

# THE UNIVERSITY of EDINBURGH

## Edinburgh Research Explorer

### Serum Calprotectin - A novel diagnostic and prognostic marker in Inflammatory Bowel Diseases

#### Citation for published version:

Kalla, R, Kennedy, N, Ventham, NT, BOYAPATI, RAYKIRAN, Adams, AT, Nimmo, E, Visconti, M, Drummond, H, Ho, G-T, Pattenden, R, Wilson, DC & Satsangi, J 2016, 'Serum Calprotectin - A novel diagnostic and prognostic marker in Inflammatory Bowel Diseases', The American Journal of Gastroenterology. https://doi.org/10.1038/ajg.2016.342

#### **Digital Object Identifier (DOI):**

10.1038/ajg.2016.342

#### Link:

Link to publication record in Edinburgh Research Explorer

**Document Version:** Peer reviewed version

**Published In:** The American Journal of Gastroenterology

#### **General rights**

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.



#### American Journal of Gastroenterology



THE AMERICAN JOURNAL OF Gastroenterology

### Serum Calprotectin - A novel diagnostic and prognostic marker in Inflammatory Bowel Diseases

| Journal:            | American Journal of Gastroenterology                                  |
|---------------------|-----------------------------------------------------------------------|
| Manuscript ID       | AJG-16-0455.R1                                                        |
| Manuscript Type:    | Original Contributions                                                |
| Keywords:           | Crohns disease, Inflammatory bowel disease, intestine, Colitis, Colon |
| Manuscript Section: | Inflammatory bowel disease, Outcomes                                  |
|                     |                                                                       |



| 1 | Serum | Calprotectin - | A novel | diagnostic | and | prognostic | marker | in |
|---|-------|----------------|---------|------------|-----|------------|--------|----|
|---|-------|----------------|---------|------------|-----|------------|--------|----|

- 2 Inflammatory Bowel Diseases
- 3
- 4 Kalla R<sup>1</sup>, Kennedy NA<sup>1</sup>, Ventham NT<sup>1</sup>, Boyapati RK<sup>1,3</sup>, Adams AT<sup>1</sup>, Nimmo ER<sup>1</sup>, Visconti
- 5  $M^2$ , Drummond  $H^1$ , Ho  $GT^3$ , Pattenden  $R^4$ , Wilson  $DC^5$ , Satsangi  $J^1$
- <sup>1</sup>Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular
- 7 Medicine, Western General Hospital, Edinburgh, United Kingdom
- <sup>2</sup> Metabolic Bone Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular
- 9 Medicine, Western General Hospital, Edinburgh, United Kingdom
- <sup>3</sup> Centre for Inflammation Research, Queens Medical Research Institute, University of
- 11 Edinburgh, Edinburgh, United Kingdom
- <sup>4</sup> Department of Clinical Chemistry, Western General Hospital, NHS Lothian, Edinburgh,
- 13 United Kingdom
- <sup>5</sup> Child Life and Health, College of Medicine and Veterinary Medicine, University of
- 15 Edinburgh, United Kingdom
- 16 Correspondence to: Dr Rahul Kalla
- 17 Gastrointestinal unit
- 18 Western General Hospital, Edinburgh
- 19 Crewe Road South, Edinburgh, EH4 2XU
- 20 Telephone number: 0131 537 3115
- 21 Email address: <u>rahul.kalla@ed.ac.uk</u>

- 22 <u>Keywords:</u> Crohn's disease; inflammatory bowel diseases; Ulcerative colitis; acute severe
- 23 ulcerative colitis; biomarkers; diagnosis; management
- 24 Word count: 3473

#### 25 Abstract

#### 26 Introduction

27 There is an unmet need for novel blood based biomarkers that offer timely and accurate

diagnostic and prognostic testing in Inflammatory Bowel Diseases (IBD). We aimed to

29 investigate the diagnostic and prognostic utility of serum calprotectin (SC) in IBD.

#### 30 Methods

A total of 171 patients (n=96 IBD, n=75 non-IBD) were prospectively recruited. A multi-

32 biomarker model was derived using multivariable logistic regression analysis. Cox

33 proportional hazards model was derived to assess the contribution of each variable to disease

34 outcomes.

#### 35 **Results**

- 36 SC correlated strongly with current biomarkers including faecal calprotectin (FC) (n=50, rho
- 37 = 0.50, p=1.6x10<sup>-4</sup>). SC was the strongest individual predictor of IBD diagnosis (odds ratio
- 38 (OR): 9.37(95%CI: 2.82-34.68), p= $4.00\times10^{-4}$ ) compared with other markers (CRP: OR
- 39 8.52(95%CI: 2.75-28.63), p=2.80×10<sup>-4</sup>); albumin: OR 6.12(95%CI: 1.82-22.16), p=0.004). In
- 40 a subset of 50 patients with paired SC and FC, the area under receiver operating characteristic
- 41 discriminating IBD from controls was better for FC than SC (0.99, (95% CI 0.87-1.00) and
- 42 0.87 (95% CI:0.78-0.97) respectively; p=0.01).
- 43 At follow up (median 342 days; IQR: 88-563), SC predicted treatment escalation and/or
- 44 surgery in IBD (HR 2.7, 95% CI: 1.1-4.9), in particular CD (HR 4.2, 95% CI 1.2-15.3).

| 45 | A model incorporating SC and either CRP or albumin has a positive likelihood ratio of 24.14     |
|----|-------------------------------------------------------------------------------------------------|
| 46 | for IBD. At 1 year, our prognostic model can predict treatment escalation in IBD in 65% of      |
| 47 | cases (95% CI: 43-79%) and 80% (95% CI: 31-94%) in CD if 2 or more blood marker                 |
| 48 | criteria are met.                                                                               |
| 49 | Conclusions                                                                                     |
| 50 | A diagnostic and prognostic model that combines SC and other blood-based biomarkers             |
| 51 | accurately predicts the inflammatory burden in IBD and has the potential to predict disease     |
| 52 | and its outcomes. Our data warrants further detailed exploration and validation in large multi- |
| 53 | centre cohorts.                                                                                 |
| 54 |                                                                                                 |
| 55 |                                                                                                 |
| 56 |                                                                                                 |
| 57 |                                                                                                 |
| 58 |                                                                                                 |
| 59 |                                                                                                 |
| 60 |                                                                                                 |
| 61 |                                                                                                 |
| 62 |                                                                                                 |
| 63 |                                                                                                 |
| 64 |                                                                                                 |
| 65 |                                                                                                 |
| 66 |                                                                                                 |
| 67 |                                                                                                 |
| 68 |                                                                                                 |
| 69 |                                                                                                 |
| 70 |                                                                                                 |

#### 71 Introduction

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis 72 (UC), are chronic, debilitating inflammatory disorders of the gastrointestinal tract affecting 73 74 adults and children (1,2). A recent systematic review showed rising trends in the incidence 75 and prevalence of IBD worldwide(3) associated with significant healthcare costs amounting 76 to around £470 million in the UK, up to  $\notin$  5.6 billion annually in Europe and over \$6 billion 77 annually in the USA (3-8). With an ever expanding therapeutic repertoire, it is important to 78 select patients who may benefit from early use of immunosuppressants' and/or biological 79 therapies in order to minimise irreversible luminal damage and prevent long-term complications. 80 Blood-based biomarkers provide a non-invasive estimation of the inflammatory burden in 81 82 newly diagnosed IBD. However relatively few blood-based biomarkers have been 83 extensively validated in IBD, and fewer still are in routine use in the clinic (9). There is an 84 emerging interest in discovering novel markers using multi-omic platforms that may be 85 valuable in a variety of clinical settings including IBD diagnostics, disease activity assessments, predicting disease outcomes and response to therapy (9–11). 86 The S100 family of proteins including S100A8/A9 (calprotectin) and S100A12 (calgranulin) 87 have been implicated in disease pathogenesis and investigated as potential markers of 88 89 inflammation (12, 13). In IBD, faecal calprotectin (FC) has emerged as a particularly 90 informative tool(14). A recent meta-analysis of 13 studies and 1041 patients found that FC 91 had a pooled sensitivity and specificity of 0.93 (0.85-0.97) and 0.96 (0.79-0.99) respectively 92 for IBD and identified those individuals requiring endoscopy for suspected IBD(13). There 93 are also data on the role of FC in other clinical settings, such as predicting post-operative CD 94 recurrence and predicting outcomes in acute severe colitis(15,16). However, there are 95 limitations to FC testing in clinical practice. Faecal collection can be a hurdle for patients(17)

| 96  | and sample delivery and processing delays can hinder its clinical utility. In active UC, FC  |
|-----|----------------------------------------------------------------------------------------------|
| 97  | shows high within-day variability and the optimal timing for sampling is not clear(18,19). A |
| 98  | blood based biomarker such as serum calprotectin (SC) may be more convenient in routine      |
| 99  | practice and more acceptable to patients. SC has been studied in diseases such as            |
| 100 | inflammatory arthropathies and cystic fibrosis (20-24). In Rheumatoid arthritis, SC was      |
| 101 | independently predictive of a 10 year radiographic disease progression (25), while in cystic |
| 102 | fibrosis, SC predicted exacerbation and lung function decline(20,21).                        |
| 103 | More recently, SC has been investigated in IBD to predict response to- and relapse following |
| 104 | anti-tumour necrosis factor (anti-TNF) therapy(17,26). In CD patients, SC has a similar      |
| 105 | profile to high sensitivity C-reactive protein (hsCRP) and compliments FC and hsCRP for      |
| 106 | prediction of relapse after anti-TNF withdrawal (p=0.0173, 0.0024 and 0.0002; HR: 3.191,     |
| 107 | 3.561 and 4.120 respectively) (17). In murine models, TNBS induced colitis is associated     |
| 108 | with higher SC levels that correlate closely to macroscopic and microscopic disease          |
| 109 | scores(27). We are yet to understand fully the relationship between SC and the other         |
| 110 | currently available biomarkers in IBD and the diagnostic and prognostic value of SC in IBD.  |
| 111 | Our study aims to investigate the role of SC in this clinical setting.                       |

#### 112 **Methods**

#### 113 Study Design

114 A prospective, single centre case control study was performed in patients with suspected or

- 115 confirmed IBD at their first presentation to a tertiary gastrointestinal clinic. Data were
- 116 collected for patient demographics including age, sex, age at diagnosis and date of diagnosis
- 117 (Table 1). Details of drug therapy and concomitant medications were recorded. Laboratory
- 118 markers including C-reactive protein (CRP) and albumin were measured as part of the
- research protocol while other routine markers including haemoglobin, white cell count,
- 120 platelets and faecal calprotectin were recorded within 30 days from recruitment.

#### 121 Inclusion criteria

- 122 Patients with a new diagnosis of IBD were included in the study. The Lennard-Jones,
- 123 Montreal and Paris criteria were used for diagnosis and classification of clinical
- 124 phenotypes(28–30). The control cohort consisted of healthy lab volunteers (HC) and patients
- 125 with gastrointestinal symptoms (symptomatic controls) who had no discernible inflammatory
- disease, and a diagnosis of functional bowel disease at follow up.

#### 127 Sample collection and processing

- 128 For SC analysis, blood samples were collected prospectively and serum was processed within
- 129 2 hours of sampling (using centrifugation at 2500G for 15 min) and subsequently stored at
- $-80^{\circ}$ C until further use. Samples were analysed in duplicate using the Calpro<sup>TM</sup> AS
- 131 calprotectin ELISA (Calpro AS, Norway) according to manufacturer's instructions. Samples
- 132 with a calprotectin result of >2500 ng/ml were diluted and retested. Coefficients of variation
- 133 of <10% were included in the analysis.

#### 134 Ethics Statement

- 135 The NHS Lothian SAHSC Bioresource granted approval for this study (reference number
- 136 SR558) with all patients giving written and informed consent (15/ES/0094).

#### 137 Clinical Course in IBD

- 138 Case note review was performed for all IBD cases. Treatment escalation was defined as the
- need for escalation and establishment of 2 or more immunomodulatory therapies and/or
- surgery for disease flare after initial induction of disease remission (criteria previously used
- by Lee *et al*)(31). In UC, the definition of treatment escalation also included any patient with
- 142 a new diagnosis, requiring emergency colectomy during their index admission.

#### 143 Statistical analysis

- 144 Data were analysed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) and R
- 145 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria). Continuous data are

#### American Journal of Gastroenterology

| 146        | presented as medians and interquartile ranges and were analysed using a Mann-Whitney U-                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 147        | test. Categorical data are presented as numbers and percentages, and were analysed using                                                     |
| 148        | Fisher's exact tests. Spearman's rank-order correlation test was applied for correlations                                                    |
| 149        | between variables. To determine the accuracy of blood parameter measurements as a                                                            |
| 150        | prognostic test capable of diagnosing IBD, receiver operating characteristic (ROC) analyses                                                  |
| 151        | were performed by plotting sensitivity against specificity using the 'pROC' package in R(32).                                                |
| 152<br>153 | <i>Building diagnostic and prognostic models</i><br>After univariable analyses, the most significant laboratory parameters (CRP, albumin and |
| 154        | serum calprotectin) were included in multivariable models for IBD diagnosis and prognosis.                                                   |
| 155        | CRP and serum calprotectin were log transformed to more closely approximate a normal                                                         |
| 156        | distribution for further multivariable analysis. ROC analyses were used to define the optimal                                                |
| 157        | cut-points (highest sum of sensitivity + specificity) for both models. The optimal models                                                    |
| 158        | were then selected by performing backward stepwise regression using the smallest Akaike                                                      |
| 159        | information criterion (AIC) values and adjusted for treatment exposure.                                                                      |
| 160        | For the diagnostic model, an integer score was attributed to each variable according to its                                                  |
| 161        | relative contribution in the model (as determined by the coefficients) and positive and                                                      |
| 162        | negative predictive values were then calculated for each total score.                                                                        |
| 163        | For the prognostic model, a Cox proportional hazards model was derived to assess the                                                         |
| 164        | contribution of each variable to disease outcomes. Thresholds were then identified using                                                     |
| 165        | ROC analyses to allow stratification of patients to either a benign or an aggressive disease                                                 |
| 166        | course (requiring treatment escalation and/or surgery), and to allow creation of survival                                                    |
| 167        | curves.                                                                                                                                      |

#### 168 **Results**

- 169 Comparison of Serum Calprotectin with conventional biomarkers
- 170 Overall, serum calprotectin was analysed in 171 patient serum samples from August 2013 to
- April 2015. Serum calprotectin correlated positively with CRP (rho=0.61, p= $6.9 \times 10^{-19}$ ) and
- negatively with albumin (rho= -0.54, p= $3.3 \times 10^{-14}$ ). Paired full blood count was available
- 173 within 30 days (median 0 days; range: -26 to 16 days) of recruitment in 147 patients. Serum
- 174 calprotectin correlated positively with Neutrophil count (rho=0.65, p= $1.9 \times 10^{-20}$ ) and
- negatively with Haemoglobin (rho= 0.42, p=6.1 x10<sup>-8</sup>). Paired FC was available within 30
- days (median 0 days, IQR: -5 to 5 days) of SC in 50 patients (IBD n=31, non-IBD n=19).
- 177 Serum calprotectin correlated significantly with faecal calprotectin (Spearman's rho = 0.50,
- 178  $p=1.6x10^{-4}$ ). Table 1 summarises the correlation of blood and faecal parameters. SC
- demonstrated a stronger correlation with white cell count (William's test, p=0.02) and
- neutrophils (p=0.03) in controls compared to IBD cases.

#### 181 Diagnostic utility of Serum Calprotectin in IBD

In a subset of 156 patients (83 IBD and 73 non-IBD), blood sampling was performed within

- 183 90 days from diagnosis (median 0 days; IQR 0-6). There were 35 patients with a diagnosis of
- 184 CD, 45 patients with UC and 3 patients with IBDU in the IBD group. In CD, 44% had L3 +/-
- L4 disease and 62% had B1 behaviour according to the Montreal classification (33). In UC,
- 186 33% had pancolitis (E4) and 11% had limited proctitis (E1) as per the Paris classification
- 187 (30). Table 2 and Table 3 summarise the demographics and blood and faecal parameters for
- the IBD and control cohorts. SC was significantly increased in IBD compared with controls
- 189 (1010 ng/ml [IQR 796-1426ng/ml] vs 506ng/ml [IQR 362-725ng/ml], p=3.7 x 10<sup>-15</sup>) (Figure
- 190 1). CRP and albumin were also significantly different between IBD and controls (CRP
- 191  $p=8.9 \times 10^{-15}$ ; albumin  $p=4.9 \times 10^{-14}$ ). There was no difference in SC between CD and UC
- 192 (1015 ng/ml [IQR 740-1518 ng/ml] vs 911µg/g [IQR 809-1413ng/ml], p=0.79) and within
- controls (HC: 432 ng/ml [IQR 359-586] vs symptomatic controls: 563ng/ml [IQR 382-787];

- 194 p=0.12). SC was not significantly associated with sex (p=0.14), age (rho -0.06, p=0.43) or
- smoking status (p=0.49). Serum calprotectin and CRP were able to discriminate IBD from
- 196 controls with similar areas under the receiver operator characteristics curve (AUROC) of 0.87
- 197 (95% confidence interval [CI] 0.82-0.93) and 0.86 (95% CI 0.80-0.91) respectively (Figure 2)
- 198 (p=0.64 DeLong's test for comparison of ROC curves). In those with paired SC and FC
- 199 within 30 days, the AUROC for discriminating cases and controls was superior for FC (0.99,
- 200 95% CI 0.98-1.00) than SC (0.87, 95% CI 0.78-0.97) (p=0.01 De Long's test), as shown in
- 201 Figure 2.

