TAT peptide reported here has high therapeutic 

potential for the treatment of various skin diseases. 

 

Figure 2. Confocal microscopy of human skin sections with GFP or TAT-GFP treatment under 

different incubation periods (0.5, 1 and 2 hours). Sections were visualized using eGFP filter through 

a 20X objective. Scale bars are 50 μm. The experiment was performed in 6 replicates. Upper panel, 

with GFP treatment; lower panel, with TAT-GFP treatment. 

 

Penetration of TAT-SOD through stratum corneum by tape stripping 



  
 

Figure 3: SOD activities on a series of 20 tape strippings from human stratum corneum with 

TAT-SOD or vehicle pretreatment (n=5). The results are shown as mean ± SD. 

 

Although we have shown that TAT-GFP can efficiently penetrate through the SC layer, no direct 

evidence on TAT-SOD was gained. As the molecular weight of GFP (26.9 kDa) is larger than that of 

SOD (17 kDa), it was expected that TAT-SOD could have better penetration in skin. To investigate 

the skin permeability of TAT-SOD, tape stripping combined with the SOD activity assay was next 

used. Various in vivo methods for measuring transdermal absorption of drugs are available, for 

example blood withdrawal through a venous cannula, microdialysis, and skin blistering [21]. 

Recently, tape stripping has been widely used as a fast and comparatively non-invasive technique to 

measure dermal drug absorption into skin [22,23]. Combined with validated analytical assays for the 

measurement of bioactive substances, tape stripping has been verified as a superior and reproducible 

method to approximate transdermal permeability coefficients and partition coefficients in various 

clinical studies [24,25].  

 

Five volunteers were recruited in this in vivo study. As shown in Figure 3, the specific SOD activity 

was evaluated on a series of 20 tape strip samples collected from each subject using two symmetric 

areas on both of the inner upper arms. In the vehicle pretreated arm, a linear increase of SOD activity 

was found in SC from the surface down to deeper layers. A peak value was detected at layer 14 and a 

plateau was found from layer 14 onward. Such a gradient of SOD activity can be explained by the 

higher levels of environmental oxidative stress, such as UV radiation and air pollution, that the outer 

layers of skin are exposed to, with consequent depletion of antioxidant enzyme availability [26].  

Due to the high efficiency of translocation mediated by TAT peptide, a significant increase of SOD 

activity on the TAT-SOD pretreated arm was found from first layer onward when compared to the 

vehicle pretreated arm. The mean percentage of increase accounted for 250.2% at the first 4 layers 

and 33.9 % from layer 5 onward. These intriguing data also show that the transdermal delivery of 

SOD mediated by TAT peptide could efficiently penetrate through the SC, confirming that the 

topical application system mediated by TAT peptide was effective. Although, the exact mechanism 



  

for transdermal delivery of CPP-linked proteins has not been elucidated, a model of pore formation 

has been proposed to be a more feasible model for the in vivo translocation of large biomolecules, 

like proteins and liposomes [27]. 

 

Suppression of UVB-induced erythema formation by TAT-SOD  

 

Figure 4: (A). Minimal erythema dose (MED) values at 24 hours after UVB irradiation with vehicle 

or TAT-SOD pretreatment were measured by colorimetry. A line links value of vehicle and 

TAT-SOD pretreated skin (300 units/cm
2
 of skin area) in a single subject (n=10). The significance of 

differences (P-value) between two pretreated groups was determined by using paired, two-tailed, 

Student’s t-test. (B). Erythema response at 24 hours after UVB irradiation with vehicle or TAT-SOD 

pretreatment (300 units/cm
2
 of skin area). Tested areas on both of inner upper arms were irradiated 

with 10 incremental doses of UVB. The results are shown as mean ± SD (n=10). 

 

To evaluate the potential protective effect of TAT-SOD on UVB-induced skin damage in human skin, 

three biomarkers were used: erythema, blood flow, and sunburn cell formation. Erythema or sunburn 

redness is an acute and conspicuous cutaneous inflammatory response that follows excessive 

exposure to UV radiation, caused by dilation of the blood vessels in dermis [2, 28]. UVB-induced 

erythema occurs approximately 4 hours after exposure, peaks around 24 hours, and fades over a day 

or so, in fair-skinned and older people [29,30]. Since erythema is readily visible by non-invasive 

methods and can be monitored over time, it has been widely used in photo-biological studies. 

