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ON THE MAGNITUDES OF COMPACT SETS IN EUCLIDEAN

SPACES

JUAN ANTONIO BARCELÓ AND ANTHONY CARBERY

Abstract. The notion of the magnitude of a metric space was introduced

by Leinster in [11] and developed in [16], [12], [17], [20] and [13], but the

magnitudes of familiar sets in Euclidean space are only understood in relatively
few cases. In this paper we study the magnitudes of compact sets in Euclidean

spaces. We first describe the asymptotics of the magnitude of such sets in both

the small and large-scale regimes. We then consider the magnitudes of compact
convex sets with nonempty interior in Euclidean spaces of odd dimension,

and relate them to the boundary behaviour of solutions to certain naturally
associated higher order elliptic boundary value problems in exterior domains.

We carry out calculations leading to an algorithm for explicit evaluation of the

magnitudes of balls, and this establishes the convex magnitude conjecture of
Leinster and Willerton [12] in the special case of balls in dimension three. In

general we show that the magnitude of an odd-dimensional ball is a rational

function of its radius. In addition to Fourier-analytic and PDE techniques, the
arguments also involve some combinatorial considerations.

1. Introduction

Motivated by considerations of a category-theoretic nature, Leinster [11] has intro-
duced the notion of the magnitude of a metric space. Magnitude is an important
new numerical invariant of a metric space which shares some of the more abstract
properties of the Euler characteristic of a category (or of a topological space), and
indeed both can be seen as special cases of the notion of the Euler characteristic or
magnitude of an enriched category. In particular, the inclusion-exclusion principle
enjoyed by the Euler characteristic provides important motivation for the hoped-
for properties of magnitude. More generally, magnitude is designed to capture the
“essential size” of a metric space in a more subtle way than cruder measures such as
cardinality or diameter, and at the same time it will also contain further significant
geometric information concerning the space. For a much more detailed discussion
of these issues see [11], [12], [20] and [13].

Leinster’s definition of the magnitude of a finite metric space bears close resem-
blance to notions of a potential-theoretic nature, and Meckes [16] and [17] has de-
veloped this perspective to the point where a tractable definition of the magnitude
of a positive-definite compact metric space can now be given in terms analogous to
those of classical capacity. This provides the starting point for our investigations.

Before describing our results, we give a little more informal background on magni-
tude in order that our contributions can be placed in context.

Date: 9th July 2015, revised 13th July 2016.
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2 JUAN ANTONIO BARCELÓ AND ANTHONY CARBERY

1.1. Definitions of magnitude and connection with capacity. Given a finite
metric space (X, d), Leinster [11] defined its magnitude as the value

|X| =
∑
x∈X

w(x)

whenever w : X → R satisfies ∑
y∈X

e−d(x,y)w(y) = 1

for all x ∈ X.

It is easy to check that any two such w will give the same value for the magnitude,
and if no such w exists we declare the magnitude to be undefined. Under the
mild additional condition that X be positive-definite (meaning that the matrix
(e−d(x,y))x,y∈X is positive-definite), its magnitude is defined, see [11], [16] and [17].
Finite subsets of Euclidean spaces are always positive-definite, [11]. It is easy to
check (see below for the argument) that |∅| = 0, |{x}| = 1 and that if XN is an
N -point space consisting of the vertices of a simplex in Rn (with n ≥ N − 1) which
are all equidistant t from one another, then

(1) |XN | =
N

1 + (N − 1)e−t
.

We describe a compact metric space as positive-definite if every finite subset is
positive-definite, and the magnitude of a compact positive-definite metric space
(X, d) has been defined [16] as

|X| = sup{|Ξ| : Ξ a finite subset of X}.
(Once again, any compact subset of a Euclidean space is positive-definite.)

Bearing in mind Leinster’s definition, it is natural to consider the class of finite
signed Borel measures µ on a compact positive-definite metric space X, and for
such a µ introduce its potential function Φµ given by

Φµ(x) :=

∫
X

e−d(x,y)dµ(y).

If there is such a finite signed Borel measure µ on X satisfying

Φµ(x) =

∫
X

e−d(x,y)dµ(y) ≡ 1 on X,

then µ is called a weight measure for X. It is known ([16], [17]) that if X is compact
and positive-definite, then |X| = µ(X) for any weight measure µ.

If we take X = [−R,R] ⊆ R with the usual metric, then one simply checks using
integration by parts that, with dx denoting Lebesgue measure on R, 1

2 (δ−R + δR +
dx|[−R,R]) is a weight measure for X, and hence |[−R,R]| = R + 1. (See [11] and
[17].) This is the only example of a nontrivial compact convex set in a Euclidean
space whose magnitude was hitherto known.

In nearly all examples for which the magnitude is known explicitly one can fairly
easily identify a weight measure; in particular when the metric space X enjoys a
lot of symmetry one expects a weight measure to reflect this symmetry and this
leads to a limited range of possibilities. For example, in the case of the simplex
mentioned above, we just set w(y) = a for all y and observe that the equation
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y∈X e

−d(x,y)w(y) = 1 becomes a + (N − 1)e−ta = 1, leading to (1). For more

examples see [11], [12], [20]. Our approach here is different and is motivated by
connections with differential equations.

There is a clear analogy between magnitude and the notion of capacity as developed
in classical potential theory, and which we now describe in a very informal manner.
A possible definition of the α-capacity of a compact metric space is

capα(X) = supµ(X)

where the sup is taken over all positive finite Borel measures µ on X such that∫
X

d(x, y)−αdµ(y) ≤ 1 on X.

The study of the potentials
∫
X
d(x, y)−αdµ(y) and the associated α-capacities has

a long and distinguished history. When we are in Euclidean space Rn with the
usual metric, we can take advantage of the Fourier transform to characterise the
α-capacity of a compact subset X for 0 < α < n as

capα(X) = cn,α inf

{∫
Rn

|ξ|n−α|f̂(ξ)|2dξ : f ≥ 1 on X

}
where cn,α is a certain dimensional constant and ̂ denotes the Fourier transform.
See for example [1] for a thorough and detailed discussion of potential theory and
capacity in the Euclidean setting.

Meckes in [17] develops the analogy between magnitude and capacity beyond the
formal level, and gives an extremal characterisation of magnitude in some generality.
In the case of compact sets X in Euclidean space Rn this characterisation can be
realised as

(2) |X| = 1

n!ωn
inf
{
‖f‖2H(n+1)/2(Rn) : f ∈ H(n+1)/2(Rn), f ≡ 1 on X

}
where ωn is the volume of the unit ball in Rn and Hm(Rn) is the Sobolev space
of functions whose derivatives of order up to m are in L2(Rn). More precisely,
Hm(Rn) is the space of Bessel potentials of order m, and its norm is given by

‖f‖2Hm(Rn) := ‖(I −∆)m/2f‖2L2(Rn).