#### 202 Multivariable analysis

- 203 Multivariable logistic regression analysis of predictors of IBD was performed on 155 cases
- 204 (83 IBD, 72 non-IBD) where the data for the predictors were complete. Albumin, male
- 205 gender, log transformed CRP and log transformed SC were significant predictors of IBD.
- **Table 4** summarises the statistical significance of each covariate.

#### 207 Building an IBD Diagnosis Score

- 208 Using the multivariable model, continuous variables were categorised using integer cut-
- 209 points guided by the ROC curves and observed relationship with diagnosis. The final scoring
- system for the diagnosis of IBD included SC>852ng/ml, Albumin<38g/L, CRP≥3.5mg/L and
- 211 male gender. To formulate a numerical risk score, each variable was given a score based on
- the odds ratio generated from the linear model. **Table 5** summarises the positive and negative
- 213 predictive values for each score. Using this model, a SC> 852ng/ml and either a
- 214 CRP≥3.5mg/L or albumin <38g/L has a sensitivity of 67%, specificity of 97% and a positive
- 215 likelihood ratio (LR) of 24.14 for IBD.

#### 216 Predicting disease extent in IBD

- SC, CRP and albumin were not able to differentiate between IBD subtypes (CRP p=0.45;
- albumin p=0.67; SC p=0.49). Within the UC cohort, SC was significantly higher in those

| 219        | with disease beyond the rectum (> $E1$ ) compared to proctitis alone ( $E1$ ) (median SC                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 220        | 1078ng/ml IQR 820-1418 vs 812ng/ml IQR 698-821, p=0.03). Albumin also predicted                                                     |
| 221        | disease extent in UC (p=0.01) but not CRP (p=0.05). In CD however, there was no significant                                         |
| 222        | difference in SC, CRP or albumin by disease location (p=0.47, 0.55 and 0.20 respectively).                                          |
| 223<br>224 | <b>Predicting Disease outcomes in IBD</b><br>Kaplan-Meier analyses were performed on a total of 83 patients with IBD. There were 35 |
| 225        | patients with a diagnosis of CD, 45 patients with UC and 3 patients with IBDU. The median                                           |
| 226        | age was 31 years (IQR: 26-41) and 69% were male (n=58). A total of 1(33%), 16 (46%),                                                |
| 227        | 23(51%) patients required treatment escalation in the IBDU, CD and UC group respectively.                                           |
| 228        | Using backwards stepwise selection, albumin<37 g/L and SC $\geq$ 1046 ng/ml remained                                                |
| 229        | significant predictors of treatment escalation in IBD (logrank test $p=5.1 \times 10^{-5}$ ). Both                                  |
| 230        | biomarkers had similar hazards ratio (HR) as shown in Table 6a. A score was generated using                                         |
| 231        | both biomarkers at these thresholds. At a year, the estimated chance of treatment escalation                                        |
| 232        | was 21% (95% CI: 1-37%) if none of the criteria were met, 40% (95% CI: 17-56%) for                                                  |
| 233        | patients meeting one criterion and 65% (95% CI: 43-78%) for those meeting both criteria                                             |
| 234        | (Figure 3a).                                                                                                                        |
| 235        | In order to assess whether the time lag between diagnosis and blood sampling had an impact                                          |
| 236        | on the final model, stepwise regression analyses was performed for samples within 60 days                                           |
| 237        | (n=74) and 30 days (n=60) from diagnosis. SC remained a significant predictor of disease                                            |
| 238        | outcomes at 60 days and 30 days (p=0.003 and p=0.004 respectively).                                                                 |
| 239        | In 28 patients, paired FC was available within 30 days from diagnosis. Using a multivariate                                         |
| 240        | model which included age, gender, CRP, albumin, FC and SC, backward stepwise regression                                             |
| 241        | analysis was performed and only SC remained as a significant predictor (p=0.0004). FC did                                           |
|            |                                                                                                                                     |

| 243 | Further regression analyses were performed within the subgroups UC (Table 6b) and CD           |
|-----|------------------------------------------------------------------------------------------------|
| 244 | (Table 6c). In CD, CRP>24mg/L and SC>991ng/ml and albumin<26g/L predicted treatment            |
| 245 | escalation (logrank test p=0.003). At 1 year, the estimated chance of treatment escalation was |
| 246 | 11% (95%CI: 0-29%) for patients meeting none of the criteria, 30% (95% CI: 0-51%) for          |
| 247 | patients meeting one criterion and 80% (95% CI: 31-94%) for patients meeting two or more       |
| 248 | criteria (Figure 3b).                                                                          |
| 249 | In UC, albumin< 37g/L and CRP>2.5g/L predicted a more aggressive disease course                |
| 250 | (logrank test p=0.001). At 1 year, the estimated chance of treatment escalation was 0 for      |
| 251 | patients meeting none of the criteria, 38% (95% CI: 0-61%) for patients meeting one criterion  |

and 68% (95% CI: 41-83%) for patients meeting two criteria (Figure 3c).

#### 253 **Discussion**

- There is an unmet need for accurate diagnostic and prognostic biomarkers in IBD as currently
- available blood biomarkers lack sensitivity and/or specificity. Our study is the first to
- investigate the role of SC in patients with a new diagnosis of IBD. SC independently predicts
- a diagnosis of IBD with an OR of 9.37 (95%CI: 2.82-34.68). A combined blood-based
- biomarker diagnostic model including SC and either CRP or albumin has a high positive LR
- for IBD (positive LR 24.14). Similarly, SC can predict treatment escalation and/or surgery in
- 260 IBD (HR 2.7, 95%CI: 1.1-4.9), in particular CD (HR 4.2, 95% CI 1.2-15.3).
- 261 Calprotectin, a member of the S100 proteins, represents 45% of all cytosolic proteins in
- neutrophils compared to 1% in monocytes (34,35). Given the short half-life of SC (5 hours),
- it may provide a more dynamic test of the current inflammatory status compared with
- conventional inflammatory markers (half-life of CRP 18 hours, albumin 19 days) (36). SC
- correlates better with neutrophil count in controls compared to IBD patients; in IBD, SC
- levels may reflect calprotectin release from activated neutrophils and other immune cells such

| 267 | as monocytes, macrophages and epithelial cells (Figure 4). SC shows a strong correlation                         |
|-----|------------------------------------------------------------------------------------------------------------------|
| 268 | with other markers such as CRP (r= $0.61$ , p= $6.9 \times 10^{-19}$ ) similar to published studies (r= $0.33$ - |
| 269 | (0.59)(17,25,37,38) and a moderate correlation between SC and FC (0.50, p=1.6x10 <sup>-4</sup> ).                |
| 270 | As a diagnostic blood based marker, SC is the strongest predictor of IBD 9.37 (95%CI: 2.82-                      |
| 271 | 34.68). In a clinical setting, blood markers such as CRP are often available, therefore                          |
| 272 | investigating the utility of a combined marker may be more relevant as this allows for greater                   |
| 273 | specificity in diagnostics (39,40). We generated an IBD scoring system that would allow                          |
| 274 | clinicians to predict IBD in patients at their index clinical visit. If 2 blood marker criteria are              |
| 275 | met (score of 8 or above), there is a high likelihood of IBD (positive LR 24.14).                                |
| 276 | FC has a high NPV but a low PPV for IBD vs functional disease (cut off 50 $\mu$ g/g, NPV 93%                     |
| 277 | PPV 37%)(41). In practice, a blood biomarker model can complement the existing FC                                |
| 278 | screening of patients with gastrointestinal symptoms in primary care. In the current climate of                  |
| 279 | optimal tertiary care resource management, this model can be utilised for patients being                         |
| 280 | referred for suspected IBD and help select and prioritise investigations for individuals with a                  |
| 281 | high IBD score and a high likelihood of disease. The AUC for FC is superior to SC in our                         |
| 282 | study (0.87 and 0.99 respectively, p=0.01). FC has an established role in IBD diagnostics,                       |
| 283 | however in clinical practice faecal sampling and testing can be challenging. One                                 |
| 284 | consideration in interpreting these data is the lag between SC and FC testing. The median                        |
| 285 | time lag between SC and FC testing was 0 days (IQR -5 to 5 days), but there were individuals                     |
| 286 | with upto 30 days between SC and FC testing. Nonetheless, any time lag represents real life                      |
| 287 | experience with faecal testing as often FC is not available until a few weeks after the clinic                   |
| 288 | visit. There is a large variability in the concentration of FC in stool within a single day and                  |
| 289 | storage conditions can impact on FC levels(18). Sampling faeces can be a hurdle for patients                     |
| 290 | and individuals can either decline FC testing, fail to provide a sample or provide insufficient                  |
| 291 | sample for analysis. These factors impact on the practical utility of FC. SC testing has the                     |
|     |                                                                                                                  |

#### American Journal of Gastroenterology

| 292 | potential to provide a more timely assessment of inflammation on the day of the visit. The          |
|-----|-----------------------------------------------------------------------------------------------------|
| 293 | cost per sample for performing SC testing are comparable to FC ( $\pounds$ 5; \$7.3 equivalent). In |
| 294 | addition, other costs related to sample handling and processing are likely to be lower as           |
| 295 | serum testing is often automated.                                                                   |
| 296 | Beyond diagnostics, studies have investigated the utility of non-invasive markers in                |
| 297 | predicting endoscopic activity. A recent meta-analyses evaluated the diagnostic accuracy of         |
| 298 | CRP, FC and stool lactoferrin (SL) for the assessment of endoscopically defined activity in         |
| 299 | IBD. The pooled AUC for CRP, FC and SL were 0.49(95% CI: 0.34-0.64), 0.88(CI: 0.84-                 |
| 300 | 0.90) and 0.73(CI: 0.66-0.79)(42). There was however heterogeneity in the endoscopic index          |
| 301 | used. Other factors such as inclusion criteria, in particular time lag between blood/faecal         |
| 302 | sampling and endoscopy (0-7 days) differed(43–46). There is a need for future prospective           |
| 303 | studies investigating the performance of non-invasive endoscopic activity markers such as           |
| 304 | SC.                                                                                                 |
| 305 | In our study, SC predicts treatment escalation and/or surgery in IBD (HR 2.7, 95%CI: 1.1-           |
| 306 | 4.9), in particular CD (HR 4.2, 95% CI 1.2-15.3). We also generate blood-based prognostic           |
| 307 | models incorporating CRP, albumin and SC. At 1 year, our model can predict treatment                |
| 308 | escalation in IBD in 65% of cases (95% CI: 43-79%) and 80% (95% CI: 31-94%) in CD if 2              |
| 309 | or more criteria are met. Predicting the disease course early in individuals is becoming            |
| 310 | increasingly important in order to identify patients who would benefit from more aggressive         |
| 311 | therapy. In clinical practice, there is an unmet need for early indicators of persistent activity,  |
| 312 | either in a continuous or a relapsing-remitting manner despite initial induction therapy(31).       |
| 313 | These patients will often go on to require further immunomodulators, biological therapies           |

and/or surgery. As quiescent IBD do not require such treatment escalations, we used the

requirement of such treatment escalations to define an aggressive disease course (31).

Clinical predictors have been studied previously. In CD, Beaugerie *et al* identified age, the

Page 14 of 73

| 317 | presence of perianal disease and requirement for steroids at diagnosis as independent             |
|-----|---------------------------------------------------------------------------------------------------|
| 318 | predictive factors for a disabling course(47). However, biological markers were not analysed      |
| 319 | in that study. Since then, the role of biomarkers in predicting the disease course has been the   |
| 320 | focus of many studies, although their effectiveness in predicting outcomes vary(31,48–51).        |
| 321 | Most studies suggest that CRP predicts relapse in IBD(48-50), although one study found it         |
| 322 | had no predictive value (52). There are several reasons for this observed variation and           |
| 323 | includes differences in defining an aggressive disease course, disease heterogeneity and          |
| 324 | disease duration prior to analyses. It is also possible that variations in CRP genotype may       |
| 325 | explain variations in its performance in adult cohort studies. This has been described in the     |
| 326 | paediatric population(53), but yet to be explored in adults. The role of FC in predicting         |
| 327 | colectomy in acute severe colitis (ASUC) has been investigated previously (AUC 0.65,              |
| 328 | p=0.04) and more recently, SC has been shown to predict colectomy in ASUC with an AUC             |
| 329 | of 0.69 (95%CI 0.53-0.81) compared to FC (AUC 0.58; 95%CI 0.35-0.81) and CRP (AUC                 |
| 330 | 0.71; 95%CI: 0.56-0.86) (16,38). SC has also been studied as a prognostic marker in               |
| 331 | predicting relapse after anti-TNF withdrawal and complements FC (>250 $\mu$ g/g) and              |
| 332 | hsCRP(>5mg/L) (p=0.0173, 0.0024 and 0.0002; HR: 3.191, 3.561 and 4.120 respectively)              |
| 333 | (17). Our study however is the first to explore the prognostic utility of SC at diagnosis. Future |
| 334 | studies incorporating periodic SC testing to predict disease course in IBD may be useful.         |
| 335 | Our study does have certain limitations. The results are from a single tertiary centre and        |
| 336 | based on a select cohort of newly diagnosed IBD patients. The relatively small numbers            |
| 337 | within the sub-type of IBD limits the power to dissect factors predicting phenotype and our       |
| 338 | diagnostic and prognostic models require further validation. There were more females with         |
| 339 | functional bowel disease in the control cohort and this alone may underly the observation that    |
| 340 | male gender is a risk factor for IBD in our study. The major strengths of this study include a    |
| 341 | prospective design and a cohort of newly diagnosed IBD aiming for the first time to explore       |

- the correlation of SC with current biomarkers and build diagnostic and prognostic models for 342
- potential clinical use in IBD. 343

#### Conclusion 344

- 345 SC shows promise as a blood based biomarker in diagnosing and predicting disease course in
- 346 IBD. A diagnostic and prognostic model that combines SC and other blood-based biomarkers
- 347 accurately predicts the inflammatory burden in IBD and has the potential to predict disease
- and its outcomes. Our findings warrant further exploration and validation within large 348
- multicentre cohorts. 349

| 349 | multicentre cohorts.                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 350 |                                                                                                                                      |
| 351 | <ul> <li>What is Current Knowledge</li> <li>Serum calprotectin (SC) has been studied as a prognostic marker in predicting</li> </ul> |
| 352 | relapse after anti-TNF withdrawal and complements FC and hsCRP for the                                                               |
| 353 | <ul><li>prediction of relapse.</li><li>SC can predict colectomy in acute severe colitis with an AUC of 0.69,</li></ul>               |
| 354 | comparable to CRP.                                                                                                                   |
| 355 | • SC correlates with other inflammatory blood markers such as CRP                                                                    |
| 356 | • SC has been studied in diseases such as inflammatory arthropathies and cystic                                                      |
| 357 | fibrosis and can predict disease progression.                                                                                        |
| 358 |                                                                                                                                      |
| 359 |                                                                                                                                      |
| 360 |                                                                                                                                      |
| 361 |                                                                                                                                      |
| 362 |                                                                                                                                      |
| 363 |                                                                                                                                      |
| 364 |                                                                                                                                      |

| 365        |                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------|
| 366        | What is New Here                                                                                             |
| 367        | • Serum Calprotectin (SC) is a strong individual predictor of a diagnosis of IBD                             |
| 368        | • SC correlates with faecal calprotectin (FC) and is useful in diagnosis                                     |
| 369        | • SC can predict treatment escalation and/or surgery in IBD, in particular CD                                |
| 370        | • Blood based diagnostic and prognostic models can provide an accurate reflection                            |
| 371        | of the inflammatory burden and have the potential to predict disease and its                                 |
| 372        | outcomes.                                                                                                    |
| 373        |                                                                                                              |
| 374        | Competing interests                                                                                          |
| 375        | The study was supported by Calpro AS <sup>TM</sup> , Norway who provided the ELISA kits for serum            |
| 376        | calprotectin testing.                                                                                        |
| 377<br>378 | Author contributions<br>Study design RK and JS. Patient recruitment and sample processing NTV, RK, NAK, RKB. |
| 379        | Experimental work RK and MV. Data Analysis RK, NAK, ATA and NTV. RK wrote the                                |
| 380        | manuscript. All authors were involved in critical review, editing, revision and approval of the              |
| 381        | final manuscript.                                                                                            |
| 382        |                                                                                                              |
| 383        |                                                                                                              |
| 384        |                                                                                                              |
| 385        |                                                                                                              |
| 386        |                                                                                                              |