Nevertheless, there have been no published studies looking at the effect of topical application of 

SOD upon UV-induced erythema formation in man. 

 

Ten healthy volunteers (mean age 24 years; range 23–30) participated in this part of the study. Before 

any treatment, two templates with a 7 cm × 3 cm area were marked on two symmetric areas of both 

inner upper arms. Each template contained ten irradiated sub-sites and one non-irradiated sub-site. 

TAT-SOD cream was applied to the template area on one inner upper arm (300 units/cm
2
) and 

vehicle cream on the other. Two pretreated areas were covered by Tegaderm® films (3M Health 

Care, USA) to avoid any disruption. One hour later, the TAT-SOD and vehicle pretreated areas were 



  

carefully cleaned and then irradiated with 10 incremental doses of UVB (from 38 to 300 mJ/cm
2
). 24 

hours after UVB irradiation, MEDs at test areas from ten subjects were measured by colorimetry. 

Results from ten subjects are shown in Figure 4A. Topical application of TAT-SOD caused a 

significant increase in MED in 9 of 10 subjects. The rise of MED was highest in two of phototype II 

subjects, increasing from 95 to 150 mJ/cm
2
 (A 58% increase over vehicle), while in other phototype 

II subjects MED rose from 95 to 119 mJ/cm
2
, which means an increment of 25.3%. MED increment 

in three of phototype III subjects was 26.0% (from 150 to 189 mJ/cm
2 

and 119 to 150 mJ/cm
2
 

respectively) with respect to vehicle. One phototype III subject did show an increase in MED 

following TAT-SOD pretreatment. The significance of differences (P-value) between two pretreated 

groups was determined by using paired, two-tailed, Student’s t-test. Thus, the topical application of 

TAT-SOD cream 1 hour prior to UVB radiation promoted a mean MED increase of 36.6 ± 18.4% (P 

= 0.013<0.05) in 10 subjects, indicating a suppressive effect of TAT-SOD upon UVB induced 

erythema formation. 

 

The mean erythema readings at 10 incremental UVB doses from all 10 subjects are presented in 

Figure 4B. No significant erythema response was detected from 38 to 95 mJ/cm
2
. However, 

TAT-SOD provided protection against erythema formation at all irradiance levels above MED when 

compared with vehicle. The percentage of decrease accounted for 10, 20, 40, and 33% respectively at 

150, 189, 238 and 300 mJ/cm
2
. In addition, none of subjects irradiated with these doses of UVB (up 

to 3 MED) developed clinical signs of skin damage, which excluded the possibility that the topical 

delivery of SOD mediated by HIV-TAT peptide have any adverse effects in skin. 

 

Inhibition of UVB-induced blood flow increment by TAT-SOD  

 
Figure 5: (A). Median blood flow values in vehicle or TAT-SOD pretreated skin (300 units/cm

2
 of 

skin area) were measured at 24 hours after challenge with 2 and 3 MED doses (189 and 300 mJ/cm
2
) 

(n=10). Blood flow values in non-irradiated areas on both of the forearms are shown for comparison 

(0 mJ/cm
2
). The results are shown as mean ± SD. The significance (P-value) between vehicle and 

TAT-SOD groups was determined by using paired, two-tailed, Student’s t-test. (B). A representative 

change in blood flow at 24 hours after 300 mJ/cm
2
 UVB irradiation with vehicle or TAT-SOD 



  

pretreatment (300 units/cm
2
 of skin area). The UVB doses of 300 mJ/cm

2
 was selected as equivalent 

to 3-MED for subject 5. 

 

Next, we used cutaneous blood flow as another index of erythema. It was measured as red blood cell 

flux using a laser Doppler perfusion monitor. In previous studies, both Andersen and Youn suggested 

that the blood flow response after UVB irradiation are divided into two phases depending on doses of 

UVB irradiation [31,32]. The cut-off point between two phases is around MED. At doses lower than 

MED, the maximal blood flow response was seen after 8 hours, and at doses higher than MED, the 

maximal response was seen after 24 hours. Furthermore, at higher UVB doses, the resulting increase 

in blood flow was proportional to UVB dose. In order to yield more clear clues on the potential 

protective effect of TAT-SOD towards UVB-induced blood flow response, 2 and 3 MED of UVB 

were used in the following assessments. 