(There are many different – but equivalent – norms on the space Hm(Rn) which
are regularly employed in the literature, especially when m is an integer. We
emphasise that throughout this paper, we exclusively use the definition above.)
Note that when m = (n + 1)/2 > n/2, functions in Hm are continuous by the
Sobolev embedding theorem so the prescription f ≡ 1 on X makes sense pointwise.

One can informally motivate this result of Meckes in line with classical potential
theory as follows. Adopting the standard convention from Fourier analysis – which
differs from that used by Meckes in [16] and [17] – that the Fourier transform is
given by

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx,

then it defines an isometry on L2, and we have

(3) ê−|·|(ξ) = n!ωn
(
1 + 4π2|ξ|2

)−n+1
2 .
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(See for example Stein, [18].) So if µ is a weight measure for X ⊆ Rn we can extend
it to be a measure on the whole of Rn in the canonical way, Φµ becomes defined
on all of Rn and we have Φµ(x) = 1 on X. On the other hand, by taking Fourier
transforms,

Φ̂µ(ξ) = n!ωn
(
1 + 4π2|ξ|2

)−n+1
2 µ̂(ξ).

Therefore

µ(X) =

∫
X

Φµ(x)dµ(x) =

∫
Rn

∫
Rn

e−|x−y|dµ(y)dµ(x)

=

∫
Rn

n!ωn
(
1 + 4π2|ξ|2

)−n+1
2 |µ̂(ξ)|2dξ

=
1

n!ωn

∫
Rn

|Φ̂µ(ξ)|2
(
1 + 4π2|ξ|2

)n+1
2 dξ

and this last expression is exactly 1
n!ωn
‖Φµ‖2H(n+1)/2(Rn)

.

It is easy to see using Plancherel’s theorem and the binomial theorem that when m
is an integer the inner product 〈·, ·〉Hm(Rn) corresponding to the Hm norm is given
by

(4) 〈f, g〉Hm(Rn) :=

m∑
j=0

(
m

j

)∫
Rn

Djf ·Djg

where Djf = ∆j/2f for j even and Djf = ∇∆(j−1)/2f for j odd. We shall make
systematic use of this in what follows.

One should note that although the right-hand side of equation (2) apparently de-
pends upon the Euclidean space in which X sits, the original definition of the
magnitude of X is an intrinsic metric invariant, and so formula (2) will hold for
whatever Euclidean space Rn in which we can embed X.

1.2. Magnitude and geometric invariants. It is perhaps not a priori clear why,
despite its ubiquity, the exponential function s 7→ e−s is singled out to appear in the
definition of magnitude in composition with the metric. Ultimately the reason for
this is that its key property of converting addition to multiplication distinguishes
it as the (essentially) unique function Ψ such that, if Ψ(d(x, y)) is the kernel of the
potential function, then the magnitude of a finite metric space (as defined via Ψ)
and the Euler characteristic of a finite category share a common generalisation in
the Euler characteristic or magnitude of an enriched category. In particular, with
Ψ(s) = e−s, the triangle inequality gives us

Ψ(d(x, y)) ≥ Ψ(d(x, z))Ψ(d(z, y))

for all x, y, z ∈ X; this inequality is to be thought of as analogous to the category-
theoretic composition of a map from x to z with a map from z to y to obtain a
map from x to y. For more details see [11].

In the category of finite sets, magnitude is just cardinality, which obviously satisfies
the familiar inclusion-exclusion principle

#(A ∪B) + #(A ∩B) = #(A) + #(B).
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Similarly, in the category of finite simplicial complexes, the classical Euler charac-
teristic χ can be characterised by χ(∅) = 0, χ({x}) = 1 and

χ(A ∪B) + χ(A ∩B) = χ(A) + χ(B).

However, magnitude in the setting of finite metric spaces is manifestly not finitely
additive as the example of the simplex with equidistant vertices, (1), indicates. Nev-
ertheless, formula (1) tells us that as t→∞, the magnitude of XN does asymptot-
ically satisfy the inclusion-exclusion principle since |XN | approaches N as t →∞.
More generally if (X, d) is any finite metric space and if we let tX = (X, td) for
t > 0, it is known (see [11]) that |tX| → #X as t→∞, and so inclusion-exclusion
holds in an asymptotic sense for the class of finite metric spaces. On the other hand,
if we consider the (admittedly somewhat limited) class K of compact convex sets in
R, then if A,B ∈ K are such that A∪B ∈ K, we have the exact inclusion-exclusion
identity

|A ∪B|+ |A ∩B| = |A|+ |B|
for magnitude (since the compact interval [a, b] has magnitude 1 + (b− a)/2 as we
have seen above). These considerations lead one to hope that magnitude in general
will satisfy the inclusion-exclusion principle in some asymptotic sense, and perhaps
exactly so under certain more restricted circumstances – such as in the presence
of convexity. (One may remark that the classical theory of capacity of compact
convex sets is richer than the general theory, and from the category-theoretic point
of view convex sets are natural in so far as the path of minimal distance between
any two points is contained in the set.)

Examples of metric spaces in which there is a lot of symmetry, and therefore where
it is possible to evaluate the magnitude directly, yield further insight into some of
the geometric characteristics which magnitude might capture. In analogy with the
calculation for the simplex above, if X is a compact metric space and G is a compact
group with Haar measure ν, acting transitively and isometrically on X, then the
only sensible candidate for a weight measure for tX = (X, td) should have constant
density λa(t) (for some λ > 0) where a(t)

∫
G
e−td(x,gy)dν(g) = 1 (the integral is

independent of x and y). So the magnitude of tX should be

|tX| = ν(G)∫
G
e−td(x,gy)dν(g)

.

Exact evaluation or asymptotic analysis of such expressions as t → ∞ has led to
the following results:

Theorem A (Willerton, [20].) Let X be a two-dimensional homogeneous compact
manifold. Then

|tX| = 1

2π
Area(X)t2 + χ(X) +O(t−2)

as t→∞, where χ is the classical Euler characteristic.

Theorem B (Willerton, [20].) Let n ≥ 1. Then there is an explicit formula for
|tSn| with its geodesic metric, which yields

|tSn| = 1

n!ωn
Voln(Sn)tn +

n+ 1

6n!ωn
tsc(Sn)tn−2 + · · ·+ χ(Sn) +O(e−t)

as t → ∞, where Voln denotes n-dimensional volume, χ is the classical Euler
characteristic and tsc is the total scalar curvature.
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(Note that χ(Sn) is 2 for n even and 0 for n odd.) Willerton also has formulae for
the magnitude of spheres in Euclidean spaces with the subspace metric which are
explicit when n = 1 and 2 and give the first few terms in the asymptotic expansion
as t → ∞ for larger values of n. In addition, he has obtained the first four terms
in the asymptotic expansion for a general n-dimensional homogeneous compact
manifold.