| 387 |     | References                                                                           |
|-----|-----|--------------------------------------------------------------------------------------|
| 388 | 1.  | Kalla R, Ventham NT, Satsangi J, et al. Crohn's disease. BMJ 2014;349:g6670.         |
| 389 | 2.  | Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ 2013;346:f432.              |
| 390 | 3.  | Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the    |
| 391 |     | inflammatory bowel diseases with time, based on systematic review. Gastroenterology  |
| 392 |     | 2012;142:46–54.e42; quiz e30.                                                        |
| 393 | 4.  | IBD standards group.Quality care: Service standards for the healthcare of people who |
| 394 |     | have inflammatory bowel disease (IBD). 2009.                                         |
| 395 | 5.  | Loftus E V. Clinical epidemiology of inflammatory bowel disease: incidence,          |
| 396 |     | prevalence, and environmental influences. Gastroenterology 2004;126:1504-1517.       |
| 397 | 6.  | Kappelman MD, Rifas-Shiman SL, Kleinman K, et al. The prevalence and geographic      |
| 398 |     | distribution of Crohn's disease and ulcerative colitis in the United States. Clin.   |
| 399 |     | Gastroenterol. Hepatol. 2007;5:1424–9.                                               |
| 400 | 7.  | Kappelman MD, Rifas-Shiman SL, Porter CQ, et al. Direct Health Care Costs of         |
| 401 |     | Crohn's Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology   |
| 402 |     | 2008;135:1907–1913.                                                                  |
| 403 | 8.  | Burisch J, Jess T, Martinato M, et al. The burden of inflammatory bowel disease in   |
| 404 |     | Europe. J. Crohns. Colitis 2013;7:322–37.                                            |
| 405 | 9.  | Sands BE. Biomarkers of Inflammation in Inflammatory Bowel Disease.                  |
| 406 |     | Gastroenterology 2015;                                                               |
| 407 | 10. | Viennois E, Zhao Y, Merlin D. Biomarkers of Inflammatory Bowel Disease: From         |
| 408 |     | Classical Laboratory Tools to Personalized Medicine. Inflamm. Bowel Dis.             |
| 409 |     | 2015;21:2467–74.                                                                     |

| 410 | 11. | P140. Proximity Extension Assay technology identifies novel serum biomarkers for         |
|-----|-----|------------------------------------------------------------------------------------------|
| 411 |     | predicting Inflammatory Bowel Disease: IBD Character Consortium. J. Crohns. Colitis      |
| 412 |     | 2015;9 Suppl 1:S146–7.                                                                   |
| 413 | 12. | Kaiser T, Langhorst J, Wittkowski H, et al. Faecal S100A12 as a non-invasive marker      |
| 414 |     | distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut             |
| 415 |     | 2007;56:1706–13.                                                                         |
| 416 | 13. | Rheenen PF van, Vijver E Van de, Fidler V. Faecal calprotectin for screening of          |
| 417 |     | patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ        |
| 418 |     | 2010;341:c3369.                                                                          |
| 419 | 14. | Lehmann FS, Burri E, Beglinger C. The role and utility of faecal markers in              |
| 420 |     | inflammatory bowel disease. Therap. Adv. Gastroenterol. 2015;8:23-36.                    |
| 421 | 15. | Wright EK, Kamm MA, Cruz P De, et al. Measurement of Fecal Calprotectin                  |
| 422 |     | Improves Monitoring and Detection of Recurrence of Crohn's Disease Following             |
| 423 |     | Surgery. Gastroenterology 2015;                                                          |
| 424 | 16. | Ho GT, Lee HM, Brydon G, et al. Fecal calprotectin predicts the clinical course of       |
| 425 |     | acute severe ulcerative colitis. Am. J. Gastroenterol. 2009;104:673-678.                 |
| 426 | 17. | Meuwis M-A, Vernier-Massouille G, Grimaud JC, et al. Serum calprotectin as a             |
| 427 |     | biomarker for Crohn's disease. J. Crohns. Colitis 2013;7:e678-83.                        |
| 428 | 18. | Lasson A, Stotzer P-O, Ohman L, et al. The intra-individual variability of faecal        |
| 429 |     | calprotectin: A prospective study in patients with active ulcerative colitis. J. Crohns. |
| 430 |     | Colitis 2014;                                                                            |
| 431 | 19. | Calafat M, Cabré E, Mañosa M, et al. High within-day variability of fecal calprotectin   |
| 432 |     | levels in patients with active ulcerative colitis: what is the best timing for stool     |
| 433 |     | sampling? Inflamm. Bowel Dis. 2015;21:1072–6.                                            |
|     |     |                                                                                          |

#### American Journal of Gastroenterology

| 434 | 20. | Reid PA, McAllister DA, Boyd AC, et al. Measurement of serum calprotectin in stable       |
|-----|-----|-------------------------------------------------------------------------------------------|
| 435 |     | patients predicts exacerbation and lung function decline in cystic fibrosis. Am. J.       |
| 436 |     | Respir. Crit. Care Med. 2015;191:233-6.                                                   |
| 437 | 21. | Gray RD, Imrie M, Boyd AC, et al. Sputum and serum calprotectin are useful                |
| 438 |     | biomarkers during CF exacerbation. J. Cyst. Fibros. 2010;9:193-8.                         |
| 439 | 22. | Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a Biomarker for Rheumatoid            |
| 440 |     | Arthritis: A Systematic Review. J. Rheumatol. 2015;                                       |
| 441 | 23. | Obry A, Lequerré T, Hardouin J, et al. Identification of S100A9 as biomarker of           |
| 442 |     | responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis         |
| 443 |     | using a proteomic approach. PLoS One 2014;9:e115800.                                      |
| 444 | 24. | Mariani A, Marsili M, Nozzi M, et al. Serum calprotectin: review of its usefulness and    |
| 445 |     | validity in paediatric rheumatic diseases. Clin. Exp. Rheumatol. 2014;33:109–114.         |
| 446 | 25. | Hammer HB, Ødegård S, Syversen SW, et al. Calprotectin (a major S100 leucocyte            |
| 447 |     | protein) predicts 10-year radiographic progression in patients with rheumatoid arthritis. |
| 448 |     | Ann. Rheum. Dis. 2010;69:150–4.                                                           |
| 449 | 26. | Boschetti G, Garnero P, Moussata D, et al. Accuracies of Serum and Fecal S100             |
| 450 |     | Proteins (Calprotectin and Calgranulin C) to Predict the Response to TNF Antagonists      |
| 451 |     | in Patients with Crohn's Disease. Inflamm. Bowel Dis. 2015;21:331-6.                      |
| 452 | 27. | Cury DB, Mizsputen SJ, Versolato C, et al. Serum calprotectin levels correlate with       |
| 453 |     | biochemical and histological markers of disease activity in TNBS colitis. Cell.           |
| 454 |     | Immunol. 2013;282:66–70.                                                                  |
| 455 | 28. | Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular       |
| 456 |     | and serological classification of inflammatory bowel disease: report of a Working         |
| 457 |     | Party of the 2005 Montreal World Congress of Gastroenterology. Can. J.                    |

| 458 |     | Gastroenterol. 2005;19 Suppl A:5A-36A.                                                     |
|-----|-----|--------------------------------------------------------------------------------------------|
| 459 | 29. | Lennard-Jones JE. Classification of inflammatory bowel disease. Scand. J.                  |
| 460 |     | Gastroenterol. Suppl. 1989;170:2-6; discussion 16-9.                                       |
| 461 | 30. | Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal          |
| 462 |     | classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel    |
| 463 |     | Dis. 2011;17:1314–21.                                                                      |
| 464 | 31. | Lee JC, Lyons P a, McKinney EF, et al. Gene expression profiling of CD8+ T cells           |
| 465 |     | predicts prognosis in patients with Crohn disease and ulcerative colitis. J. Clin. Invest. |
| 466 |     | 2011;121:4170–9.                                                                           |
| 467 | 32. | Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to           |
| 468 |     | analyze and compare ROC curves. BMC Bioinformatics 2011;12:77.                             |
| 469 | 33. | Satsangi J, Silverberg MS, Vermeire S, et al. The Montreal classification of               |
| 470 |     | inflammatory bowel disease: controversies, consensus, and implications. Gut                |
| 471 |     | 2006;55:749–53.                                                                            |
| 472 | 34. | Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular                  |
| 473 |     | biology and disease. Arterioscler. Thromb. Vasc. Biol. 2012;32:223-9.                      |
| 474 | 35. | Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles         |
| 475 |     | between human and mouse monocyte subsets. Blood 2010;115:e10-9.                            |
| 476 | 36. | Fagerhol MK, Nielsen HG, Vetlesen A, et al. Increase in plasma calprotectin during         |
| 477 |     | long-distance running. 2005.                                                               |
| 478 | 37. | Leach ST, Yang Z, Messina I, et al. Serum and mucosal S100 proteins, calprotectin          |
| 479 |     | (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with                    |
| 480 |     | inflammatory bowel disease. Scand. J. Gastroenterol. 2007;42:1321-31.                      |
|     |     |                                                                                            |

| 481 | 38. | Hare NC, Kennedy NA, Kalla R, et al. P349 Serum calprotectin: a novel biomarker to       |
|-----|-----|------------------------------------------------------------------------------------------|
| 482 |     | predict outcome in acute severe ulcerative colitis? J. Crohn's Colitis 2014;8:S210.      |
| 483 | 39. | Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian    |
| 484 |     | cancer. Proc. Natl. Acad. Sci. U. S. A. 2005;102:7677-82.                                |
| 485 | 40. | Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in     |
| 486 |     | human blood. Mol. Cell. Proteomics 2005;4:1480-6.                                        |
| 487 | 41. | Kennedy NA, Clark A, Walkden A, et al. Clinical utility and diagnostic accuracy of       |
| 488 |     | faecal calprotectin for IBD at first presentation to gastroenterology services in adults |
| 489 |     | aged 16-50 years. J. Crohns. Colitis 2015;9:41-9.                                        |
| 490 | 42. | Mosli MH, Zou G, Garg SK, et al. C-Reactive Protein, Fecal Calprotectin, and Stool       |
| 491 |     | Lactoferrin for Detection of Endoscopic Activity in Symptomatic Inflammatory Bowel       |
| 492 |     | Disease Patients: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol.           |
| 493 |     | 2015;110:802–819.                                                                        |
| 494 | 43. | af Björkesten C-G, Nieminen U, Turunen U, et al. Surrogate markers and clinical          |
| 495 |     | indices, alone or combined, as indicators for endoscopic remission in anti-TNF-treated   |
| 496 |     | luminal Crohn's disease. Scand. J. Gastroenterol. 2012;47:528-37.                        |
| 497 | 44. | D'Haens G, Ferrante M, Vermeire S, et al. Fecal calprotectin is a surrogate marker for   |
| 498 |     | endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis.                    |
| 499 |     | 2012;18:2218–24.                                                                         |
| 500 | 45. | Schoepfer AM, Beglinger C, Straumann A, et al. Fecal calprotectin correlates more        |
| 501 |     | closely with the Simple Endoscopic Score for Crohn's disease (SES-CD) than CRP,          |
| 502 |     | blood leukocytes, and the CDAI. Am. J. Gastroenterol. 2010;105:162-9.                    |
| 503 | 46. | Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of    |
| 504 |     | intestinal inflammation in inflammatory bowel diseases: performance of fecal             |

| 505 |     | lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am. J.            |
|-----|-----|-------------------------------------------------------------------------------------------|
| 506 |     | Gastroenterol. 2008;103:162-9.                                                            |
| 507 | 47. | Beaugerie L, Seksik P, Nion-Larmurier I, et al. Predictors of crohn's disease.            |
| 508 |     | Gastroenterology 2006;130:650-656.                                                        |
| 509 | 48. | Boirivant M, Leoni M, Tariciotti D, et al. The clinical significance of serum C reactive  |
| 510 |     | protein levels in Crohn's disease. Results of a prospective longitudinal study. J. Clin.  |
| 511 |     | Gastroenterol. 1988;10:401-405.                                                           |
| 512 | 49. | Niewiadomski O, Studd C, Hair C, et al. Prospective population-based cohort of            |
| 513 |     | inflammatory bowel disease in the biologics era: Disease course and predictors of         |
| 514 |     | severity. J. Gastroenterol. Hepatol. 2015;30:1346-53.                                     |
| 515 | 50. | Henriksen M, Jahnsen J, Lygren I, et al. C-reactive protein: a predictive factor and      |
| 516 |     | marker of inflammation in inflammatory bowel disease. Results from a prospective          |
| 517 |     | population-based study. Gut 2008;57:1518–1523.                                            |
| 518 | 51. | Sandor Kiss L, Papp M, Dorottya Lovasz B, et al. High-sensitivity C-reactive protein      |
| 519 |     | for identification of disease phenotype, active disease, and clinical relapses in Crohn's |
| 520 |     | disease: A marker for patient classification? Inflamm. Bowel Dis. 2012;18:1647–1654.      |
| 521 | 52. | Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker     |
| 522 |     | of relapse in ulcerative colitis than in Crohn's disease. Gut 2005;54:364–368.            |
| 523 | 53. | Henderson P, Kennedy NA, Limbergen JE Van, et al. Serum C-reactive protein and            |
| 524 |     | CRP genotype in pediatric inflammatory bowel disease: influence on phenotype,             |
| 525 |     | natural history, and response to therapy. Inflamm. Bowel Dis. 2015;21:596-605.            |
| 526 |     |                                                                                           |

| 528               |                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 529               | Figure Legends                                                                                                                                                                                         |
| 530               | Figure 1: Serum Calprotectin levels in patients with Crohn's disease (CD), Ulcerative colitis                                                                                                          |
| 531               | (UC), Inflammatory bowel disease unclassified (IBDU), symptomatic controls (non-IBD) and                                                                                                               |
| 532               | healthy controls (HC)                                                                                                                                                                                  |
| 533<br>534        | <b>Footnote</b> : Boxplots represent median and inter-quartile ranges for serum calprotectin within each subcohort                                                                                     |
| 535               | Figure 2: Receiver operating curve analysis (ROC) of serum calprotectin (SC) and other                                                                                                                 |
| 536               | blood based markers in differentiating Inflammatory bowel diseases (IBD) from non-IBD and                                                                                                              |
| 537               | ROC analysis of SC and faecal calprotectin (FC) (within 30 days) in discriminating                                                                                                                     |
| 538               | Inflammatory bowel diseases (IBD) from non-IBD.                                                                                                                                                        |
| 539               | Footnote: WCC:white cell count; CRP:C-reactive protein; Hb:Haemoglobin                                                                                                                                 |
| 540               | Figure 3a: Kaplan Meier survival curves of disease course using blood biomarkers to predict                                                                                                            |
| 541               | outcomes in newly diagnosed Inflammatory Bowel Diseases (IBD). Single marker represents                                                                                                                |
| 542               | either or albumin<37 g/L or serum calprotectin $\geq$ 1046ng/ml. Dual markers represents a                                                                                                             |
| 543               | combination of both variables.                                                                                                                                                                         |
| 544               | Figure 3b: Kaplan Meier survival curves of disease course using blood biomarkers to predict                                                                                                            |
| 545               | outcomes in newly diagnosed Crohn's disease (CD)                                                                                                                                                       |
| 546<br>547<br>548 | <b>Footnote</b> : '1 marker' represents either CRP>24mg/L or albumin<26 g/L or serum calprotectin >991 ng/ml. '2 or 3 marker' represents a combination of any 2 or 3 of the above mentioned variables. |
|                   |                                                                                                                                                                                                        |

- 549 Figure 3c: Kaplan Meier survival curves of disease course using blood biomarkers to predict
- outcomes in newly diagnosed Ulcerative Colitis (UC) 550
- 551 Footnote: Single marker represents either albumin<37 g/L or CRP >2.5mg/L. Dual markers
- 552 represents all the categorical variables as a combined biomarker.
- Figure 4: Correlation between log transformed serum calprotectin and neutrophil count in 553
- Inflammatory Bowel Diseases (IBD) versus controls (Non-IBD). 554

rog es (IBD) ve

| 1 | Serum                                   | Calprotectin - | - A novel | diagnostic | and | prognostic | marker | in |
|---|-----------------------------------------|----------------|-----------|------------|-----|------------|--------|----|
| - | ~ • • • • • • • • • • • • • • • • • • • |                |           |            |     | P- 08-000  |        |    |

- 2 Inflammatory Bowel Diseases
- 3
- 4 Kalla R<sup>1</sup>, Kennedy NA<sup>1</sup>, Ventham NT<sup>1</sup>, Boyapati RK<sup>1,3</sup>, Adams AT<sup>1</sup>, Nimmo ER<sup>1</sup>, Visconti
- 5  $M^2$ , Drummond  $H^1$ , Ho  $GT^3$ , Pattenden  $R^4$ , Wilson  $DC^5$ , Satsangi  $J^1$
- <sup>1</sup>Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular
- 7 Medicine, Western General Hospital, Edinburgh, United Kingdom
- <sup>2</sup> Metabolic Bone Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular
- 9 Medicine, Western General Hospital, Edinburgh, United Kingdom
- <sup>3</sup> Centre for Inflammation Research, Queens Medical Research Institute, University of
- 11 Edinburgh, Edinburgh, United Kingdom
- <sup>4</sup> Department of Clinical Chemistry, Western General Hospital, NHS Lothian, Edinburgh,
- 13 United Kingdom
- <sup>5</sup> Child Life and Health, College of Medicine and Veterinary Medicine, University of
- 15 Edinburgh, United Kingdom
- 16 Correspondence to: Dr Rahul Kalla
- 17 Gastrointestinal unit
- 18 Western General Hospital, Edinburgh
- 19 Crewe Road South, Edinburgh, EH4 2XU
- 20 Telephone number: 0131 537 3115
- 21 Email address: <u>rahul.kalla@ed.ac.uk</u>

- 22 <u>Keywords:</u> Crohn's disease; inflammatory bowel diseases; Ulcerative colitis; acute severe
- 23 ulcerative colitis; biomarkers; diagnosis; management
- 24 Word count: 3473

#### 25 Abstract

#### 26 Introduction

- 27 There is an unmet need for novel blood based biomarkers that offer timely and accurate
- diagnostic and prognostic testing in Inflammatory Bowel Diseases (IBD). We aimed to
- 29 investigate the diagnostic and prognostic utility of serum calprotectin (SC) in IBD.