 

Twenty-four hours after UVB challenge, the blood flow of each irradiated and adjacent 

non-irradiated areas were measured. Median blood flow values after challenge with 2 and 3 MED 

(189 and 300 mJ/cm
2
) are shown in Figure 5A. Vehicle pretreated areas showed highly consistent 

and significant increases in blood flow. The median blood flow values following 2 and 3 MED 

increased to 143.6 ± 72.2 units and 322.6 ± 92.7 units respectively, compared to the base line value 

105.2 ± 38.6 units. In the meantime, much lower blood flow increments were found in TAT-SOD 

pretreated areas. The median blood flow rise following 2 and 3 MED were 107.8 ± 51.0 units and 

239.5 ± 88.0 units respectively, which accounted for a 26 % and 25 % decrease with respect to 

vehicle group. A representative change in blood flow at 24 hours after 300 mJ/cm
2
 UVB irradiation 

with vehicle or TAT-SOD pretreatment (300 units/cm
2
 of skin area) is shown in Figure 5B. The 

UVB doses of 300 mJ/cm
2
 was selected as equivalent to 3-MED for subject 5. The mean blood flow 

values in the TAT-SOD pretreated area significantly decreased from 277.0 ± 37.1 units to 189.3 ± 

32.0 units compared with the vehicle pretreated area. These data suggest that TAT-SOD has a 

significantly suppression upon UVB induced blood flow increment. In addition, the median blood 

flow values measured at non-irradiated sites with vehicle and TAT-SOD pretreatment were not 

significantly different, indicating that there was no adverse effect on topical application of SOD 

mediated by HIV-TAT peptide. 

 

Reduction on UVB-induced apoptotic sunburn cell formation by TAT-SOD 

Finally, the effect of TAT-SOD pretreatment on SBC formation following UVB irradiation was 

investigated. SBCs, which are well known as apoptotic keratinocytes, are mainly present in the 

epidermis and reach a maximum density at about 24 hours after UVB irradiation [33,34]. When 

stained with H&E, they are easily identified morphologically with a condensed nucleus and a 

shrunken glassy, eosinophilic cytoplasm [35]. As previous studies reported that SBCs are absent or 

rare after UVA irradiation [36,37], SBC formation in the epidermis has been widely used as a 

biomarker of UVB induced skin damages. 



  

 

Figure 6: (A) Representative images of specimens stained for SBCs at the UVB-irradiated site and 

non-irradiated site (taken from subject 6). The SBC in the epidermis is indicated above the figures 

with an arrow. (B) The graph shows mean numbers of SBCs per section in all the test areas. Each 

specimen was subjected to H&E staining and photographed at a magnification of x20; scale bar = 50 

µm. The number of SBCs was significantly decreased by TAT-SOD applied 1 hour before UVB 



  

irradiation. No sunburn cells were found at the non-irradiated areas pretreated with vehicle or 

TAT-SOD. Data are presented as means ± SD. P values shown are for comparison to TAT-SOD 

pretreatment (n = 10, paired, two-tailed, Student’s t-test). 

 

Ten healthy volunteers were involved in this part of study. 24 hours after UVB irradiation, four 4mm 

punch biopsies were taken from 2-MED irradiated areas with TAT-SOD and vehicle pretreatment, as 

well as from the adjacent, non-irradiated areas with TAT-SOD and vehicle pretreatment. The amount 

of SBCs was quantified from paraffin-embedded sections of each skin biopsy staining with H&E and 

expressed as a mean number of SBCs per section. SBCs were identified in the epidermis by their 

shrunken eosinophilic cytoplasm and condensed nuclei.  

 

In Figure 6A shows the epidermal localization of SBCs at 24 hours after 2-MED of UVB irradiation. 