Together with the result that for a nonempty compact interval I ⊆ R we have

|tI| = 1

2
Length(I)t+ χ(I)

(where χ(I), the Euler characteristic of I, equals 1), these results of Willerton sug-
gest that t 7→ |tX| should have a polynomial flavour as t→∞, with the coefficients
of the polynomial part encapsulating important geometric information concerning
X. Combined with the results of numerical calculations [19] and some parallel re-
sults when the l1-metric is used instead of the usual metric (see [11]), they provide
evidence for the following conjectures of Leinster and Willerton from [12]:

Conjecture 1 (Leinster–Willerton). For suitable (i.e. so that perimeter and clas-
sical Euler characteristic are at least defined) compact X ⊆ R2 we have, as t→∞,

|tX| = 1

2π
Area(X)t2 +

1

4
Perim(X)t+ χ(X) + o(1).

Here we see that intermediate-dimensional geometrical characteristics (in this case
the perimeter) of X are expected to play a role. We shall not be directly concerned
with Conjecture 1 in the current paper, but will instead focus on the following,
known as the convex magnitude conjecture of Leinster and Willerton, [12]:

Conjecture 2 (Leinster–Willerton). Suppose X ⊆ Rn is compact and convex.
Then t 7→ |tX| is a polynomial of degree n and moreover

(5) |tX| = Vol(X)

n!ωn
tn +

Surf(∂X)

2(n− 1)!ωn−1
tn−1 + · · ·+ 1 =

n∑
i=0

1

i!ωi
Vi(X)ti

where Vi(X) is the i’th intrinsic volume of X and ωi is the volume of the unit ball
in Ri.

The intrinsic volumes Vi are classical integral-geometric invariants defined on the
class of compact convex sets K in Euclidean space, and Vi(X) encapsulates the
quantitative i-dimensional information concerningX. In particular we have Vi(tX) =
tiVi(X). Indeed, Vn is ordinary volume, Vn−1 is half the surface area, and Vi for
1 ≤ i ≤ n − 2 captures the i-dimensional information on the boundary ∂X, while
V0(X) = 1 for nonempty X and V0(X) = 0 when X is empty. Each Vi is a valuation
on K, which means that Vi(∅) = 0, and if A,B ∈ K are such that A ∪B ∈ K, then
we have the inclusion-exclusion identity

Vi(A ∪B) + Vi(A ∩B) = Vi(A) + Vi(B).

For more detail see [10]. So the convex magnitude conjecture implies in particular
that magnitude is a valuation on K. On the other hand, it is known by Hadwiger’s
theorem (see again [10]) that any valuation on K which is continuous with respect to
the Hausdorff metric and which is invariant under Euclidean motions must be given
by a linear combination of the intrinsic volumes. It is also known (see [14], [15]) that
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a valuation which is translation-invariant and monotone is necessarily continuous.
Clearly magnitude is invariant under Euclidean motions and is monotone, so the
convex magnitude conjecture is true if and only if magnitude is a valuation and the
conjecture is true for a suitable family of compact convex sets – such as the closed
balls – which serves to normalise the precise coefficients of the polynomial arising.
It is therefore of considerable interest to determine the validity of the conjecture in
the special case of closed balls in Rn, and this issue is the main focus of the present
paper.

On the other hand, one does not see the inclusion-exclusion principle arising in
classical potential theory, so perhaps a certain amount of caution is in order in
approaching this issue.

To fix ideas, the convex magnitude conjecture predicts that the magnitude of the
closed ball BR of radius R in Rn will be:

n = 1 : R+ 1

n = 2 :
R2

2!
+
πR

2
+ 1

n = 3 :
R3

3!
+R2 + 2R+ 1

n = 4 :
R4

4!
+
πR3

8
+

3R2

2
+

3πR

4
+ 1

n = 5 :
R5

5!
+
R4

9
+

2R3

3
+ 2R2 +

8R

3
+ 1

n = 6 :
R6

6!
+
πR5

128
+

5R4

24
+

5πR3

16
+

5R2

2
+

15πR

16
+ 1

n = 7 :
R7

7!
+
R6

225
+
R5

20
+
R4

3
+

4R3

3
+ 3R2 +

16R

5
+ 1,

etc.

1.2.1. What is currently known about the convex magnitude conjecture. It is clear
from (2) that t 7→ |tX| is an increasing function of t when X is compact and convex.
Meckes [17] has shown that this function is continuous on (0,∞), and Leinster [11]
(see also Meckes [17]) has shown that for arbitrary compact sets in Rn we have

|X| ≥ Vol(X)

n!ωn
.

When n = 1 the conjecture is true (see above), but when n ≥ 2, methods based
entirely on symmetry – and indeed on weight measures – will not suffice to resolve
it, and instead we turn to techniques of differential equations.

We remark that a natural analogue of the convex magnitude conjecture does
hold for convex bodies in Rn when instead of the ell2 norm we use the `n1 norm.
See Theorem 4.6(2) of [13].

1.3. Main results of the present paper. We shall first establish that the asymp-
totics as t → 0 and t → ∞ which are predicted by the Leinster–Willerton convex
magnitude conjecture do indeed hold, and in fact do so more generally for nonempty
compact sets. That is, we prove:
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Theorem 1. Let X be a nonempty compact set in Rn. Then

|RX| → 1 as R→ 0

and

R−n|RX| → Vol(X)

n!ωn
as R→∞.

As a consequence of the first statement we have that t 7→ |tX| is continuous also at
t = 0.

We shall next be concerned with the validity of the convex magnitude conjecture
for the class of convex bodies in Euclidean space Rn, that is, compact convex sets
with nonempty interior. Our starting point will be Meckes’ formula (2) for the
magnitude of such a convex body and we shall try to relate this to the formula (5)
appearing in the convex magnitude conjecture.

Meckes has already observed [17] that the extremiser in (2) exists and is unique,
and also satisfies the associated Euler–Lagrange equation

(6) (I −∆)(n+1)/2f = 0 weakly on Rn \X
which, when n is odd, is an elliptic differential (as opposed to pseudodifferential)
equation. In order to be able to work with differential rather than pseudodifferential
equations we shall from Section 7 onwards assume that n is odd. We shall first show
that there is a unique member of H(n+1)/2(Rn) which is a solution to (6) and which
is identically 1 on X. This solution therefore extremises the energy ‖f‖2

H(n+1)/2(Rn)

over all f ∈ H(n+1)/2(Rn) with f ≡ 1 on X.