#### 30 Methods

- A total of 171 patients (n=96 IBD, n=75 non-IBD) were prospectively recruited. A multi-
- 32 biomarker model was derived using multivariable logistic regression analysis. Cox
- 33 proportional hazards model was derived to assess the contribution of each variable to disease
- 34 outcomes.

#### 35 **Results**

- 36 <u>SC correlated strongly with current biomarkers including faecal calprotectin (FC)</u>
- 37 (n=50, rho = 0.50, p=1.6x10<sup>-4</sup>). SC was the strongest individual predictor of IBD
- diagnosis (odds ratio (OR): 9.37(2.82-34.68), p=4.00×10<sup>-4</sup>) compared with other markers
- 39 (CRP: OR 8.52(95%CI: 2.75-28.63), p=2.80×10<sup>-4</sup>); albumin: OR 6.12(95%CI: 1.82-
- 40 <u>22.16</u>), p=0.004). In a subset of 50 patients with paired SC and FC, the area under
- 41 receiver operating characteristic discriminating IBD from controls was better for FC
- 42 than SC (0.99, (95% CI 0.87-1.00) and 0.87 (95% CI: 0.78-0.97) respectively; p=0.01).
- 43 At follow up (median 342 days; IQR: 88-563), <u>SC predicted treatment escalation and/or</u>
- 44 surgery in IBD (HR 2.7, 95% CI: 1.1-4.9), in particular CD (HR 4.2, 95% CI 1.2-15.3).

| 45 | A model incorporating SC and either CRP or albumin has a positive likelihood ratio of      |
|----|--------------------------------------------------------------------------------------------|
| 46 | 24.14 for IBD. At 1 year, our prognostic model can predict treatment escalation in IBD in  |
| 47 | 65% of cases (95% CI: 43-79%) and 80% (95% CI: 31-94%) in CD if 2 or more blood            |
| 48 | marker criteria are met.                                                                   |
| 49 | Conclusions                                                                                |
| 50 | A diagnostic and prognostic model that combines SC and other blood-based biomarkers        |
| 51 | accurately predicts the inflammatory burden in IBD and has the potential to predict        |
| 52 | disease and its outcomes. Our data warrants further detailed exploration and validation in |
| 53 | large multi-centre cohorts.                                                                |
| 54 |                                                                                            |
| 55 |                                                                                            |
| 56 |                                                                                            |
| 57 |                                                                                            |
| 58 |                                                                                            |
| 59 |                                                                                            |
| 60 |                                                                                            |
| 61 |                                                                                            |
| 62 |                                                                                            |
| 63 |                                                                                            |
| 64 |                                                                                            |
| 65 |                                                                                            |
| 66 |                                                                                            |
| 67 |                                                                                            |
| 68 |                                                                                            |
| 69 |                                                                                            |
| 70 |                                                                                            |

#### 71 Introduction

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis 72 (UC), are chronic, debilitating inflammatory disorders of the gastrointestinal tract affecting 73 74 adults and children (1,2). A recent systematic review showed rising trends in the incidence 75 and prevalence of IBD worldwide(3) associated with significant healthcare costs amounting 76 to around £470 million in the UK, up to  $\notin$  5.6 billion annually in Europe and over \$6 billion 77 annually in the USA (3-8). With an ever expanding therapeutic repertoire, it is important to 78 select patients who may benefit from early use of immunosuppressants' and/or biological 79 therapies in order to minimise irreversible luminal damage and prevent long-term complications. 80 Blood-based biomarkers provide a non-invasive estimation of the inflammatory burden in 81 82 newly diagnosed IBD. However relatively few blood-based biomarkers have been 83 extensively validated in IBD, and fewer still are in routine use in the clinic (9). There is an 84 emerging interest in discovering novel markers using multi-omic platforms that may be 85 valuable in a variety of clinical settings including IBD diagnostics, disease activity assessments, predicting disease outcomes and response to therapy (9–11). 86 The S100 family of proteins including S100A8/A9 (calprotectin) and S100A12 (calgranulin) 87 have been implicated in disease pathogenesis and investigated as potential markers of 88 89 inflammation (12, 13). In IBD, faecal calprotectin (FC) has emerged as a particularly 90 informative tool(14). A recent meta-analysis of 13 studies and 1041 patients found that FC 91 had a pooled sensitivity and specificity of 0.93 (0.85-0.97) and 0.96 (0.79-0.99) respectively 92 for IBD and identified those individuals requiring endoscopy for suspected IBD(13). There 93 are also data on the role of FC in other clinical settings, such as predicting post-operative CD recurrence and predicting outcomes in acute severe colitis(15,16). However, there are 94 95 limitations to FC testing in clinical practice. Faecal collection can be a hurdle for patients(17)

| 96  | and sample delivery and processing delays can hinder its clinical utility. In active UC, FC  |
|-----|----------------------------------------------------------------------------------------------|
| 97  | shows high within-day variability and the optimal timing for sampling is not clear(18,19). A |
| 98  | blood based biomarker such as serum calprotectin (SC) may be more convenient in routine      |
| 99  | practice and more acceptable to patients. SC has been studied in diseases such as            |
| 100 | inflammatory arthropathies and cystic fibrosis (20-24). In Rheumatoid arthritis, SC was      |
| 101 | independently predictive of a 10 year radiographic disease progression (25), while in cystic |
| 102 | fibrosis, SC predicted exacerbation and lung function decline(20,21).                        |
| 103 | More recently, SC has been investigated in IBD to predict response to- and relapse following |
| 104 | anti-tumour necrosis factor (anti-TNF) therapy(17,26). In CD patients, SC has a similar      |
| 105 | profile to high sensitivity C-reactive protein (hsCRP) and compliments FC and hsCRP for      |
| 106 | prediction of relapse after anti-TNF withdrawal (p=0.0173, 0.0024 and 0.0002; HR: 3.191,     |
| 107 | 3.561 and 4.120 respectively) (17). In murine models, TNBS induced colitis is associated     |
| 108 | with higher SC levels that correlate closely to macroscopic and microscopic disease          |
| 109 | scores(27). We are yet to understand fully the relationship between SC and the other         |
| 110 | currently available biomarkers in IBD and the diagnostic and prognostic value of SC in IBD.  |
| 111 | Our study aims to investigate the role of SC in this clinical setting.                       |
|     |                                                                                              |

#### 112 **Methods**

#### 113 Study Design

- 114 A prospective, single centre case control study was performed in patients with suspected or
- 115 confirmed IBD at their first presentation to a tertiary gastrointestinal clinic. Data were
- 116 collected for patient demographics including age, sex, age at diagnosis and date of diagnosis
- 117 (Table 1). Details of drug therapy and concomitant medications were recorded. Laboratory

#### 118 markers including C-reactive protein (CRP) and albumin were measured as part of the

#### 119 research protocol while other routine markers including haemoglobin, white cell count,

120 platelets and faecal calprotectin were recorded within 30 days from recruitment.

#### 121 Inclusion criteria

- 122 Patients with a new diagnosis of IBD were included in the study. The Lennard-Jones,
- 123 Montreal and Paris criteria were used for diagnosis and classification of clinical
- 124 phenotypes(28–30). The control cohort consisted of healthy lab volunteers (HC) and
- 125 patients with gastrointestinal symptoms (symptomatic controls) who had no discernible
- 126 inflammatory disease, and a diagnosis of functional bowel disease at follow up.
- 127 Sample collection and processing
- 128 For SC analysis, blood samples were collected prospectively and serum was processed within
- 129 2 hours of sampling (using centrifugation at 2500G for 15 min) and subsequently stored at
- $-80^{\circ}$ C until further use. Samples were analysed in duplicate using the Calpro<sup>TM</sup> AS
- 131 calprotectin ELISA (Calpro AS, Norway) according to manufacturer's instructions. Samples
- 132 with a calprotectin result of >2500 ng/ml were diluted and retested. Coefficients of variation
- 133 of <10% were included in the analysis.

#### 134 Ethics Statement

- 135 The NHS Lothian SAHSC Bioresource granted approval for this study (reference number
- 136 SR558) with all patients giving written and informed consent (15/ES/0094).

#### 137 Clinical Course in IBD

- 138 Case note review was performed for all IBD cases. Treatment escalation was defined as the
- need for escalation and establishment of 2 or more immunomodulatory therapies and/or
- surgery for disease flare after initial induction of disease remission (criteria previously used
- 141 by Lee *et al*)(31). In UC, the definition of treatment escalation also included any patient with
- 142 a new diagnosis, requiring emergency colectomy during their index admission.

#### 143 Statistical analysis

- 144 Data were analysed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) and R
- 145 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria). Continuous data are

### American Journal of Gastroenterology

| 146        | presented as medians and interquartile ranges and were analysed using a Mann-Whitney U-                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 147        | test. Categorical data are presented as numbers and percentages, and were analysed using                                                     |
| 148        | Fisher's exact tests. Spearman's rank-order correlation test was applied for correlations                                                    |
| 149        | between variables. To determine the accuracy of blood parameter measurements as a                                                            |
| 150        | prognostic test capable of diagnosing IBD, receiver operating characteristic (ROC) analyses                                                  |
| 151        | were performed by plotting sensitivity against specificity using the 'pROC' package in R(32).                                                |
| 152<br>153 | <b>Building diagnostic and prognostic models</b><br>After univariable analyses, the most significant laboratory parameters (CRP, albumin and |
| 154        | serum calprotectin) were included in multivariable models for IBD diagnosis and prognosis.                                                   |
| 155        | CRP and serum calprotectin were log transformed to more closely approximate a normal                                                         |
| 156        | distribution for further multivariable analysis. ROC analyses were used to define the optimal                                                |
| 157        | cut-points (highest sum of sensitivity + specificity) for both models. The optimal models                                                    |
| 158        | were then selected by performing backward stepwise regression using the smallest Akaike                                                      |
| 159        | information criterion (AIC) values and adjusted for treatment exposure.                                                                      |
| 160        | For the diagnostic model, an integer score was attributed to each variable according to its                                                  |
| 161        | relative contribution in the model (as determined by the coefficients) and positive and                                                      |
| 162        | negative predictive values were then calculated for each total score.                                                                        |
| 163        | For the prognostic model, a Cox proportional hazards model was derived to assess the                                                         |
| 164        | contribution of each variable to disease outcomes. Thresholds were then identified using                                                     |
| 165        | ROC analyses to allow stratification of patients to either a benign or an aggressive disease                                                 |
| 166        | course (requiring treatment escalation and/or surgery), and to allow creation of survival                                                    |
| 167        | curves.                                                                                                                                      |

#### 168 **Results**

- 169 Comparison of Serum Calprotectin with conventional biomarkers
- 170 Overall, serum calprotectin was analysed in 171 patient serum samples from August 2013 to
- 171 April 2015. Serum calprotectin correlated positively with CRP (rho=0.61, p=6.9x10<sup>-19</sup>)
- 172 <u>and negatively with albumin (rho= 0.54, p=3.3x10<sup>-14</sup>). Paired full blood count was</u>
- 173 available within 30 days (median 0 days; range: -26 to 16 days) of recruitment in 147
- 174 patients. Serum calprotectin correlated positively with Neutrophil count (rho=0.65,
- 175  $p=1.9x10^{-20}$  and negatively with Haemoglobin (rho= 0.42, p=6.1 x10<sup>-8</sup>). Paired FC was
- 176 available within 30 days (median 0 days, IQR: -5 to 5 days) of SC in 50 patients (IBD
- 177 <u>n=31, non-IBD n=19). Serum calprotectin correlated significantly with faecal</u>
- 178 <u>calprotectin (Spearman's rho = 0.50, p= $1.6 \times 10^{-4}$ )</u>. Table 1 summarises the correlation of
- blood and faecal parameters. SC demonstrated a stronger correlation with white cell count
- (William's test, p=0.02) and neutrophils (p=0.03) in controls compared to IBD cases.
- 181 Diagnostic utility of Serum Calprotectin in IBD
- 182 In a subset of 156 patients (83 IBD and 73 non-IBD), blood sampling was performed
- 183 within 90 days from diagnosis (median 0 days; IQR 0-6). There were 35 patients with a
- diagnosis of CD, 45 patients with UC and 3 patients with IBDU in the IBD group. In CD,
- 185 44% had L3 +/- L4 disease and 62% had B1 behaviour according to the Montreal
- classification (33). In UC, 33% had pancolitis (E4) and 11% had limited proctitis (E1) as per
- the Paris classification (30). Table 2 and Table 3 summarise the demographics and blood and
- 188 faecal parameters for the IBD and control cohorts. SC was significantly increased in IBD
- 189 compared with controls (1010 ng/ml [IQR 796-1426ng/ml] vs 506ng/ml [IQR 362-
- 190 <u>725ng/mll, p=3.7 x 10<sup>-15</sup></u> (Figure 1). CRP and albumin were also significantly different
- between IBD and controls (CRP  $p=8.9x10^{-15}$ ; albumin  $p=4.9x10^{-14}$ ). There was no
- 192 difference in SC between CD and UC (1015 ng/ml [IQR 740-1518 ng/ml] vs 911µg/g [IQR
- 193 <u>809-1413ng/ml</u>], p=0.79) and within controls (HC: 432 ng/ml [IQR 359-586] vs

#### 194 **symptomatic controls: 563ng/ml [IQR 382-787]; p=0.12)**. SC was not significantly

- associated with sex (p=0.14), age (rho -0.06, p=0.43) or smoking status (p=0.49). Serum
- 196 calprotectin and CRP were able to discriminate IBD from controls with similar areas under

#### 197 the receiver operator characteristics curve (AUROC) of 0.87 (95% confidence interval

- 198 [CI] 0.82-0.93) and 0.86 (95% CI 0.80-0.91) respectively (Figure 2) (p=0.64 DeLong's
- 199 test for comparison of ROC curves). In those with paired SC and FC within 30 days, the

#### 200 AUROC for discriminating cases and controls was superior for FC (0.99, 95% CI 0.98-

201 <u>1.00) than SC (0.87, 95% CI 0.78-0.97) (p=0.01 De Long's test), as shown in Figure 2.</u>

#### 202 Multivariable analysis

- 203 Multivariable logistic regression analysis of predictors of IBD was performed on 155 cases
- 204 (83 IBD, 72 non-IBD) where the data for the predictors were complete. Albumin, male
- 205 gender, log transformed CRP and log transformed SC were significant predictors of IBD.
- **Table 4** summarises the statistical significance of each covariate.

#### 207 Building an IBD Diagnosis Score

- 208 Using the multivariable model, continuous variables were categorised using integer cut-
- 209 points guided by the ROC curves and observed relationship with diagnosis. The final scoring
- system for the diagnosis of IBD included SC>852ng/ml, Albumin<38g/L, CRP≥3.5mg/L and
- 211 male gender. To formulate a numerical risk score, each variable was given a score based on
- the odds ratio generated from the linear model. **Table 5** summarises the positive and negative
- 213 predictive values for each score. Using this model, a SC> 852ng/ml and either a

#### 214 <u>CRP≥3.5mg/L or albumin <38g/L has a sensitivity of 67%, specificity of 97% and a</u>

215 **positive likelihood ratio (LR) of 24.14 for IBD.** 

#### 216 **Predicting disease extent in IBD**

- SC, CRP and albumin were not able to differentiate between IBD subtypes (CRP p=0.45;
- albumin p=0.67; SC p=0.49). Within the UC cohort, SC was significantly higher in those

| 219        | with disease beyond the rectum (> E1) compared to proctitis alone (E1) (median SC                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 220        | 1078ng/ml IQR 820-1418 vs 812ng/ml IQR 698-821, p=0.03). Albumin also predicted                                                     |
| 221        | disease extent in UC (p=0.01) but not CRP (p=0.05). In CD however, there was no significant                                         |
| 222        | difference in SC, CRP or albumin by disease location (p=0.47, 0.55 and 0.20 respectively).                                          |
| 223<br>224 | <b>Predicting Disease outcomes in IBD</b><br>Kaplan-Meier analyses were performed on a total of 83 patients with IBD. There were 35 |
| 225        | patients with a diagnosis of CD, 45 patients with UC and 3 patients with IBDU. The median                                           |
| 226        | age was 31 years (IQR: 26-41) and 69% were male (n=58). A total of 1(33%), 16 (46%),                                                |
| 227        | 23(51%) patients required treatment escalation in the IBDU, CD and UC group respectively.                                           |
| 228        | <u>Using backwards stepwise selection, albumin&lt;37 g/L and SC ≥1046 ng/ml remained</u>                                            |
| 229        | significant predictors of treatment escalation in IBD (logrank test p=5.1×10 <sup>-5</sup> ). Both                                  |
| 230        | biomarkers had similar hazards ratio (HR) as shown in Table 6a. A score was generated                                               |
| 231        | using both biomarkers at these thresholds. At a year, the estimated chance of treatment                                             |
| 232        | escalation was 21% (95% CI: 1-37%) if none of the criteria were met, 40% (95% CI:                                                   |
| 233        | 17-56%) for patients meeting one criterion and 65% (95% CI: 43-78%) for those                                                       |
| 234        | meeting both criteria (Figure 3a).                                                                                                  |
| 235        | In order to assess whether the time lag between diagnosis and blood sampling had an impact                                          |
| 236        | on the final model, stepwise regression analyses was performed for samples within 60 days                                           |
| 237        | (n=74) and 30 days (n=60) from diagnosis. SC remained a significant predictor of disease                                            |
| 238        | outcomes at 60 days and 30 days (p=0.003 and p=0.004 respectively).                                                                 |
| 239        | In 28 patients, paired FC was available within 30 days from diagnosis. Using a multivariate                                         |
| 240        | model which included age, gender, CRP, albumin, FC and SC, backward stepwise regression                                             |
| 241        | analysis was performed and only SC remained as a significant predictor (p=0.0004). FC did                                           |

not predict disease outcomes in this cohort (p=0.85, HR=1.0).
| 243 | Further regression ana | lyses were per | rformed within the | e subgroups UC | (Table 6b) and CD                     |
|-----|------------------------|----------------|--------------------|----------------|---------------------------------------|
|     |                        |                |                    |                | · · · · · · · · · · · · · · · · · · · |

- 244 (Table 6c). In CD, CRP>24mg/L and SC>991ng/ml and albumin<26g/L predicted treatment
- escalation (logrank test p=0.003). At 1 year, the estimated chance of treatment escalation was
- 246 11% (95%CI: 0-29%) for patients meeting none of the criteria, 30% (95% CI: 0-51%) for
- 247 patients meeting one criterion and 80% (95% CI: 31-94%) for patients meeting two or more
- criteria (Figure 3b).
- In UC, albumin< 37g/L and CRP>2.5g/L predicted a more aggressive disease course
- 250 (logrank test p=0.001). At 1 year, the estimated chance of treatment escalation was 0 for
- 251 patients meeting none of the criteria, 38% (95% CI: 0-61%) for patients meeting one criterion
- and 68% (95% CI: 41-83%) for patients meeting two criteria (Figure 3c).