Non-irradiated areas contained no SBCs, but SBCs were clearly present at 24 hours post-irradiation 

on irradiated area. In normalized data from all ten subjects, the mean numbers of SBCs in 2-MED of 

UVB irradiated areas with vehicle and TAT-SOD pretreatment were 21 ± 5 and 11 ± 4 per section 

respectively. Hence, the pretreatment with TAT-SOD (300 units/cm
2
) 1 hour prior to 2-MED of UVB 

irradiation significantly reduced the apoptotic SBCs formation by 47.6 ± 8.6 % (P<0.0001). In 

addition, the numbers of SBCs in non-irradiated areas with vehicle or TAT-SOD pretreatment were 

both zero, indicating that no adverse effect was found in skin upon TAT-SOD pretreatment. These 

data suggest that the TAT-SOD pretreatment, 1 hour prior to UVB irradiation, significantly decreases 

SBC formation. 

 

It has been realized that the importance of SBC goes far beyond that of an alternative biomarker for 

acute UVB injury. Numerous studies have suggested that the number of SBC which highly correlates 

with keratinocyte apoptosis is mainly mediated by the severity of DNA damage [38]. Two 

mechanisms protect against the consequences of UV-induced DNA damage. These are growth arrest 

followed by DNA repair and cell death by apoptosis. After a low dose of UV, most photo-lesions are 

removed by two major pathways of DNA repair: nucleotide excision repair and base excision repair, 

resulting in cell survival [39]. After a high UV dose, DNA damage will overwhelm the repair 

capacity of cell and cells subsequently go into programmed cell death (apoptosis). Through apoptosis, 

severely damaged keratinocytes will die and be eliminated as SBCs, thereby reducing the risk of 

further mutations which can lead to skin malignant transformation [33,34]. Accordingly, an increase 

of DNA repair following UV irradiation should result in a reduced ratio of SBCs. On the other hand, 

the reduced appearance of SBCs would indicate greater photocarcinogenic risk [40]. Indeed, there is 

confusion in interpreting the significance of SBCs for acute photodamage and long-term 

photocarcinogenesis. 

 

Current data demonstrate that TAT-SOD plays an antiapoptotic role that we speculate indicates a 

reduced rather than increased susceptibility to photocarcinogenesis. The photoprotection afforded by 



  

sunscreens produces a reduction in SBC number, consequently leading to potential protection against 

photocarcinogenesis [41,42]. Furthermore, several studies in mice showed that the inhibition of 

photocarcinogenesis is strictly associated with reduced SBC number. [43-45]. Because of only one 

dose of UVB (2-MED) was used to evaluate the potential effect of TAT-SOD on SBCs formation, 

and no marker for DNA damage was involved in the present study, the detailed mechanisms 

underlying these photoprotective effects of TAT-SOD are not well understood. It is not known 

whether TAT-SOD will increase SBC number following higher UVB doses than 2-MED, with 

improved regulation of DNA repair in skin. It may be that the protective effects of TAT-SOD against 

UVB-induced skin damages are highly UVB dose-dependent. Further studies using a wider range of 

UVB doses would clarify the effect TAT-SOD upon DNA damage in skin.  

 

4. CONCLUSIONS 

This is the first comparative clinical study on topical application of a permeable TAT-SOD protein 

against UVB-induced damage in human skin. We demonstrated that the transdermal delivery of SOD 

through SC was successfully achieved by mediating with HIV-TAT peptide. By replenishing the 

antioxidant defense of keratinocytes, TAT-SOD reduced markers of acute UVB-induced skin 

damage, erythema response, blood flow increment, and SBC formation. These biological effects of 

TAT-SOD are probably mediated via its radical scavenging properties, differentiating it from other 

physical sunscreen agents. Further studies are planned with the intention of evaluating whether the 

protective effects of TAT-SOD against UVB-induced skin damages are mediated via the inhibition 

of p53 gene or thymine dimer formation pathway. The mechanism by which TAT-SOD prevents 

UVB-induced skin damages remains to be fully elucidated as well as whether sustained application 

of TAT-SOD might prevent chronic UV damage over time, such as photoaging and 

photocarcinogenesis. In summary, the above results re-emphasize the importance of oxidative stress 

as an initiator of UVB-induced skin damage and also indicate that the transdermal protein/peptide 

delivery based on CPPs is a promising strategy to combat photodamage. 
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Highlights 

 

 Topical application of superoxide dismutase is mediated with HIV-TAT peptide. 

 TAT-SOD protein efficiently penetrated through the stratum corneum. 

 TAT-SOD protein significantly attenuated UVB-induced skin damage in man. 
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