The convex magnitude conjecture predicts a single term corresponding to the vol-
ume of X, with the remaining terms mainly relating to the boundary ∂X. Our
next task is therefore to develop a formula for the extremal energy expressed in
terms of Vol(X) and the values of the extremising function near ∂K. This is car-
ried out in order to highlight the contribution to the extremal energy arising from
the boundary of X and hence ultimately to facilitate a comparison between (2) and
(5). The formula is analogous to classical representations of capacities as boundary
integrals of functions of solutions to the associated partial differential equations,
and it appears in Theorem 5 below.

We then turn to the problem of explicit identification of the extremiser in the case
that X is a nontrivial closed ball. This is achieved by using spherical symmetry to
reduce matters to consideration of certain ordinary differential equations.

Finally, having obtained the extremiser, we use our formula from Theorem 5 to
obtain an explicit evaluation of the magnitude of a closed ball. (Strictly speaking
we could in principle avoid the use of our formula at this stage and instead simply
calculate ‖f‖2

H(n+1)/2(Rn)
directly for the extremiser, but we wish to try to identify

precisely the contributions of the boundary of the ball to its magnitude, and in
any case application of the formula is fairly direct.) Leinster and Meckes [13] have
recently developed an alternate approach to calculation of ‖f‖2

H(n+1)/2(Rn)
which

bypasses our Theorem 5, but which does not emphasise the role of the boundary.
See the remark at the end of Section 5.

In fact, the explicit identification of the extremiser is not an entirely straightforward
process. Our procedures amount to giving an algorithm for its identification in any
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odd dimension, and thus yield an algorithm for the formula for the magnitude of a
closed ball in any odd dimension. The formulae become more complex as dimension
increases and so we provide explicit versions only in dimensions 1, 3, 5 and 7.

The first upshot of these calculations is that the Leinster–Willerton convex magni-
tude conjecture is true for closed balls in three dimensions:

Theorem 2. The magnitude of the closed ball of radius R > 0 in R3 is

R3

3!
+R2 + 2R+ 1.

However, in higher odd dimensions the magnitude is not a polynomial in the radius,
thus disproving the convex magnitude conjecture in general. In dimension five we
have:

Theorem 3. The magnitude of the closed ball of radius R > 0 in R5 is

R5

5!
+

3R5 + 27R4 + 105R3 + 216R2 + 72

24(R+ 3)
.

Note that when R = 0 this expression takes the value 1, and as R→∞ the leading
term is R5/5!, but the formula does not agree with the conjectured value of

R5

5!
+
R4

9
+

2R3

3
+ 2R2 +

8R

3
+ 1.

If one expands the expression for the magnitude asymptotically for R > 3 one
obtains

R5

5!
+
R4

8
+

3R3

4
+

17R2

8
+

21R

8
+

9

8
+O(

1

R
)

as R → ∞. (Notice that some, but not all, of the coefficients here differ by a
multiplicative factor of 9/8’ths from the conjectured values.) The role of the value
R = −3 remains mysterious.

Although the magnitude is not a polynomial for odd n ≥ 5, it is the next best
thing:

Theorem 4. The magnitude of the closed ball of radius R > 0, in a Euclidean
space Rn of odd dimension, is a rational function of R with rational coefficients.

It seems possible that one might be able to take the coefficients in the polynomials
featuring in the rational function to be nonnegative, but this has not been verified
in general. One can show that the denominator can be taken to be a polynomial of

degree strictly less than 3n2−2n+7
8 .

There remain the tantalising questions of whether magnitude is a valuation in
dimension three – and indeed whether the convex magnitude conjecture is true in
general in dimension three – and of what happens in even dimensions, especially
dimensions two and four. Is |RX| a rational function of R for general compact
convex bodies X in odd dimensions? If so, do the coefficients of the polynomials
have a geometric significance? (See Section 10 for a brief discussion of cuboids and
ellipsoids in three-dimensional space.)
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1.4. Structure of the paper. The paper falls into three main parts.

In the first part, in Section 2, we begin by giving the asymptotic results of Theorem
1, based on little more than elementary Fourier analysis.

In the second part we develop the general PDE theory for our problem. In Section
3 we set out the basic facts about Sobolev spaces which we shall need. In Section
4 we formulate the variational problem for whose solution we develop a formula in
Section 5.

In the third part we focus on the spherically symmetric situation. In Section 6 we
give some combinatorial preliminaries. In Section 7 we find the general solution of
the PDE problem from Section 4 in the spherically symmetric case. In Section 8
we fit the boundary conditions and develop an algorithm to identify our explicit
solution and its magnitude. The discussion here leads to the proof of Theorem 4
in Subsection 8.4. In Section 9 we implement the algorithm in dimensions 1, 3, 5
and 7, leading to Theorems 2 and 3.

Finally, in Section 10 we make some concluding remarks.

1.5. Acknowledgements. The authors would like to thank Tom Leinster for in-
troducing them to the fascinating and beautiful subject of magnitude, and for pa-
tiently and carefully explaining its category-theoretic origins in a series of seminars
and other discussions at the University of Edinburgh. They would also like to thank
Mark Meckes for a number of illuminating email exchanges and comments. Finally,
they would like to thank the referees whose careful reading of the manuscript has
led to several clarifications and presentational improvements.

2. Asymptotic results

We prove the asymptotic statements of Theorem 1 which are based on elementary
Fourier analysis.

Let us first consider the asymptotic behaviour as R → ∞. If f ∈ H(n+1)/2(Rn)
satisfies f ≡ 1 on a compact set X, it must manifestly satisfy ‖f‖2

H(n+1)/2(Rn)
≥

‖f‖2L2(Rn) ≥ Vol(X), so that

(7) |X| ≥ Vol(X)

n!ωn

as has been observed by Leinster [11] and Meckes [17]. But also

‖f(R−1·)‖2H(n+1)/2(Rn) =

∫
Rn

|Rnf̂(Rξ)|2(1 + 4π2|ξ|2)(n+1)/2dξ

= Rn
∫
Rn

|f̂(ξ)|2(1 + 4π2(|ξ|/R)2)(n+1)/2dξ

so that, by the monotone (or dominated) convergence theorem,

(8) R−n‖f(R−1·)‖2H(n+1)/2(Rn) →
∫
Rn

|f̂(ξ)|2dξ =

∫
Rn

|f(x)|2dx

as R→∞. So we have

Vol(X)

n!ωn
≤ R−n|RX| ≤

R−n‖f(R−1·)‖2
H(n+1)/2(Rn)

n!ωn
→
∫
Rn |f(x)|2dx

n!ωn
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using (7), (2) and (8) successively. Now we can find f ∈ H(n+1)/2(Rn) with f ≡ 1
on X such that ‖f‖22 is as close as we like to Vol(X). Indeed, with Φ : Rn →
[0,∞) a smooth function of compact support in {|x| ≤ 1} with

∫
Φ = 1, Φr(x) :=

r−nΦ(r−1x) and Xr := {x ∈ Rn : d(x,X) ≤ r} we have that fr := Φr ∗ χXr
is

a nonnegative smooth function of compact support which satisfies fr(x) = 1 for
x ∈ X, and fr(x) → 0 as r → 0 for x /∈ X. So by the dominated convergence
theorem,

∫
f2
r → Vol(X) as r → 0. Therefore

R−n|RX| → Vol(X)

n!ωn

as R→∞.