## 253 **Discussion**

- There is an unmet need for accurate diagnostic and prognostic biomarkers in IBD as currently
- available blood biomarkers lack sensitivity and/or specificity. Our study is the first to
- investigate the role of SC in patients with a new diagnosis of IBD. <u>SC independently</u>
- 257 predicts a diagnosis of IBD with an OR of 9.37 (95%CI: 2.82-34.68). A combined blood-

258 based biomarker diagnostic model including SC and either CRP or albumin has a high

- 259 positive LR for IBD (positive LR 24.14). Similarly, SC can predict treatment escalation
- 260 and/or surgery in IBD (HR 2.7, 95%CI: 1.1-4.9), in particular CD (HR 4.2, 95% CI 1.2-
- 261 <u>15.3).</u>
- 262 Calprotectin, a member of the S100 proteins, represents 45% of all cytosolic proteins in
- neutrophils compared to 1% in monocytes (34,35). Given the short half-life of SC (5 hours),
- it may provide a more dynamic test of the current inflammatory status compared with
- conventional inflammatory markers (half-life of CRP 18 hours, albumin 19 days) (36). SC
- correlates better with neutrophil count in controls compared to IBD patients; in IBD, SC

| 267 | levels may reflect calprotectin release from activated neutrophils and other immune cells such              |
|-----|-------------------------------------------------------------------------------------------------------------|
| 268 | as monocytes, macrophages and epithelial cells (Figure 4). SC shows a strong correlation                    |
| 269 | with other markers such as CRP (r=0.61, p= $6.9 \times 10^{-19}$ ) similar to published studies (r=0.33-    |
| 270 | 0.59)(17,25,37,38) and <u>a moderate correlation between SC and FC (0.50, p=1.6x10<sup>-4</sup>).</u>       |
| 271 | As a diagnostic blood based marker, SC is the strongest predictor of IBD 9.37 (95%CI:                       |
| 272 | <b><u>2.82-34.68</u></b> ). In a clinical setting, blood markers such as CRP are often available, therefore |
| 273 | investigating the utility of a combined marker may be more relevant as this allows for greater              |
| 274 | specificity in diagnostics (39,40). We generated an IBD scoring system that would allow                     |
| 275 | clinicians to predict IBD in patients at their index clinical visit. If 2 blood marker criteria             |
| 276 | are met (score of 8 or above), there is a high likelihood of IBD (positive LR 24.14).                       |
| 277 | FC has a high NPV but a low PPV for IBD vs functional disease (cut off 50 $\mu$ g/g, NPV 93%                |
| 278 | PPV 37%)(41). In practice, a blood biomarker model can complement the existing FC                           |
| 279 | screening of patients with gastrointestinal symptoms in primary care. In the current climate of             |
| 280 | optimal tertiary care resource management, this model can be utilised for patients being                    |
| 281 | referred for suspected IBD and help select and prioritise investigations for individuals with a             |
| 282 | high IBD score and a high likelihood of disease. The AUC for FC is superior to SC in our                    |
| 283 | study (0.87 and 0.99 respectively, p=0.01). FC has an established role in IBD diagnostics,                  |
| 284 | however in clinical practice faecal sampling and testing can be challenging. One                            |
| 285 | consideration in interpreting these data is the lag between SC and FC testing. The median                   |
| 286 | time lag between SC and FC testing was 0 days (IQR -5 to 5 days), but there were individuals                |
| 287 | with upto 30 days between SC and FC testing. Nonetheless, any time lag represents real life                 |
| 288 | experience with faecal testing as often FC is not available until a few weeks after the clinic              |
| 289 | visit. There is a large variability in the concentration of FC in stool within a single day and             |
| 290 | storage conditions can impact on FC levels(18). Sampling faeces can be a hurdle for                         |
| 291 | patients and individuals can either decline FC testing, fail to provide a sample or                         |

- 292 **provide insufficient sample for analysis**. These factors impact on the practical utility of FC.
- 293 SC testing has the potential to provide a more timely assessment of inflammation on the day
- of the visit. The cost per sample for performing SC testing are comparable to FC (£5:
- 295 <u>\$7.3 equivalent</u>). In addition, other costs related to sample handling and processing are
- 296 <u>likely to be lower as serum testing is often automated.</u>
- 297 Beyond diagnostics, studies have investigated the utility of non-invasive markers in
- 298 predicting endoscopic activity. A recent meta-analyses evaluated the diagnostic
- 299 <u>accuracy of CRP, FC and stool lactoferrin (SL) for the assessment of endoscopically</u>
- 300 defined activity in IBD. The pooled AUC for CRP, FC and SL were 0.49(95% CI: 0.34-
- 301 <u>0.64), 0.88(CI: 0.84-0.90) and 0.73(CI: 0.66-0.79)(42). There was however heterogeneity</u>
- 302 in the endoscopic index used. Other factors such as inclusion criteria, in particular time
- 303 lag between blood/faecal sampling and endoscopy (0-7 days) differed(43–46). There is a
- 304 <u>need for future prospective studies investigating the performance of non-invasive</u>
- 305 endoscopic activity markers such as SC.
- 306 <u>In our study, SC predicts treatment escalation and/or surgery in IBD (HR 2.7, 95%CI:</u>
- 307 <u>1.1-4.9), in particular CD (HR 4.2, 95% CI 1.2-15.3).</u> We also generate blood-based
- prognostic models incorporating CRP, albumin and SC. At 1 year, our model can predict
- treatment escalation in IBD in 65% of cases (95% CI: 43-79%) and 80% (95% CI: 31-94%)
- in CD if 2 or more criteria are met. Predicting the disease course early in individuals is
- becoming increasingly important in order to identify patients who would benefit from more
- aggressive therapy. In clinical practice, there is an unmet need for early indicators of
- 313 persistent activity, either in a continuous or a relapsing-remitting manner despite initial
- induction therapy(31). These patients will often go on to require further immunomodulators,
- biological therapies and/or surgery. As quiescent IBD do not require such treatment
- escalations, we used the requirement of such treatment escalations to define an aggressive

| 317 | disease course (31). Clinical predictors have been studied previously. In CD, Beaugerie et al    |
|-----|--------------------------------------------------------------------------------------------------|
| 318 | identified age, the presence of perianal disease and requirement for steroids at diagnosis as    |
| 319 | independent predictive factors for a disabling course(47). However, biological markers were      |
| 320 | not analysed in that study. Since then, the role of biomarkers in predicting the disease course  |
| 321 | has been the focus of many studies, although their effectiveness in predicting outcomes          |
| 322 | vary(31,48-51). Most studies suggest that CRP predicts relapse in IBD(48-50), although one       |
| 323 | study found it had no predictive value (52). There are several reasons for this observed         |
| 324 | variation and includes differences in defining an aggressive disease course, disease             |
| 325 | heterogeneity and disease duration prior to analyses. It is also possible that variations in CRP |
| 326 | genotype may explain variations in its performance in adult cohort studies. This has been        |
| 327 | described in the paediatric population(53), but yet to be explored in adults. The role of FC in  |
| 328 | predicting colectomy in acute severe colitis (ASUC) has been investigated previously (AUC        |
| 329 | 0.65, p=0.04) and more recently, SC has been shown to predict colectomy in ASUC with an          |
| 330 | AUC of 0.69 (95%CI 0.53-0.81) compared to FC (AUC 0.58; 95%CI 0.35-0.81) and CRP                 |
| 331 | (AUC 0.71; 95%CI: 0.56-0.86) (16,38). SC has also been studied as a prognostic marker in         |
| 332 | predicting relapse after anti-TNF withdrawal and complements FC (>250µg/g) and                   |
| 333 | hsCRP(>5mg/L) (p=0.0173, 0.0024 and 0.0002; HR: 3.191, 3.561 and 4.120 respectively)             |
| 334 | (17). Our study however is the first to explore the prognostic utility of SC at diagnosis.       |
| 335 | Future studies incorporating periodic SC testing to predict disease course in IBD may            |
| 336 | <u>be useful.</u>                                                                                |
| 337 | Our study does have certain limitations. The results are from a single tertiary centre and       |
| 338 | based on a select cohort of newly diagnosed IBD patients. The relatively small numbers           |
| 339 | within the sub-type of IBD limits the power to dissect factors predicting phenotype and our      |
| 340 | diagnostic and prognostic models require further validation. There were more females with        |
| 341 | functional bowel disease in the control cohort and this alone may underly the                    |

342 observation that male gender is a risk factor for IBD in our study. The major strengths
343 of this study include a prospective design and a cohort of newly diagnosed IBD aiming for
344 the first time to explore the correlation of SC with current biomarkers and build diagnostic
345 and prognostic models for potential clinical use in IBD.

## 346 **Conclusion**

- SC shows promise as a blood based biomarker in diagnosing and predicting disease course in
  IBD. A diagnostic and prognostic model that combines SC and other blood-based biomarkers
  accurately predicts the inflammatory burden in IBD and has the potential to predict disease
  and its outcomes. Our findings warrant further exploration and validation within large
- 351 multicentre cohorts.

| 352 |                                                                                 |
|-----|---------------------------------------------------------------------------------|
| 353 | What is Current Knowledge                                                       |
|     | • Serum calprotectin (SC) has been studied as a prognostic marker in predicting |
| 354 | relapse after anti-TNF withdrawal and complements FC and hsCRP for the          |
| 255 | prediction of relapse.                                                          |
| 355 | • SC can predict colectomy in acute severe colitis with an AUC of 0.69,         |
| 356 | comparable to CRP                                                               |
|     |                                                                                 |
| 357 | • SC correlates with other inflammatory blood markers such as CRP               |
| 358 | • SC has been studied in diseases such as inflammatory arthropathies and cystic |
| 359 | fibrosis and can predict disease progression.                                   |
| 360 |                                                                                 |
| 200 |                                                                                 |
| 301 |                                                                                 |
| 362 |                                                                                 |
| 363 |                                                                                 |
| 364 |                                                                                 |

| 365        |                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------|
| 366        | What is New Here                                                                                             |
| 367        | • Serum Calprotectin (SC) is a strong individual predictor of a diagnosis of IBD                             |
| 368        | • SC correlates with faecal calprotectin (FC) and is useful in diagnosis                                     |
| 369        | • SC can predict treatment escalation and/or surgery in IBD, in particular CD                                |
| 370        | • Blood based diagnostic and prognostic models can provide an accurate reflection                            |
| 371        | of the inflammatory burden and have the potential to predict disease and its                                 |
| 372        | outcomes.                                                                                                    |
| 373        |                                                                                                              |
| 374        | Competing interests                                                                                          |
| 375        | The study was supported by Calpro AS <sup>TM</sup> , Norway who provided the ELISA kits for serum            |
| 376        | calprotectin testing.                                                                                        |
| 377<br>378 | Author contributions<br>Study design RK and JS. Patient recruitment and sample processing NTV, RK, NAK, RKB. |
| 379        | Experimental work RK and MV. Data Analysis RK, NAK, ATA and NTV. RK wrote the                                |
| 380        | manuscript. All authors were involved in critical review, editing, revision and approval of the              |
| 381        | final manuscript.                                                                                            |
| 382        |                                                                                                              |
| 383        |                                                                                                              |
| 384        |                                                                                                              |
| 385        |                                                                                                              |
| 386        |                                                                                                              |

| 387 |     | References                                                                           |
|-----|-----|--------------------------------------------------------------------------------------|
| 388 | 1.  | Kalla R, Ventham NT, Satsangi J, et al. Crohn's disease. BMJ 2014;349:g6670.         |
| 389 | 2.  | Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ 2013;346:f432.              |
| 390 | 3.  | Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the    |
| 391 |     | inflammatory bowel diseases with time, based on systematic review. Gastroenterology  |
| 392 |     | 2012;142:46–54.e42; quiz e30.                                                        |
| 393 | 4.  | IBD standards group.Quality care: Service standards for the healthcare of people who |
| 394 |     | have inflammatory bowel disease (IBD). 2009.                                         |
| 395 | 5.  | Loftus E V. Clinical epidemiology of inflammatory bowel disease: incidence,          |
| 396 |     | prevalence, and environmental influences. Gastroenterology 2004;126:1504-1517.       |
| 397 | 6.  | Kappelman MD, Rifas-Shiman SL, Kleinman K, et al. The prevalence and geographic      |
| 398 |     | distribution of Crohn's disease and ulcerative colitis in the United States. Clin.   |
| 399 |     | Gastroenterol. Hepatol. 2007;5:1424–9.                                               |
| 400 | 7.  | Kappelman MD, Rifas-Shiman SL, Porter CQ, et al. Direct Health Care Costs of         |
| 401 |     | Crohn's Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology   |
| 402 |     | 2008;135:1907–1913.                                                                  |
| 403 | 8.  | Burisch J, Jess T, Martinato M, et al. The burden of inflammatory bowel disease in   |
| 404 |     | Europe. J. Crohns. Colitis 2013;7:322–37.                                            |
| 405 | 9.  | Sands BE. Biomarkers of Inflammation in Inflammatory Bowel Disease.                  |
| 406 |     | Gastroenterology 2015;                                                               |
| 407 | 10. | Viennois E, Zhao Y, Merlin D. Biomarkers of Inflammatory Bowel Disease: From         |
| 408 |     | Classical Laboratory Tools to Personalized Medicine. Inflamm. Bowel Dis.             |
| 409 |     | 2015;21:2467–74.                                                                     |

| 410 | 11. | P140. Proximity Extension Assay technology identifies novel serum biomarkers for         |
|-----|-----|------------------------------------------------------------------------------------------|
| 411 |     | predicting Inflammatory Bowel Disease: IBD Character Consortium. J. Crohns. Colitis      |
| 412 |     | 2015;9 Suppl 1:S146–7.                                                                   |
| 413 | 12. | Kaiser T, Langhorst J, Wittkowski H, et al. Faecal S100A12 as a non-invasive marker      |
| 414 |     | distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut             |
| 415 |     | 2007;56:1706–13.                                                                         |
| 416 | 13. | Rheenen PF van, Vijver E Van de, Fidler V. Faecal calprotectin for screening of          |
| 417 |     | patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ        |
| 418 |     | 2010;341:c3369.                                                                          |
| 419 | 14. | Lehmann FS, Burri E, Beglinger C. The role and utility of faecal markers in              |
| 420 |     | inflammatory bowel disease. Therap. Adv. Gastroenterol. 2015;8:23-36.                    |
| 421 | 15. | Wright EK, Kamm MA, Cruz P De, et al. Measurement of Fecal Calprotectin                  |
| 422 |     | Improves Monitoring and Detection of Recurrence of Crohn's Disease Following             |
| 423 |     | Surgery. Gastroenterology 2015;                                                          |
| 424 | 16. | Ho GT, Lee HM, Brydon G, et al. Fecal calprotectin predicts the clinical course of       |
| 425 |     | acute severe ulcerative colitis. Am. J. Gastroenterol. 2009;104:673-678.                 |
| 426 | 17. | Meuwis M-A, Vernier-Massouille G, Grimaud JC, et al. Serum calprotectin as a             |
| 427 |     | biomarker for Crohn's disease. J. Crohns. Colitis 2013;7:e678-83.                        |
| 428 | 18. | Lasson A, Stotzer P-O, Ohman L, et al. The intra-individual variability of faecal        |
| 429 |     | calprotectin: A prospective study in patients with active ulcerative colitis. J. Crohns. |
| 430 |     | Colitis 2014;                                                                            |
| 431 | 19. | Calafat M, Cabré E, Mañosa M, et al. High within-day variability of fecal calprotectin   |
| 432 |     | levels in patients with active ulcerative colitis: what is the best timing for stool     |
| 433 |     | sampling? Inflamm. Bowel Dis. 2015;21:1072-6.                                            |
|     |     |                                                                                          |

## American Journal of Gastroenterology

| 434 | 20. | Reid PA, McAllister DA, Boyd AC, et al. Measurement of serum calprotectin in stable       |
|-----|-----|-------------------------------------------------------------------------------------------|
| 435 |     | patients predicts exacerbation and lung function decline in cystic fibrosis. Am. J.       |
| 436 |     | Respir. Crit. Care Med. 2015;191:233-6.                                                   |
| 437 | 21. | Gray RD, Imrie M, Boyd AC, et al. Sputum and serum calprotectin are useful                |
| 438 |     | biomarkers during CF exacerbation. J. Cyst. Fibros. 2010;9:193-8.                         |
| 439 | 22. | Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a Biomarker for Rheumatoid            |
| 440 |     | Arthritis: A Systematic Review. J. Rheumatol. 2015;                                       |
| 441 | 23. | Obry A, Lequerré T, Hardouin J, et al. Identification of S100A9 as biomarker of           |
| 442 |     | responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis         |
| 443 |     | using a proteomic approach. PLoS One 2014;9:e115800.                                      |
| 444 | 24. | Mariani A, Marsili M, Nozzi M, et al. Serum calprotectin: review of its usefulness and    |
| 445 |     | validity in paediatric rheumatic diseases. Clin. Exp. Rheumatol. 2014;33:109–114.         |
| 446 | 25. | Hammer HB, Ødegård S, Syversen SW, et al. Calprotectin (a major S100 leucocyte            |
| 447 |     | protein) predicts 10-year radiographic progression in patients with rheumatoid arthritis. |
| 448 |     | Ann. Rheum. Dis. 2010;69:150–4.                                                           |
| 449 | 26. | Boschetti G, Garnero P, Moussata D, et al. Accuracies of Serum and Fecal S100             |
| 450 |     | Proteins (Calprotectin and Calgranulin C) to Predict the Response to TNF Antagonists      |
| 451 |     | in Patients with Crohn's Disease. Inflamm. Bowel Dis. 2015;21:331-6.                      |
| 452 | 27. | Cury DB, Mizsputen SJ, Versolato C, et al. Serum calprotectin levels correlate with       |
| 453 |     | biochemical and histological markers of disease activity in TNBS colitis. Cell.           |
| 454 |     | Immunol. 2013;282:66–70.                                                                  |
| 455 | 28. | Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular       |
| 456 |     | and serological classification of inflammatory bowel disease: report of a Working         |
| 457 |     | Party of the 2005 Montreal World Congress of Gastroenterology. Can. J.                    |

| 458 |     | Gastroenterol. 2005;19 Suppl A:5A-36A.                                                     |
|-----|-----|--------------------------------------------------------------------------------------------|
| 459 | 29. | Lennard-Jones JE. Classification of inflammatory bowel disease. Scand. J.                  |
| 460 |     | Gastroenterol. Suppl. 1989;170:2-6; discussion 16-9.                                       |
| 461 | 30. | Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal          |
| 462 |     | classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel    |
| 463 |     | Dis. 2011;17:1314–21.                                                                      |
| 464 | 31. | Lee JC, Lyons P a, McKinney EF, et al. Gene expression profiling of CD8+ T cells           |
| 465 |     | predicts prognosis in patients with Crohn disease and ulcerative colitis. J. Clin. Invest. |
| 466 |     | 2011;121:4170–9.                                                                           |
| 467 | 32. | Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to           |
| 468 |     | analyze and compare ROC curves. BMC Bioinformatics 2011;12:77.                             |
| 469 | 33. | Satsangi J, Silverberg MS, Vermeire S, et al. The Montreal classification of               |
| 470 |     | inflammatory bowel disease: controversies, consensus, and implications. Gut                |
| 471 |     | 2006;55:749–53.                                                                            |
| 472 | 34. | Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular                  |
| 473 |     | biology and disease. Arterioscler. Thromb. Vasc. Biol. 2012;32:223-9.                      |
| 474 | 35. | Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles         |
| 475 |     | between human and mouse monocyte subsets. Blood 2010;115:e10-9.                            |
| 476 | 36. | Fagerhol MK, Nielsen HG, Vetlesen A, et al. Increase in plasma calprotectin during         |
| 477 |     | long-distance running. 2005.                                                               |
| 478 | 37. | Leach ST, Yang Z, Messina I, et al. Serum and mucosal S100 proteins, calprotectin          |
| 479 |     | (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with                    |
| 480 |     | inflammatory bowel disease. Scand. J. Gastroenterol. 2007;42:1321-31.                      |
|     |     |                                                                                            |

| 481 | 38. | Hare NC, Kennedy NA, Kalla R, et al. P349 Serum calprotectin: a novel biomarker to       |
|-----|-----|------------------------------------------------------------------------------------------|
| 482 |     | predict outcome in acute severe ulcerative colitis? J. Crohn's Colitis 2014;8:S210.      |
| 483 | 39. | Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian    |
| 484 |     | cancer. Proc. Natl. Acad. Sci. U. S. A. 2005;102:7677-82.                                |
| 485 | 40. | Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in     |
| 486 |     | human blood. Mol. Cell. Proteomics 2005;4:1480-6.                                        |
| 487 | 41. | Kennedy NA, Clark A, Walkden A, et al. Clinical utility and diagnostic accuracy of       |
| 488 |     | faecal calprotectin for IBD at first presentation to gastroenterology services in adults |
| 489 |     | aged 16-50 years. J. Crohns. Colitis 2015;9:41-9.                                        |
| 490 | 42. | Mosli MH, Zou G, Garg SK, et al. C-Reactive Protein, Fecal Calprotectin, and Stool       |
| 491 |     | Lactoferrin for Detection of Endoscopic Activity in Symptomatic Inflammatory Bowel       |
| 492 |     | Disease Patients: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol.           |
| 493 |     | 2015;110:802–819.                                                                        |
| 494 | 43. | af Björkesten C-G, Nieminen U, Turunen U, et al. Surrogate markers and clinical          |
| 495 |     | indices, alone or combined, as indicators for endoscopic remission in anti-TNF-treated   |
| 496 |     | luminal Crohn's disease. Scand. J. Gastroenterol. 2012;47:528-37.                        |
| 497 | 44. | D'Haens G, Ferrante M, Vermeire S, et al. Fecal calprotectin is a surrogate marker for   |
| 498 |     | endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis.                    |
| 499 |     | 2012;18:2218–24.                                                                         |
| 500 | 45. | Schoepfer AM, Beglinger C, Straumann A, et al. Fecal calprotectin correlates more        |
| 501 |     | closely with the Simple Endoscopic Score for Crohn's disease (SES-CD) than CRP,          |
| 502 |     | blood leukocytes, and the CDAI. Am. J. Gastroenterol. 2010;105:162-9.                    |
| 503 | 46. | Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of    |
| 504 |     | intestinal inflammation in inflammatory bowel diseases: performance of fecal             |

| 505 |     | lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am. J.            |
|-----|-----|-------------------------------------------------------------------------------------------|
| 506 |     | Gastroenterol. 2008;103:162-9.                                                            |
| 507 | 47. | Beaugerie L, Seksik P, Nion-Larmurier I, et al. Predictors of crohn's disease.            |
| 508 |     | Gastroenterology 2006;130:650-656.                                                        |
| 509 | 48. | Boirivant M, Leoni M, Tariciotti D, et al. The clinical significance of serum C reactive  |
| 510 |     | protein levels in Crohn's disease. Results of a prospective longitudinal study. J. Clin.  |
| 511 |     | Gastroenterol. 1988;10:401-405.                                                           |
| 512 | 49. | Niewiadomski O, Studd C, Hair C, et al. Prospective population-based cohort of            |
| 513 |     | inflammatory bowel disease in the biologics era: Disease course and predictors of         |
| 514 |     | severity. J. Gastroenterol. Hepatol. 2015;30:1346-53.                                     |
| 515 | 50. | Henriksen M, Jahnsen J, Lygren I, et al. C-reactive protein: a predictive factor and      |
| 516 |     | marker of inflammation in inflammatory bowel disease. Results from a prospective          |
| 517 |     | population-based study. Gut 2008;57:1518–1523.                                            |
| 518 | 51. | Sandor Kiss L, Papp M, Dorottya Lovasz B, et al. High-sensitivity C-reactive protein      |
| 519 |     | for identification of disease phenotype, active disease, and clinical relapses in Crohn's |
| 520 |     | disease: A marker for patient classification? Inflamm. Bowel Dis. 2012;18:1647–1654.      |
| 521 | 52. | Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker     |
| 522 |     | of relapse in ulcerative colitis than in Crohn's disease. Gut 2005;54:364–368.            |
| 523 | 53. | Henderson P, Kennedy NA, Limbergen JE Van, et al. Serum C-reactive protein and            |
| 524 |     | CRP genotype in pediatric inflammatory bowel disease: influence on phenotype,             |
| 525 |     | natural history, and response to therapy. Inflamm. Bowel Dis. 2015;21:596-605.            |
| 526 |     |                                                                                           |

527

| 528 |                                                                                              |
|-----|----------------------------------------------------------------------------------------------|
| 529 | Figure Legends                                                                               |
| 530 | Figure 1: <u>Serum Calprotectin levels in patients with Crohn's disease (CD), Ulcerative</u> |
| 531 | colitis (UC), Inflammatory bowel disease unclassified (IBDU), symptomatic controls           |
| 532 | (non-IBD) and healthy controls (HC)                                                          |
| 533 | Footnote: Boxplots represent median and inter-quartile ranges for serum calprotectin         |
| 534 | within each subcohort                                                                        |
| 535 | Figure 2: Receiver operating curve analysis (ROC) of serum calprotectin (SC) and other       |
| 536 | blood based markers in differentiating Inflammatory bowel diseases (IBD) from non-IBD and    |
| 537 | ROC analysis of SC and faecal calprotectin (FC) (within 30 days) in discriminating           |
| 538 | Inflammatory bowel diseases (IBD) from non-IBD.                                              |
| 539 | Footnote: WCC:white cell count; CRP:C-reactive protein; Hb:Haemoglobin                       |
| 540 | Figure 3a: Kaplan Meier survival curves of disease course using blood biomarkers to predict  |
| 541 | outcomes in newly diagnosed Inflammatory Bowel Diseases (IBD). Single marker represents      |
| 542 | either or albumin<37 g/L or serum calprotectin $\geq$ 1046ng/ml. Dual markers represents a   |
| 543 | combination of both variables.                                                               |
| 544 | Figure 3b: Kaplan Meier survival curves of disease course using blood biomarkers to predict  |
| 545 | outcomes in newly diagnosed Crohn's disease (CD)                                             |
| 546 | Footnote: '1 marker' represents either CRP>24mg/L or albumin<26 g/L or serum                 |
| 547 | calprotectin >991 ng/ml. '2 or 3 marker' represents a combination of any 2 or 3 of the above |
| 548 | mentioned variables.                                                                         |
|     |                                                                                              |

- 549 Figure 3c: Kaplan Meier survival curves of disease course using blood biomarkers to predict
- outcomes in newly diagnosed Ulcerative Colitis (UC) 550
- 551 Footnote: Single marker represents either albumin<37 g/L or CRP >2.5mg/L. Dual markers
- 552 represents all the categorical variables as a combined biomarker.
- Figure 4: Correlation between log transformed serum calprotectin and neutrophil count in 553
- Inflammatory Bowel Diseases (IBD) versus controls (Non-IBD). 554

scases (i

| Parameters | Number of patients | rho(spearman r               | ho) P va       | lue                        |
|------------|--------------------|------------------------------|----------------|----------------------------|
| SC – CRP   | 171                | 0.61                         | 6.9x           | 10 <sup>-19</sup>          |
| SC – WCC   | 147                | 0.61                         | 3.8 x          | 10 <sup>-17</sup>          |
| SC – Neut  | 147                | 0.65                         | 1.9x           | 10 <sup>-20</sup>          |
| SC – Lymp  | 147                | -0.03                        | 0.68           |                            |
| SC – Alb   | 171                | -0.54                        | 3.3x           | 10 <sup>-14</sup>          |
| SC-Hb      | 147                | -0.42                        | 6.1 x          | 10 <sup>-8</sup>           |
| SC-Plts    | 147                | 0.49                         | 1.3×           | 10-10                      |
| SC-FC      | 50                 | 0.50                         | 1.6x           | 10 <sup>-4</sup>           |
| Parameters | IBD(n)             | rho(p-value)                 | Non-<br>IBD(n) | rho(p-value)               |
| SC – CRP   | 96                 | $0.41(3.9 \times 10^{-5})$   | 75             | 0.30(0.01)                 |
| SC – WCC   | 92                 | $0.37(2.3 \times 10^{-4})$   | 55             | $0.66(4.3 \times 10^{-8})$ |
| SC - Neut  | 92                 | $0.43(2.2 \times 10^{-5})$   | 55             | $0.68(1.0 \times 10^{-8})$ |
| SC – Lymp  | 92                 | -0.18(0.08)                  | 55             | $0.48(2.0 \times 10^{-4})$ |
| SC – Alb   | 95                 | -0.39(6.9x10 <sup>-5</sup> ) | 75             | -0.09(0.46)                |
| SC-Hb      | 92                 | $-0.41(4.7 \times 10^{-5})$  | 55             | -0.05(0.75)                |
| SC-Plts    | 92                 | 0.31 (0.002)                 | 55             | 0.27(0.04)                 |
| SC-FC      | 31                 | -0.07(0.72)                  | 19             | 0.13(0.59)                 |
|            |                    |                              |                |                            |

 Table 1: Correlation coefficient (spearman rho) between Serum Calprotectin (SC) and blood

 and faecal parameters

**Abbreviations**: SC: serum calprotectin, WCC: white cell count; Neut: neutrophil count; Lymp: lymphocyte count; Alb: albumin; Hb: haemoglobin; FC: faecal calprotectin; Plts: Platelet count



| Variables                       | Inflammatory Bowel | Controls  |
|---------------------------------|--------------------|-----------|
|                                 | Diseases (n=83)    | (n=/3)    |
| Subtype IBD(CD:UC:IBDU)         | 35:45:3            |           |
| Subtype control group(HC:IBS)   |                    | 27:46     |
| Males (%)                       | 58(69)             | 33(45)    |
| Smoking status (current: never: | 14:41:26           | 12:36:15  |
| ex)                             |                    |           |
| Median age (range)              | 31(18-73)          | 31(19-64) |
| Montreal classificat            | tion for CD        |           |
| L1 +/-L4                        | 10                 |           |
| L2 +/-L4                        | 10                 |           |
| L3 +/-L4                        | 15                 |           |
| Montreal behavio                | ur for CD          |           |
| B1                              | 21                 |           |
| B2                              | 2                  |           |
| B3                              | 6                  |           |
| Not available                   | 6                  |           |
| Paris Extent fo                 | or UC              |           |
| E1                              | 5                  |           |
| E2                              | 14                 |           |
| E3                              | 10                 |           |
| E4                              | 15                 |           |
| Not available                   | 1                  |           |

 Table 2: Study demographics, Montreal classification, disease behaviour for newly

 diagnosed Inflammatory Bowel Diseases (IBD) and control cohorts

**Footnote**: CD: Crohn's disease; UC: ulcerative colitis; IBD-U: Inflammatory bowel disease unclassified; HC: healthy controls; SC: symptomatic controls.

Smoking status was available in 81 patients with IBD and 63 patients with non-IBD.