Now let us consider what happens as R → 0. Note that we may assume that n is
odd since as we remarked above in Section 1, magnitude is intrinsically defined.

If f ∈ H(n+1)/2(Rn) and f(0) = 1, then

1 = |f(0)| ≤ sup
x
|f(x)| ≤ ‖f̂‖L1(Rn)

≤
(∫
|f̂(ξ)|2(1 + 4π2|ξ|2)(n+1)/2dξ

)1/2(∫
dξ

(1 + 4π2|ξ|2)(n+1)/2

)1/2

so that

‖f‖2H(n+1)/2(Rn) ≥
(∫

dξ

(1 + 4π2|ξ|2)(n+1)/2

)−1

with equality if and only if f̂(ξ) is the scalar multiple of (1 + 4π2|ξ|2)−(n+1)/2 with
f(0) = 1, or, equivalently, f(x) = e−|x|. By (3) and Fourier inversion,∫

dξ

(1 + 4π2|ξ|2)(n+1)/2
=

1

n!ωn

∫
ê−|·|(ξ)dξ =

1

n!ωn
e−|0| =

1

n!ωn

so that

(9) ‖f‖2H(n+1)/2(Rn) ≥ n!ωn

(with equality if and only if f(x) = f0(x) := e−|x|). This implies that |X| ≥ 1 so
long as X 6= ∅.
Now, for 0 < R ≤ 1, let fR : Rn → [0, 1] be a smooth function which satisfies

fR(x) =

{
1, |x| ≤ R

eRe−|x|, |x| ≥ R1/2

and, for R ≤ |x| ≤ R1/2 and |α| ≥ 1,∣∣∣∣( ∂

∂x

)α
fR(x)

∣∣∣∣ . R−(|α|−1)/2.

We then have, (see (4)),

‖fR‖2H(n+1)/2(Rn) =

(n+1)/2∑
j=0

(n+1
2

j

)∫
Rn

|DjfR(x)|2dx

=

(n+1)/2∑
j=0

(n+1
2

j

)∫
|x|≤R1/2

|DjfR(x)|2dx+e2R

(n+1)/2∑
j=0

(n+1
2

j

)∫
|x|≥R1/2

|Djf0(x)|2dx
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= I + II.

We can estimate I by the term corresponding to j = (n+ 1)/2, that is,

I . R−((n+1)/2−1)Rn/2 = R1/2,

and by the dominated convergence theorem, II tends to ‖f0‖2H(n+1)/2(Rn)
as R→ 0.

Therefore

‖fR‖2H(n+1)/2 → ‖f0‖2H(n+1)/2 = n!ωn

as R→ 0. This shows that |B(0, R)| → 1 as R→ 0.

Since for any nonempty compact set X we have (after suitable translation) {0} ⊆
RX ⊆ B(0, RM) for some M > 0, we immediately deduce that |RX| → 1 as
R→ 0. (We thank Mark Meckes for pointing out this last implication to us.)

3. Preliminaries on Sobolev spaces

Let Ω be an arbitrary open set in Rn. We need to consider some variants of the
Sobolev spaces Hm(Ω) consisting of complex-valued functions whose weak deriva-
tives of order up to and including m ∈ N belong to L2(Ω). We shall assume the
standard properties of Hm(Rn) and Hm(Ω) without specific mention. See [5] or
[18] for more details.

Firstly, the space Hm
0 (Ω) is the completion of C∞c (Ω), the class of smooth functions

of compact support inside Ω, under the inner product

(10) 〈f, g〉Hm(Ω) :=

m∑
j=0

(
m

j

)∫
Ω

Djf ·Djg

where Djf = ∆j/2f for j even and Djf = ∇∆(j−1)/2f for j odd. Here and
throughout

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
and ∆f =

n∑
i=1

∂2f

∂x2
i

.

The inner product 〈·, ·〉Hm gives rise to the norm ‖ · ‖Hm and when Ω = Rn we can
easily see using the Fourier transform that

‖f‖2Hm(Rn) = ‖(I −∆)m/2f‖2L2(Rn).

We shall be working from now on with real-valued functions, and so we shall sup-
press the complex conjugate occurring in (10).

Let K ⊆ Rn be compact and convex with nonempty interior. If f ∈ Hm(Rn) and
g ∈ Hm(intK) we say that f = g on K if ‖f−g‖Hm(intK) = 0. If f = g on K in this
sense, then clearly f = g almost everywhere on int K; conversely if f ∈ Hm(Rn),
g ∈ Hm(intK) and f = g almost everywhere on int K, then the weak derivatives
of f and g of order up to and including m on int K coincide, and so f = g on K.
If m > n/2 the Sobolev embedding theorem implies that the functions in Hm(Rn)
are continuous and hence make sense pointwise on K; so the statement f = g on
K can be interpreted pointwise in this case.

With this in mind, for our second variant we define

H̃m
0 (Rn \K) := {f ∈ Hm(Rn) : f = 0 on K}.
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This is clearly a closed subspace of Hm(Rn), and there are natural isometric em-
beddings

Hm
0 (Rn \K) ↪→ H̃m

0 (Rn \K) ↪→ Hm(Rn).

Under our hypothesis that the interior of K is nonempty, the first embedding is
surjective:

Lemma 1. If K has nonempty interior then for any f ∈ Hm(Rn) such that f = 0
on K, and any ε > 0, there is a φ ∈ C∞c (Rn \K) such that ‖f − φ‖Hm(Rn) < ε.

Proof. See for example Theorem 5.29 of [2]. �

We need some more lemmas.

Lemma 2. If f is in Hm(Rn), K is any compact subset of Rn and ε > 0 we may
choose a smooth cut-off function ψ which is identically 1 on K and is such that if
f̃ = ψf , then ‖f − f̃‖Hm(Rn) < ε.