 Table 3: Blood and faecal parameters for Inflammatory Bowel Disease (IBD) and control cohorts

|                                              |                    | IBD            | Controls           |              |  |
|----------------------------------------------|--------------------|----------------|--------------------|--------------|--|
| Test                                         | Number of patients | Median (IQR)   | Number of patients | Median (IQR) |  |
| Haemoglobin (g/L)                            | 79                 | 128(119-139)   | 53                 | 140(135-150) |  |
| Neutrophil (10 <sup>9</sup> /L)              | 79                 | 5.8(3.9-7.5)   | 53                 | 3.2(2.5-4.1) |  |
| Lymphocyte (mg/L)                            | 79                 | 1.7(1.2-2.1)   | 53                 | 1.8(1.5-2.2) |  |
| White cell<br>count(10 <sup>9</sup> /L)      | 79                 | 8.3(6.5-10.7)  | 53                 | 5.8(4.7-6.6) |  |
| Platelet count (10 <sup>9</sup> /L)          | 79                 | 335(269-432)   | 53                 | 244(209-277) |  |
| C-reactive<br>protein(mg/L)                  | 83                 | 11(3.0-35.5)   | 73                 | 1.0(0.5-2.0) |  |
| Faecal calprotectin<br>within 30 days (µg/g) | 31                 | 770(660-880)   | 19                 | 19(19-25)    |  |
| Albumin (g/L)                                | 83                 | 35(29.0-39.0)  | 73                 | 42(39-46)    |  |
| Serum Calprotectin<br>(ng/ml)                | 83                 | 1015(811-1442) | 73                 | 506(362-725) |  |
|                                              |                    |                | °L2                |              |  |

 Table 4: Multiple logistic regression of predictors of Inflammatory Bowel Diseases versus controls (n=155)

| Continuous variable analysis |                        |         |  |  |  |
|------------------------------|------------------------|---------|--|--|--|
| Variable                     | Odds ratio (95%CI)     | P value |  |  |  |
| Log(C-reactive protein)      | 6.60 (2.18-23.67)      | 0.002   |  |  |  |
| Log(Serum Calprotectin)      | 296.85 (9.55-18512.49) | 0.003   |  |  |  |
|                              |                        |         |  |  |  |
| Albumin                      | 0.85 (0.75-0.94)       | 0.003   |  |  |  |
| Gender                       | 4.00(1.22-14.68)       | 0.03    |  |  |  |

| Categorical variable analysis |                    |                           |  |  |  |
|-------------------------------|--------------------|---------------------------|--|--|--|
| Categorical threshold         | Odds ratio (95%CI) | P-value for<br>thresholds |  |  |  |
| C-reactive protein>3.5mg/L    | 8.52(2.75-28.63)   | 2.80×10 <sup>-4</sup>     |  |  |  |
| Serum Calprotectin >852ng/ml  | 9.37(2.82-34.68)   | 4.00×10 <sup>-4</sup>     |  |  |  |
| Albumin<38g/L                 | 6.12 (1.82-22.16)  | 0.004                     |  |  |  |
| Male gender                   | 2.87(0.97-9.24)    | 0.06                      |  |  |  |
|                               |                    |                           |  |  |  |

**Table 5a**: Sensitivity, specificity, positive and negative likelihood ratios (LR) of the Inflammatory Bowel Diseases (IBD) scoring parameters. Each variable score is based on the odds ratio generated from the linear model

| Variable                    | Score |
|-----------------------------|-------|
| Serum Calprotectin>852ng/ml | 5     |
| Albumin <38g/L              | 3     |
| CRP≥3.5mg/L                 | 4     |
| Male gender                 | 1     |

| IBD Score  | Sensitivity | Specificity | Positive LR | Negative LR |
|------------|-------------|-------------|-------------|-------------|
| 1 or above | 0.96        | 0.31        | 1.39        | 0.12        |
| 3 or above | 0.89        | 0.68        | 2.79        | 0.16        |
| 4 or above | 0.85        | 0.75        | 0.75 3.41   |             |
| 5 or above | 0.84        | 0.89        | 7.57        | 0.18        |
| 6 or above | 0.74        | 0.93        | 10.71       | 0.28        |
| 7 or above | 0.68        | 0.96        | 16.39       | 0.33        |
| 8 or above | 0.67        | 0.97        | 24.14       | 0.34        |

**Table 5b**: Sensitivity, specificity, positive and negative likelihood ratios (LR) of the

 Inflammatory Bowel Diseases (IBD) of the individual markers.

| Test                           | Sensitivity | Specificity | Positive LR | Negative LR |
|--------------------------------|-------------|-------------|-------------|-------------|
| C-reactive<br>protein>3.5mg/L  | 0.70        | 0.86        | 5.03        | 0.35        |
| Albumin<38 g/L                 | 0.66        | 0.88        | 5.30        | 0.39        |
| Serum<br>Calprotectin>852ng/ml | 0.69        | 0.90        | 7.06        | 0.35        |

|                                                                                               | Categorical variable analysis |              |       |       |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------|--------------|-------|-------|--|--|--|
| Categorical variableCategorical<br>thresholdHazards ratio<br>(95%CI)AICP-value f<br>threshold |                               |              |       |       |  |  |  |
| Serum<br>Calprotectin(SC)                                                                     | ≥1046 ng/ml                   | 2.7(1.3-5.6) | 309.2 | 0.007 |  |  |  |
| Albumin                                                                                       | <37 g/L                       | 2.5(1.1-5.6) | 306.5 | 0.03  |  |  |  |

**Table 6a**: Multivariable analysis for predictive factors for an aggressive disease course in patients with Inflammatory Bowel Diseases (n=83): final Cox proportional hazards model

**Table 6b**: Multivariable analysis for predictive factors for an aggressive disease course in patients with Ulcerative Colitis (n=45): final Cox proportional hazards model

|                            | Categorical variable analysis |                          |       |                           |  |  |
|----------------------------|-------------------------------|--------------------------|-------|---------------------------|--|--|
| Categorical<br>variable    | Categorical threshold         | Hazards ratio<br>(95%CI) | AIC   | P-value for<br>thresholds |  |  |
| Albumin                    | <37 g/L                       | 3.8(1.2-11.9)            | 148.0 | 0.02                      |  |  |
| C-reactive<br>protein(CRP) | >2.5mg/L                      | 2.6(0.7-9.6)             | 147.0 | 0.15                      |  |  |

**Table 6c**: Multivariable analysis for predictive factors for an aggressive disease course in patients with Crohn's disease (n=35): final Cox proportional hazards model

| Categorical variable analysis |                           |               |      |      |  |  |  |
|-------------------------------|---------------------------|---------------|------|------|--|--|--|
| Categorical variable          | P-value for<br>thresholds |               |      |      |  |  |  |
| C-reactive protein(CRP)       | >24mg/L                   | 2.7(1.0-7.4)  | 93.3 | 0.06 |  |  |  |
| Albumin                       | <26 g/L 2.6(0.8-9.1)      | 2.6(0.8-9.1)  | 91.9 | 0.13 |  |  |  |
| Serum Calprotectin            | >991ng/ml                 | 4.2(1.2-15.3) | 95.1 | 0.03 |  |  |  |



Figure 1: Serum Calprotectin levels in patients with Crohn's disease (CD), Ulcerative colitis (UC), Inflammatory bowel disease unclassified (IBDU), symptomatic controls (non-IBD) and healthy controls (HC)

Footnote: Boxplots represent median and inter-quartile ranges for serum calprotectin within each subcohort



Figure 2: Receiver operating curve analysis (ROC) of serum calprotectin (SC) and other blood based markers in differentiating Inflammatory bowel diseases (IBD) from non-IBD and ROC analysis of SC and faecal calprotectin (FC) (within 30 days) in discriminating Inflammatory bowel diseases (IBD) from non-IBD. Footnote: WCC:white cell count; CRP:C-reactive protein; Hb:Haemoglobin





Figure 3a: Kaplan Meier survival curves of disease course using blood biomarkers to predict outcomes in newly diagnosed Inflammatory Bowel Diseases (IBD). Single marker represents either or albumin<37 g/L or serum calprotectin  $\geq$  1046ng/ml. Dual markers represents a combination of both variables.





Figure 3b: Kaplan Meier survival curves of disease course using blood biomarkers to predict outcomes in newly diagnosed Crohn's disease (CD)

Footnote: '1 marker' represents either CRP>24mg/L or albumin<26 g/L or serum calprotectin >991 ng/ml. '2 or 3 marker' represents a combination of any 2 or 3 of the above mentioned variables.



Figure 3c: Kaplan Meier survival curves of disease course using blood biomarkers to predict outcomes in newly diagnosed Ulcerative Colitis (UC)

Footnote: Single marker represents either albumin<37 g/L or CRP >2.5mg/L. Dual markers represents all the categorical variables as a combined biomarker.



Figure 4: Correlation between log transformed serum calprotectin and neutrophil count in Inflammatory Bowel Diseases (IBD) versus controls (Non-IBD).

Supplementary Table 1: Disease outcomes in patients with Ulcerative colitis (UC) and Crohn's disease (CD).

| Diagnosi<br>s | Treatment<br>Escalation? | Age | Sex | Total follow<br>up time<br>(days) | Diagnosis to SC<br>sampling (days) | SC sampling to<br>Rx<br>escalation(days<br>) | Rx immediately prior<br>escalation | Treatment escalation                              |
|---------------|--------------------------|-----|-----|-----------------------------------|------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------------|
| UC            | Yes                      | 46  | М   | 126                               | 1                                  | 30                                           | Prednisolone                       | Azathioprine and 2nd course of Prednisolone       |
| UC            | Yes                      | 54  | М   | 374                               | 73                                 | 27                                           | 5ASA                               | Azathioprine and Prednisolone                     |
| UC            | Yes                      | 35  | F   | 547                               | -14                                | 316                                          | 5ASA                               | Azathioprine and Prednisolone                     |
| UC            | Yes                      | 33  | F   | 609                               | 18                                 | 67                                           | 5ASA                               | Azathioprine and Prednisolone                     |
| UC            | Yes                      | 53  | М   | 871                               | 2                                  | 47                                           | 5ASA                               | Azathioprine and Prednisolone                     |
| UC            | Yes                      | 20  | М   | 893                               | -14                                | 269                                          | 5ASA                               | Azathioprine and Prednisolone                     |
| UC            | Yes                      | 29  | М   | 201                               | 0                                  | 44                                           | Prednisolone                       | Ciclosporin and Azathioprine during 2nd admission |
| UC            | Yes                      | 19  | М   | 470                               | 2                                  | 43                                           | 5ASA                               | Ciclosporin, Prednisolone and Azathioprine        |
| UC            | Yes                      | 31  | М   | 781                               | -1                                 | 408                                          | 5ASA                               | Ciclosporin, Prednisolone and Azathioprine        |
| UC            | Yes                      | 34  | М   | 498                               | 37                                 | 225                                          | Azathioprine                       | Golilumab                                         |
| UC            | Yes                      | 33  | F   | 69                                | 41                                 | 26                                           | Azathioprine                       | Infliximab                                        |
| UC            | Yes                      | 26  | F   | 549                               | 8                                  | 44                                           | Azathioprine                       | Infliximab                                        |
| UC            | No                       | 35  | М   | 118                               | 0                                  | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 38  | F   | 132                               | 43                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 32  | М   | 145                               | 0                                  | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 32  | М   | 145                               | 0                                  | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 53  | М   | 345                               | 12                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 40  | М   | 367                               | 24                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 24  | F   | 410                               | 0                                  | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 27  | F   | 456                               | 57                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 37  | F   | 472                               | 78                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 48  | М   | 484                               | 68                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 41  | М   | 499                               | 0                                  | NA                                           | Azathioprine                       | No change in therapy                              |
| UC            | No                       | 57  | М   | 518                               | 23                                 | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 27  | М   | 575                               | -39                                | NA                                           | 5ASA                               | No change in therapy                              |
| UC            | No                       | 24  | F   | 578                               | 0                                  | NA                                           | 5ASA                               | No change in therapy                              |

| UC | No  | 58 | М | 604 | 75  | NA  | 5ASA                            | No change in therapy                                 |
|----|-----|----|---|-----|-----|-----|---------------------------------|------------------------------------------------------|
| UC | No  | 50 | М | 637 | 61  | NA  | 5ASA                            | No change in therapy                                 |
| UC | No  | 62 | М | 657 | 32  | NA  | 5ASA                            | No change in therapy                                 |
| UC | No  | 26 | М | 670 | 30  | NA  | No medications                  | No change in therapy                                 |
| UC | No  | 57 | F | 788 | 45  | NA  | 5ASA                            | No change in therapy                                 |
| UC | No  | 38 | М | 795 | 27  | NA  | 5ASA                            | No change in therapy                                 |
| UC | No  | 52 | М | 801 | 78  | NA  | 5ASA                            | No change in therapy                                 |
| UC | No  | 34 | М | 837 | -1  | NA  | Azathioprine                    | No change in therapy                                 |
| UC | Yes | 29 | М | 366 | 0   | 7   | IVMP and Ciclosporin            | Panproctocolectomy                                   |
| UC | Yes | 44 | М | 451 | 2   | 6   | MP and Prednisolone             | Panproctocolectomy                                   |
| UC | Yes | 21 | М | 126 | 13  | 35  | Prednisolone and<br>Ciclosporin | Subtotal colectomy                                   |
| UC | Yes | 59 | М | 433 | 5   | 1   | 5ASA                            | Subtotal colectomy                                   |
| UC | Yes | 43 | F | 602 | 25  | 323 | MP                              | Subtotal colectomy                                   |
| UC | Yes | 22 | М | 643 | 22  | 303 | 5ASA                            | Subtotal colectomy                                   |
| UC | Yes | 27 | F | 672 | 4   | 153 | 5ASA                            | Subtotal colectomy                                   |
| UC | Yes | 22 | М | 712 | 0   | 23  | 5ASA                            | Subtotal colectomy                                   |
| UC | Yes | 23 | F | 871 | 1   | 496 | 5ASA and Azathioprine           | Subtotal colectomy                                   |
| UC | Yes | 29 | М | 385 | -12 | 12  | Prednisolone and<br>Ciclosporin | Subtotal colectomy                                   |
| UC | Yes | 39 | М | 342 | 0   | 161 | MP                              | Vedolizumab                                          |
| CD | Yes | 42 | М | 602 | 1   | 413 | Azathioprine                    | Adalimumab                                           |
| CD | Yes | 27 | М | 852 | 0   | 311 | Azathioprine                    | Adalimumab                                           |
| CD | Yes | 27 | М | 870 | 0   | 614 | MP                              | Adalimumab                                           |
| CD | Yes | 18 | М | 358 | 44  | 275 | Infliximab                      | Azathioprine                                         |
| CD | Yes | 24 | F | 510 | 0   | 47  | Infliximab                      | Azathioprine                                         |
| CD | Yes | 25 | М | 454 | 0   | 91  | Prednisolone                    | Azathioprine and 2 <sup>nd</sup> course Prednisolone |
| CD | Yes | 19 | М | 525 | 35  | 27  | Prednisolone                    | Azathioprine and Infliximab                          |
| CD | Yes | 23 | М | 504 | 34  | 69  | 5ASA                            | Azathioprine and Prednisolone                        |
| CD | Yes | 27 | F | 644 | 11  | 566 | 5ASA                            | Azathioprine and Prednisolone                        |
| CD | Yes | 27 | F | 762 | 50  | 84  | MP and Infliximab               | Ileocaecal resection                                 |
| CD | No  | 29 | М | 768 | -2  | 6   | IVMP                            | Ileocaecal resection at index admission              |

| CD | Yes | 32 | М | 618 | 30   | 161 | MP             | Infliximab           |
|----|-----|----|---|-----|------|-----|----------------|----------------------|
| CD | Yes | 19 | F | 664 | 20   | 45  | MP             | Infliximab           |
| CD | Yes | 33 | F | 718 | 1    | 42  | Azathioprine   | Infliximab           |
| CD | Yes | 30 | М | 803 | -27  | 64  | Azathioprine   | Infliximab           |
| CD | Yes | 24 | М | 837 | 0    | 140 | Azathioprine   | Infliximab           |
| CD | No  | 41 | М | 150 | -4   | NA  | Azathioprine   | No change in therapy |
| CD | No  | 59 | F | 160 | -2   | NA  | Polymeric diet | No change in therapy |
| CD | No  | 31 | М | 177 | -113 | NA  | No medications | No change in therapy |
| CD | No  | 72 | М | 347 | 46   | NA  | No medications | No change in therapy |
| CD | No  | 29 | М | 408 | 52   | NA  | No medications | No change in therapy |
| CD | No  | 38 | М | 417 | 87   | NA  | No medications | No change in therapy |
| CD | No  | 29 | М | 506 | -18  | NA  | Azathioprine   | No change in therapy |
| CD | No  | 52 | М | 513 | 57   | NA  | 5ASA           | No change in therapy |
| CD | No  | 31 | М | 555 | 0    | NA  | Azathioprine   | No change in therapy |
| CD | No  | 29 | F | 582 | -36  | NA  | Azathioprine   | No change in therapy |
| CD | No  | 18 | М | 637 | 28   | NA  | No medications | No change in therapy |
| CD | No  | 57 | F | 719 | 33   | NA  | 5ASA           | No change in therapy |
| CD | No  | 40 | F | 721 | 18   | NA  | Azathioprine   | No change in therapy |
| CD | No  | 23 | М | 726 | 22   | NA  | No medications | No change in therapy |
| CD | No  | 19 | М | 781 | -6   | NA  | Azathioprine   | No change in therapy |
| CD | No  | 38 | F | 821 | 64   | NA  | No medications | No change in therapy |
| CD | No  | 36 | F | 914 | 76   | NA  | 5ASA           | No change in therapy |
| CD | Yes | 21 | М | 504 | 4    | 99  | MP             | Subtotal colectomy   |
| CD | Yes | 22 | F | 319 | -206 | NA  | Azathioprine   | No change in therapy |

Footnote: F: Female; M: Male; NA: Not applicable; 5ASA: 5-aminosalicylates; MP: mercaptopurine; IVMP: Intravenous methylprednisolone

Supplementary Table 2a: Clinical symptoms (Simple Clinical Colitis Activity Index) at recruitment in patients with Ulcerative Colitis (UC) and Inflammatory Bowel Disease-Unclassified (IBDU)

|           |          | General    |               | SCCAI Day | SCCAI Night | SCCAI   | SCCAI Blood |             |
|-----------|----------|------------|---------------|-----------|-------------|---------|-------------|-------------|
| Diagnosis | Rx naive | Well Being | Complications | BO        | BO          | Urgency | PR          | SCCAI Score |
| UC        | Y        | 2          | 0             | 0         | 0           | 1       | 3           | 6           |
| UC        | Ν        | 1          | 1             | 0         | 0           | 1       | 2           | 5           |
| UC        | Ν        | 1          | 0             | 1         | 1           | NA      | 3           | NA          |
| UC        | Y        | 1          | 0             | 1         | 0           | 1       | 0           | 3           |
| UC        | Y        | 1          | 0             | 0         | 0           | 1       | 2           | 4           |
| UC        | Ν        | 0          | 1             | 0         | 0           | 0       | 0           | 1           |
| UC        | Y        | 1          | 0             | 0         | 0           | 0       | 2           | 3           |
| UC        | Y        | 1          | 0             | 2         | 1           | 1       | 3           | 8           |
| UC        | Y        | 1          | 0             | 2         | 1           | 0       | 2           | 6           |
| UC        | Y        | 2          | 0             | 3         | 1           | 1       | 3           | 10          |
| UC        | Y        | 3          | 1             | 1         | 1           | 1       | 2           | 9           |
| UC        | Ν        | 2          | 0             | 2         | 1           | 1       | 3           | 9           |
| UC        | Ν        | 0          | 0             | 0         | 0           | 1       | 3           | 4           |
| UC        | Ν        | 0          | 0             | 0         | 0           | 0       | 0           | 0           |
| UC        | Ν        | 0          | 0             | 1         | 0           | 1       | 2           | 4           |
| UC        | Ν        | 1          | 0             | 2         | 1           | 1       | 2           | 7           |
| UC        | Ν        | 1          | 0             | 0         | 0           | 0       | 2           | 3           |
| UC        | Ν        | 0          | 0             | 0         | 1           | 2       | 0           | 3           |
| UC        | Y        | 2          | 0             | 3         | 2           | 1       | 3           | 11          |
| UC        | Y        | 1          | 0             | 3         | 0           | 3       | 3           | 10          |
| UC        | Ν        | 1          | 0             | 1         | 0           | 1       | 3           | 6           |
| UC        | Ν        | 1          | 0             | 1         | 2           | 1       | 3           | 8           |
| UC        | Y        | 2          | 0             | 0         | 2           | 1       | 2           | 7           |
| UC        | Y        | 1          | 0             | 2         | 0           | 1       | 3           | 7           |
| UC        | N        | NA         | NA            | NA        | NA          | NA      | NA          | NA          |
| UC        | N        | 1          | 0             | 3         | 1           | 1       | 3           | 9           |
| UC        | Y        | 1          | 0             | 0         | 0           | 1       | 0           | 2           |
| UC        | N        | 1          | 0             | 3         | 2           | 1       | 3           | 10          |
| UC        | Y        | 1          | 0             | 0         | 0           | 1       | 2           | 4           |

## American Journal of Gastroenterology

| UC   | Ν | 2 | 0 | 0  | 1  | 1 | 2 | 6  |
|------|---|---|---|----|----|---|---|----|
| UC   | Ν | 4 | 0 | 3  | 2  | 3 | 3 | 15 |
| UC   | Y | 2 | 0 | 3  | 2  | 3 | 3 | 13 |
| UC   | Y | 1 | 0 | 2  | 1  | 1 | 2 | 7  |
| UC   | Y | 1 | 1 | 0  | 0  | 0 | 3 | 5  |
| UC   | Ν | 0 | 0 | 0  | 0  | 1 | 3 | 4  |
| UC   | Y | 2 | 0 | NA | NA | 1 | 3 | NA |
| UC   | Ν | 1 | 0 | 0  | 0  | 0 | 1 | 2  |
| UC   | Y | 1 | 1 | 0  | 0  | 1 | 2 | 5  |
| UC   | Y | 1 | 0 | 2  | 0  | 1 | 3 | 7  |
| UC   | Y | 1 | 1 | 1  | 0  | 1 | 2 | 6  |
| UC   | Ν | 1 | 1 | 0  | 0  | 1 | 2 | 5  |
| UC   | Ν | 1 | 1 | 0  | 1  | 1 | 2 | 6  |
| UC   | Ν | 1 | 0 | 0  | 0  | 2 | 3 | 6  |
| UC   | Y | 3 | 0 | 1  | 1  | 1 | 2 | 8  |
| UC   | Ν | 2 | 0 | 1  | 2  | 2 | 3 | 10 |
| IBDU | Y | 0 | 0 | 0  | 0  | 0 | 2 | 2  |
| IBDU | Ν | 1 | 0 | 1  | 0  | 1 | 0 | 3  |
| IBDU | Y | 2 | 0 | 1  | 1  | 2 | 3 | 9  |

|           |          |             | General    | Abdominal |            | Abdominal |               |           |
|-----------|----------|-------------|------------|-----------|------------|-----------|---------------|-----------|
| Diagnosis | Rx naive | Weight loss | Well Being | Pain      | BO per day | mass      | Complications | HBI Score |
| CD        | Y        | Ν           | 0          | 0         | 2          | NA        | 0             | NA        |
| CD        | Ν        | Ν           | NA         | 1         | 11         | 0         | 1             | NA        |
| CD        | Y        | Y           | 1          | 0         | 1          | 0         | 1             | 3         |
| CD        | Y        | Y           | 1          | 0         | 1          | 0         | 0             | 2         |
| CD        | Ν        | Y           | 2          | 1         | 10         | 0         | 1             | 14        |
| CD        | Y        | Ν           | 1          | 3         | 9          | 0         | 0             | 13        |
| CD        | Y        | Y           | 2          | 2         | 5          | 1         | 0             | 10        |
| CD        | Y        | Ν           | 1          | 1         | 1          | 2         | 0             | 5         |
| CD        | Y        | Y           | 2          | 2         | 0          | 1         | 0             | 5         |
| CD        | Y        | Y           | 0          | 0         | 1          | 0         | 0             | 1         |
| CD        | Y        | Y           | 2          | 2         | 1          | 0         | 1             | 6         |
| CD        | Y        | Y           | 0          | 0         | 1          | 0         | 0             | 1         |
| CD        | Ν        | Ν           | 1          | 0         | 11         | 0         | 0             | 12        |
| CD        | Y        | Y           | NA         | 3         | 10         | 0         | 1             | NA        |
| CD        | Y        | Y           | 1          | 1         | 2          | 0         | 0             | 4         |
| CD        | Y        | Y           | 1          | 0         | 1          | 0         | 1             | 3         |
| CD        | Y        | Y           | NA         | NA        | NA         | NA        | NA            | NA        |
| CD        | Y        | Ν           | 0          | 2         | 1          | 3         | 0             | 6         |
| CD        | Ν        | Y           | 1          | 1         | 2          | 0         | 1             | 5         |
| CD        | Y        | Ν           | 1          | 1         | 2          | 0         | 2             | 6         |
| CD        | Y        | Y           | 1          | 2         | 4          | 0         | 0             | 7         |
| CD        | Ν        | Y           | 1          | 3         | 2          | 0         | 2             | 8         |
| CD        | Ν        | Y           | 1          | 0         | 5          | 0         | 1             | 7         |
| CD        | Y        | Y           | 2          | 2         | 10         | 0         | 2             | 16        |
| CD        | Y        | Y           | 1          | 2         | 7          | 0         | 1             | 11        |
| CD        | Y        | Y           | 1          | 1         | 10         | 0         | 0             | 12        |
| CD        | Y        | Y           | 2          | 2         | 8          | 0         | 0             | 12        |
| CD        | Y        | Ν           | 2          | 0         | 5          | 0         | 1             | 8         |
| CD        | Y        | Ν           | 2          | 2         | 7          | NA        | 2             | NA        |

Supplementary Table 2b: Clinical symptoms (Harvey Bradshaw Index) at recruitment in patients with Crohn's Disease (CD)

| CD | Y | Ν  | 0  | 0 | 0 | 0 | 2 | 2  |
|----|---|----|----|---|---|---|---|----|
| CD | Y | NA | NA | 0 | 1 | 0 | 0 | NA |
| CD | Y | NA | 1  | 3 | 3 | 0 | 2 | 9  |
| CD | Y | Ν  | 1  | 1 | 2 | 0 | 0 | 4  |
| CD | Y | N  | 0  | 0 | 4 | 0 | 0 | 4  |
| CD | Y | Y  | 1  | 3 | 2 | 0 | 0 | 6  |

Footnote: Rx naïve: Treatment naïve status at sampling; SC: serum calprotectin; BO: Bowel habits; SCCAI: Simple clinical colitis activity index; HBI: Harvey Bradshaw Index; NA: Not available; Y: yes; N: No

, SC: seil

| Supplementary Table 3: Summary of investigations undertaken in the control cohort |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

|           |     |     | Faecal Calprotectin |             |           |
|-----------|-----|-----|---------------------|-------------|-----------|
| Diagnosis | Age | Sex | (µg/g)              | Colonoscopy | Radiology |
| HC        | 47  | Μ   | NA                  | no          | no        |
| HC        | 42  | М   | NA                  | no          | no        |
| HC        | 32  | М   | NA                  | no          | no        |
| HC        | 30  | М   | NA                  | no          | no        |
| HC        | 31  | F   | NA                  | no          | no        |
| HC        | 24  | F   | NA                  | no          | no        |
| HC        | 33  | М   | NA                  | no          | no        |
| HC        | 34  | F   | NA                  | no          | no        |
| HC        | 32  | F   | NA                  | no          | no        |
| HC        | 30  | М   | NA                  | no          | no        |
| HC        | 32  | F   | NA                  | no          | no        |
| HC        | 54  | F   | NA                  | no          | no        |
| HC        | 39  | М   | NA                  | no          | no        |
| HC        | 43  | М   | NA                  | no          | no        |
| HC        | 59  | F   | NA                  | no          | no        |
| HC        | 35  | F   | NA                  | no          | no        |
| HC        | 25  | F   | NA                  | no          | no        |
| HC        | 20  | F   | NA                  | no          | no        |
| HC        | 31  | М   | NA                  | no          | no        |
| HC        | 19  | F   | NA                  | no          | no        |

| HC      | 64 | F | NA  | no  | no  |
|---------|----|---|-----|-----|-----|
| HC      | 49 | F | NA  | no  | no  |
| HC      | 24 | М | NA  | no  | no  |
| HC      | 30 | М | NA  | no  | no  |
| HC      | 30 | Μ | NA  | no  | no  |
| НС      | 33 | Μ | NA  | no  | no  |
| HC      | 34 | Μ | NA  | no  | no  |
| Non-IBD | 31 | F | 19  | no  | no  |
| Non-IBD | 22 | М | 19  | yes | no  |
| Non-IBD | 33 | F | 19  | no  | yes |
| Non-IBD | 21 | М | 19  | yes | yes |
| Non-IBD | 31 | М | 19  | yes | no  |
| Non-IBD | 21 | М | 19  | no  | no  |
| Non-IBD | 29 | F | 19  | yes | no  |
| Non-IBD | 37 | F | 19  | yes | no  |
| Non-IBD | 28 | Μ | NA  | yes | no  |
| Non-IBD | 28 | F | NA  | yes | no  |
| Non-IBD | 33 | F | NA  | yes | no  |
| Non-IBD | 27 | F | 19  | no  | no  |
| Non-IBD | 23 | F | 30  | yes | yes |
| Non-IBD | 33 | F | 19  | no  | no  |
| Non-IBD | 29 | F | NA  | yes | no  |
| Non-IBD | 23 | F | 19  | yes | no  |
| Non-IBD | 44 | F | NA  | yes | no  |
| Non-IBD | 41 | Μ | NA  | no  | yes |
| Non-IBD | 28 | F | 120 | yes | yes |
| Non-IBD | 26 | F | 19  | yes | yes |
| Non-IBD | 33 | Μ | 19  | yes | no  |
| Non-IBD | 41 | F | 19  | no  | no  |
| Non-IBD | 19 | F | 19  | yes | yes |

| Non-IBD | 22 | F | 19  | yes | yes |
|---------|----|---|-----|-----|-----|
| Non-IBD | 29 | F | 30  | yes | no  |
| Non-IBD | 39 | F | 19  | yes | yes |
| Non-IBD | 34 | F | 210 | yes | yes |
| Non-IBD | 28 | F | 80  | yes | no  |
| Non-IBD | 23 | Μ | 19  | yes | yes |
| Non-IBD | 29 | F | NA  | yes | no  |
| Non-IBD | 21 | Μ | 19  | yes | no  |
| Non-IBD | 22 | Μ | 19  | no  | no  |
| Non-IBD | 44 | Μ | 470 | yes | yes |
| Non-IBD | 39 | Μ | 19  | yes | no  |
| Non-IBD | 32 | М | NA  | yes | no  |
| Non-IBD | 30 | F | 160 | yes | no  |
| Non-IBD | 37 | F | 190 | yes | no  |
| Non-IBD | 36 | Μ | NA  | yes | no  |
| Non-IBD | 34 | F | 110 | yes | yes |
| Non-IBD | 43 | М | NA  | yes | no  |
| Non-IBD | 45 | Μ | NA  | yes | no  |
| Non-IBD | 23 | Μ | 19  | no  | no  |
| Non-IBD | 41 | Μ | NA  | yes | yes |
| Non-IBD | 21 | Μ | 19  | no  | no  |
| Non-IBD | 20 | F | 19  | yes | no  |
| Non-IBD | 20 | F | 19  | yes | no  |

Footnote: HC: Healthy lab volunteers; Non-IBD: Symptomatic controls; M: Male; F: Female; NA: Not available
# Page 71 of 73

| Section & Topic   | No          | Item                                                                                                  | Reported on page # |
|-------------------|-------------|-------------------------------------------------------------------------------------------------------|--------------------|
|                   |             |                                                                                                       |                    |
| TITLE OR ABSTRACT |             | Blood-based Diagnostic and Prognostic Models in IBD: The Utility of Serum Calprotectin                | 1                  |
|                   | 1           | Identification as a study of diagnostic accuracy using at least one measure of accuracy               | 6 and 7            |
|                   |             | (such as sensitivity, specificity, predictive values, or AUC)                                         |                    |
| ABSTRACT          |             |                                                                                                       |                    |
|                   | 2           | Structured summary of study design, methods, results, and conclusions                                 | 2 and 3            |
|                   |             | (for specific guidance, see STARD for Abstracts)                                                      |                    |
| INTRODUCTION      |             |                                                                                                       |                    |
|                   | 3           | Scientific and clinical background, including the intended use and clinical role of the index test    | 4 and 5            |
|                   | 4           | Study objectives and hypotheses                                                                       | 4 and 5            |
| METHODS           |             |                                                                                                       | ~                  |
| Study design      | 5           | Whether data collection was planned before the index test and reference standard                      | 6                  |
| Dauticia ante     | ~           | The sector for the sector study or after (retrospective study)                                        | C                  |
| Participants      | 0<br>7      | Eligipility criteria                                                                                  | D<br>C             |
|                   | /           | (such as symptoms, results from previous tests, inclusion in registry)                                | б                  |
|                   | Q           | (Such as symptoms, results from previous tests, inclusion in registry)                                | 6                  |
|                   | 0<br>Q      | Whether participants formed a consecutive, random or convenience series                               | 6                  |
| Test methods      | 9<br>10a    | Index test in sufficient detail to allow replication                                                  | 6                  |
| rest methods      | 10a<br>10h  | Reference standard in sufficient detail to allow replication                                          | 6                  |
|                   | 100         | Rationale for choosing the reference standard (if alternatives evict)                                 | 6                  |
|                   | 17a         | Definition of and rationale for test positivity cut-offs or result categories                         | 6                  |
|                   | 120         | of the index test, distinguishing pre-specified from exploratory                                      | 0                  |
|                   | 12b         | Definition of and rationale for test positivity cut-offs or result categories                         | 6                  |
|                   |             | of the reference standard, distinguishing pre-specified from exploratory                              | ·                  |
|                   | 13a         | Whether clinical information and reference standard results were available                            | 7                  |
|                   |             | to the performers/readers of the index test                                                           |                    |
|                   | 13b         | Whether clinical information and index test results were available                                    | 7                  |
|                   |             | to the assessors of the reference standard                                                            |                    |
| Analysis          | 14          | Methods for estimating or comparing measures of diagnostic accuracy                                   | 7                  |
|                   | 15          | How indeterminate index test or reference standard results were handled                               | 7                  |
|                   | 16          | How missing data on the index test and reference standard were handled                                | 7                  |
|                   | 17          | Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory     | 7                  |
|                   | 18          | Intended sample size and how it was determined                                                        | 7                  |
| RESULTS           |             |                                                                                                       |                    |
| Participants      | 19          | Flow of participants, using a diagram                                                                 | NA                 |
|                   | 20          | Baseline demographic and clinical characteristics of participants                                     | 8                  |
|                   | <b>21</b> a | Distribution of severity of disease in those with the target condition                                | 8                  |
|                   | 21b         | Distribution of alternative diagnoses in those without the target condition                           | 8                  |
|                   | 22          | Time interval and any clinical interventions between index test and reference standard                | 10                 |
| Test results      | 23          | Cross tabulation of the index test results (or their distribution)                                    | 8                  |
|                   |             | by the results of the reference standard                                                              | ~                  |
|                   | 24          | Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)               | 8                  |
|                   | 25          | Any adverse events from performing the index test or the reference standard                           | NA                 |
| DISCUSSION        | ~~          |                                                                                                       | 12                 |
|                   | 26<br>27    | Study initiations, including sources of potential blas, statistical uncertainty, and generalisability | 13                 |
| ОТНЕР             | 21          | implications for practice, including the intended use and clinical role of the index test             | 15                 |
|                   |             |                                                                                                       |                    |
|                   | 70          | Registration number and name of registry                                                              | 6                  |
|                   | 20<br>20    | Where the full trudy protocol can be accessed                                                         | υ                  |
|                   | 27<br>20    | Sources of funding and other support, role of funders                                                 | 11/A<br>15         |
|                   | 50          | ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901                                          | 1.5                |





## STARD 2015

### AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

#### EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition**. This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

#### DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