Proof. If Φ is a standard normalised bump function which is identically one on the
unit ball, and zero off the ball of radius 2 we have

‖f(1− Φ(·/R))‖Hm(Rn) ≤ C
m∑
j=0

(
m

j

)∫
|x|≥R

|Djf |2

and for f in Hm(Rn) we have

m∑
j=0

(
m

j

)∫
|x|≥R

|Djf |2 → 0 as R→∞.

�

Lemma 3. Suppose that f ∈ Hm(Rn) and that f = 1 on K where K has nonempty
interior. Suppose that ψ is a smooth cut-off function which is identically 1 on a
neighbourhood of K. Let f̃(x) = (f(x)− 1)ψ(x). Then f̃ ∈ Hm

0 (Rn \K).

Proof. Clearly f̃ belongs to Hm(Rn) with ‖f̃‖Hm(Rn) ≤ C(‖f‖Hm(Rn) + 1) where

C depends on ψ and K. Moreover f̃ = 0 on K. So by Lemma 1, f̃ belongs to
Hm

0 (Rn \K) with the same control. �

For convenience we also recall the facts about traces we shall need from [2] or [5].
(See also [1].) In the lemma which follows, Dj denotes any differential operator
of order j with constant coefficients. (We shall apply it in the special case that
Dj = ∆j/2 for j even and Dj = (ν · ∇)∆(j−1)/2 for j odd, where ν is some unit
vector.)

Lemma 4. Suppose f ∈ Hm(Rn) and that 1 ≤ j ≤ m− 1. Then

(i) If S is a piecewise smooth compact hypersurface, then Djf belongs to Hm−j−1/2(S)
and

‖Djf |S‖Hm−j−1/2(S) ≤ C‖f‖Hm(Rn);

moreover the map f 7→ Djf |S varies continuously with small changes in S.
(ii) If K is a compact convex set in Rn with nonempty interior and f ∈ Hm

0 (Rn\
K), then Djf |∂K = 0.
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Proof. (i) Since f ∈ Hm(Rn) we have Djf ∈ Hm−j(Rn) (with norm control)
and so by the classical trace inequality its restriction to the hypersurface S is in
Hm−j−1/2(S) provided m− j ≥ 1, again with norm control. To see the continuity,
suppose S and S′ are nearby hypersurfaces, and take φ ∈ C∞c (Rn) and ε > 0 such
that ‖f − φ‖Hm(Rn) < ε. Then

‖Djf |S −Djf |S′‖Hm−j−1/2

≤ ‖(Djf−Djφ)|S‖Hm−j−1/2+‖Djφ|S−Djφ|S′‖Hm−j−1/2+‖(Djφ−Dj)f |S′‖Hm−j−1/2 .

The first and third terms are dominated by ε by the first part and the second term
goes to zero as S′ → S since φ is smooth.

(ii) This is a consequence of the classical characterisation of the traces of functions
in the Sobolev spaces Hm

0 (Rn \ K). Alternatively, it follows from the previous
part since for smooth hypersurfaces contained in the interior of K we will have
Djf |S = 0 for all j ≥ 1.

�

4. The variational problem for the extremal energy

In this section we consider the variational problem

inf{‖f‖Hm(Rn) : f ∈ Hm(Rn), f = g on K}

where g is a prescribed member of Hm(Rn), m ∈ N and K is a compact convex
set in Rn with nonempty interior. We call this problem the m-extremal energy
problem for K, or simply the extremal energy problem.

Proposition 1. The extremal energy problem

inf{‖f‖Hm(Rn) : f ∈ Hm(Rn), f = g on K}

has a unique solution.

Proof. This is just the elementary fact that in the Hilbert space Hm(Rn), there is
a unique closest point to zero in the nonempty closed convex (in fact affine) set
{‖f‖Hm(Rn) : f ∈ Hm(Rn), f = g on K}. �

When K is a Euclidean ball we can see immediately that the unique solution to
the extremal energy problem is radial since averaging any solution over rotations
yields another solution which is radial.

By standard arguments (see for example [17] for the case m = (n + 1)/2), the
Euler-Lagrange equation for the extremal energy problem is

(I −∆)mf = 0 on Rn \K

in the weak sense (testing against functions in C∞c (Rn \K)) and so we are led to
study the problem

(I −∆)mf = 0 on Rn \K in the weak sense

f = g on K.

We immediately have existence of solutions in Hm(Rn) to this problem from Propo-
sition 1, and we also have uniqueness:
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Proposition 2. Suppose that g ∈ Hm(Rn). Then there is a unique solution to the
problem

(11)
(I −∆)mf = 0 weakly on Rn \K

f = g on K

with f ∈ Hm(Rn).

Proof. The space of solutions to (11) is f0 +M where f0 is any particular solution

and M is the orthogonal complement of Hm
0 (Rn \ K) in H̃m

0 (Rn \ K). But by
Lemma 1, M = {0}, and so the solution is unique.

�

So the unique solution to the extremal energy problem of Proposition 1 is also the
unique solution to (11) in Hm(Rn).

We shall need in the next section to appeal to the theory of elliptic regularity.
Briefly, for an elliptic operator such as (I−∆)m, weak solutions f to (I−∆)mf = 0
on an open set are actually smooth, and the equation (I −∆)mf = 0 holds in the
classical sense. See [2] or [5].

5. A formula for the m-extremal energy

In this section we develop the promised formula for the m-extremal energy. See
Theorem 5 below.

We first consider arbitrary solutions h ∈ Hm(Rn) of the problem{
(I −∆)m h = 0 weakly on Rn \K

h = 1 on K

where m ≥ 1 is an arbitrary integer and K is a compact convex set with nonempty
interior. Consider a regularised distance function d for K, which is defined on Rn
and satisfies d(x) ∼ dist(x,K). Let Kr = {x ∈ Rn : d(x) ≤ r} and let ν denote
the unit normal pointing out of Kr. (Note that ∂Kr is smooth and so Lemma 4
will be applicable.)

For g ∈ Hm(Rn) with compact support we have

〈g, h〉Hm(Rn) =

m∑
j=0

(
m

j

)∫
Rn

Djg ·Djh

=

∫
K

g +

m∑
j=0

(
m

j

)
lim
r↓0

∫
{d(x)≥r}

Djg ·Djh

(12)

by the dominated convergence theorem.

We shall study the terms
∫
{d(x)≥r}D

jg ·Djh by integrating by parts. In so doing,

we shall systematically use Green’s formulae∫
Ω

∇φ · ∇ψ = −
∫

Ω

φ∆ψ −
∫
∂Ω

φ
∂ψ

∂ν
dS

and

∫
Ω

(∆φ)ψ = −
∫

Ω

∇φ · ∇ψ −
∫
∂Ω

∂φ

∂ν
ψ dS
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(where we are trying to increase the differentiability of ψ, which will be a function
of h, with the eventual aim of using the equation satisfied by h, and decrease that of
φ, which will be a function of g). In these formulae the region Ω will be {d(x) ≥ r}
and ν is the unit normal pointing out of Kr. The smoothness of h on Rn\K coming
from elliptic regularity, and the compact support of g will ensure that each use of
these formulae is valid. In particular the compact support of g means that there
are no boundary terms at infinity to consider.

To carry out these calculations it is convenient to define Djf := ∆j/2f for j even
and Djf := ∂

∂ν∆(j−1)/2f for j odd. (Note the distinction here when j is odd
between D and D. While a risking a possible typographical confusion, at a first
reading one should simply think of Dj and Dj as denoting suitable derivatives of
order j. Note also that these boundary operators occur in the PDE literature in
problems involving hybrid Dirichlet–Navier boundary conditions. See for example

[6], p.33. It is in the lemma below that expressions such as ∆u (rather than ∂2u
∂ν2 )

appear more naturally on the boundary.

Lemma 5. Let K ⊆ Rn be compact and convex. For 1 ≤ j ≤ m and g ∈ Hm(Rn)
with compact support we have

∫
{d(x)≥r}

Djg ·Djh = (−1)j

(∫
{d(x)≥r}

g∆jh+

j−1∑
k=0

(−1)k
∫
∂Kr

DkgD2j−k−1hdS

)
.

Proof. Let us first consider the case j = 1. Then

∫
{d(x)≥r}

∇g · ∇h = −
∫
{d(x)≥r}

g∆h−
∫
∂Kr

g
∂h

∂ν
dS

= −

(∫
{d(x)≥r}

g∆h+

∫
∂Kr

gDhdS

)

as required.

Now, for j = 2 we have

∫
{d(x)≥r}

∆g∆h = −
∫
{d(x)≥r}

∇g · ∇∆h−
∫
∂Kr

∂g

∂ν
∆hdS

=

∫
{d(x)≥r}

g∆2h+

∫
∂Kr

g
∂∆h

∂ν
dS −

∫
∂Kr

∂g

∂ν
∆hdS

=

∫
{d(x)≥r}

g∆2h+

∫
∂Kr

gD3hdS −
∫
∂Kr

DgD2hdS

as required, noting that the term ∂g
∂ν makes sense as a member of Hm−3/2 of the

hypersurface ∂Kr by the trace inequality, Lemma 4. (For this case to occur we
must have m ≥ 2.)
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Similarly, for j = 3, we have∫
{d(x)≥r}

∇∆g · ∇∆h

= −
∫
{d(x)≥r}

∆g∆2h−
∫
∂Kr

∆g
∂∆h

∂ν
dS

=

∫
{d(x)≥r}

∇g · ∇∆2h+

∫
∂Kr

∂g

∂ν
∆2hdS −

∫
∂Kr

∆g
∂∆h

∂ν
dS

= −
∫
{d(x)≥r}

g∆3h−
∫
∂Kr

g
∂∆2h

∂ν
dS +

∫
∂Kr

∂g

∂ν
∆2hdS −

∫
∂Kr

∆g
∂∆h

∂ν
dS

= −

(∫
{d(x)≥r}

g∆3h+

∫
∂Kr

gD5hdS −
∫
∂Kr

DgD4hdS +

∫
∂Kr

D2gD3hdS

)
noting that the terms ∂g

∂ν and ∆g make sense as members of Hm−3/2 and Hm−5/2

respectively of the hypersurface ∂Kr by the trace inequality, Lemma 4. (For this
case to occur we must have m ≥ 3.)

Continuing, we see that the general case takes the form∫
{d(x)≥r}

Djg ·Djh

= (−1)j
{∫
{d(x)≥r}

g∆jh+

∫
∂Kr

g
∂∆j−1h

∂ν
dS −

∫
∂Kr

∂g

∂ν
∆j−1hdS

+

∫
∂Kr

∆g
∂∆j−2h

∂ν
dS −

∫
∂Kr

∂∆g

∂ν
∆j−2hdS + . . .

}
where the last term inside the curly brackets is

−
∫
∂Kr

∂∆(j−2)/2g

∂ν
∆j/2hdS

when j is even and

+

∫
∂Kr

∆(j−1)/2g
∂∆(j−1)/2h

∂ν
dS

when j is odd. That is, ∫
{d(x)≥r}

Djh ·Djg

= (−1)j
{∫
{d(x)≥r}

g∆jh+

∫
∂Kr

gD(2j−1)hdS −
∫
∂Kr

DgD(2j−2)hdS

+

∫
∂Kr

D2gD(2j−3)hdS −
∫
∂Kr

D3gD(2j−4)hdS

+ · · ·+ (−1)j−1

∫
∂Kr

D(j−1)gDjhdS
}
.

Note that the terms Dg,D2g, . . . ,D(j−1)g make sense as members of Hm−3/2,
Hm−5/2, . . . , Hm−j+1/2 respectively of the hypersurface ∂Kr by the trace inequal-
ity, Lemma 4. (For this case to occur we must have m ≥ j.) This establishes the
lemma. �
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If we take the identities of Lemma 5, multiply by
(
m
j

)
and sum from j = 1 to m we

get

m∑
j=1

(
m

j

)∫
{d(x)≥r}

Djg ·Djh

=

m∑
j=1

(
m

j

)
(−1)j

(∫
{d(x)≥r}

g∆jh+

j−1∑
k=0

(−1)k
∫
∂Kr

DkgD2j−k−1hdS

)

=

∫
{d(x)≥r}

g

 m∑
j=1

(
m

j

)
(−1)j∆jh

+

m∑
j=1

(
m

j

)
(−1)j

j−1∑
k=0

(−1)k
∫
∂Kr

DkgD2j−k−1hdS.

Now add
∫
{d(x)≥r} gh (corresponding to the the term j = 0) to both sides to obtain

m∑
j=0

(
m

j

)∫
{d(x)≥r}

Djh ·Djg

=

∫
{d(x)≥r}

g

 m∑
j=0

(
m

j

)
(−1)j∆jh

+
∑

0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS

=

∫
{d(x)≥r}

g(I −∆)mh+
∑

0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS

=
∑

0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS

since h satisfies the equation (I −∆)mh = 0 in the classical sense on {d(x) > 0} by
elliptic regularity.

Combining this with (12), we obtain the representation

〈g, h〉Hm(Rn) =

∫
K

g + lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS

valid for any g ∈ Hm(Rn) with compact support.

We would like to extend this formula to be valid for all g ∈ Hm(Rn). Observe that
all the terms on the right hand side make sense for such g – as was noted during
the proof of Lemma 5. In particular there is no problem with the existence of the
limit as r ↓ 0 for such g – simply multiply it by a smooth cut-off which is identically
1 on {d(x) ≤ 2} to obtain g̃ of compact support for which the corresponding limit
exists and the value of which is left unaltered by the multiplication.

So the linear functional Λ given by

Λg := 〈g, h〉Hm(Rn)−
∫
K

g−lim
r↓0

 ∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
{d(x)=r}

DkgD2j−k−1hdS


is well-defined on Hm(Rn) and is identically zero on the dense subspace consisting
of functions of compact support. If g is in Hm(Rn) and ε > 0 we may choose by
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Lemma 2 a cut-off function ψ which is identically 1 on {d(x) ≤ 2} and such that if
g̃ = ψg, then ‖g − g̃‖Hm(Rn) < ε. Hence

Λg = Λg − Λg̃ = Λ(g − g̃) = 〈g − g̃, h〉Hm(Rn)

so that

|Λg| ≤ ‖g − g̃‖Hm(Rn)‖h‖Hm(Rn) < ε‖h‖Hm(Rn).

Thus Λg = 0 for all g ∈ Hm(Rn) and we have:

Proposition 3. For m ∈ N, K any compact convex set in Rn and any solution
h ∈ Hm(Rn) to the problem (I −∆)mh = 0 weakly on Rn \K, we have the formula

(13) 〈g, h〉Hm(Rn) =

∫
K

g + lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS,

valid for every g ∈ Hm(Rn).

It is intuitively reasonable that for functions g ∈ Hm
0 (Rn \K) there should be no

boundary terms in formula (13) and indeed for such g it is natural that
∫
K
g = 0

and also that 〈g, h〉Hm = 0 using the equation. This we establish next. (Note that
in the following lemma we had better use the equation satisfied by h as otherwise
there is no reason to believe the terms involving higher derivatives of h exist.)

Lemma 6. For g ∈ Hm
0 (Rn \K) and h ∈ Hm(Rn) any solution to (I −∆)mh = 0

weakly on Rn \K we have

lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS = 0.

On the other hand, if g ∈ Hm(Rn), if g = 0 on K (i.e. g = 0 pointwise on K if
m > n/2, and is zero on int K 6= ∅ when m ≤ n/2) and if

lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS = 0

for every solution h ∈ Hm(Rn) to (I − ∆)mh = 0 weakly on Rn \ K which also
satisfies h = 0 on K, then g ∈ Hm

0 (Rn \K).

Proof. Consider the first assertion. By our formula (13) we have

lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkgD2j−k−1hdS = 〈g, h〉Hm(Rn) −
∫
K

g.

So it is enough to show that

Λg := 〈g, h〉Hm(Rn) −
∫
K

g

satisfies

Λg = 0

for all g ∈ Hm
0 (Rn \ K). Let ε > 0 and g̃ ∈ C∞c (Rn \ K) be such that ‖g −

g̃‖Hm
0 (Rn\K) < ε. Clearly we have Λg̃ = 0 since h satisfies (I −∆)mh = 0 weakly

on Rn \K and K ∩ Rn \K = ∅, and so

Λg = Λg − Λg̃ = Λ(g − g̃) = 〈g − g̃, h〉Hm(Rn) −
∫
K

(g − g̃)h,
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thus

|Λg| ≤ ‖g − g̃‖Hm(Rn)‖h‖Hm(Rn) + ‖g − g̃‖2 ‖h‖2 < ε‖h‖Hm(Rn).

Hence Λg = 0 for all g ∈ Hm
0 (Rn \K).

For the second assertion, if the limit in question is zero, we have by the represen-
tation formula (13) that 〈g, h〉Hm = 0 for all h ∈ Hm(Rn) which are solutions to

(I−∆)mh = 0 weakly on Rn\K which also satisfy h = 0 on K. So g ∈ H̃m
0 (Rn\K)

and g is perpendicular to the space M introduced above in Proposition 2. By def-
inition of M this means that g ∈ Hm

0 (Rn \K).
�

We have not yet used the requirement that K have nonempty interior nor used any
boundary conditions satisfied by h (except to obtain the formula (12)). In order
to deduce a useful formula for ‖h‖2Hm(Rn), we shall have to do so, and we shall use

Lemma 3 freely from now on.

So, let H be any function in Hm(Rn) such that H = 1 on K. Then, by Lemma
3 we have that g(x) = (H(x) − 1)ψ(x) belongs to Hm

0 (Rn \ K) (where ψ is any
smooth function of compact support which is identically 1 on {d(x) ≤ 2}), and so
we can apply Lemma 6 to obtain

lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkHD2j−k−1hdS

− lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkψD2j−k−1hdS = 0.

But for r sufficiently close to zero we have∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkψD2j−k−1hdS

=

m∑
j=1

(
m

j

)
(−1)j

∫
∂Kr

D2j−1hdS

so that

lim
r↓0

∑
0≤k<j≤m

(−1)j+k
(
m

j

)∫
∂Kr

DkHD2j−k−1hdS

= lim
r↓0

m∑
j=1

(−1)j
(
m

j

)∫
∂Kr

D2j−1hdS.

(14)

Next, we take g = H in Proposition 3 and apply (14) to obtain:

Proposition 4. Suppose K has nonempty interior, h is any solution in Hm(Rn\K)
to (I −∆)mh = 0 weakly on Rn \K, and H is any function in Hm(Rn) such that
H = 1 on K. Then we have

〈H,h〉Hm(Rn) = Vol(K) + lim
r↓0

m∑
j=1

(−1)j
(
m

j

)∫
∂Kr

D2j−1hdS.
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Finally, we claim that the terms with j ≤ m/2 give a contribution of zero in this
formula.

Indeed, if we have h ∈ Hm(Rn) and h = 1 on K, Lemma 3 tells us that for
suitable smooth ψ of compact support, identically 1 on a neighbourhood of K we
have g = (h − 1)ψ ∈ Hm

0 (Rn \ K). So by Lemma 4, Dig is the zero member of
Hm−i−1/2(∂K) for 0 ≤ i ≤ m− 1, and continuity of traces shows that we therefore
have ∫

∂Kr

DigdS → 0 as r ↓ 0

for 0 ≤ i ≤ m− 1.

In particular, since Dih = Dig +Diψ near ∂K we have∫
∂Kr

DihdS → 0 as r ↓ 0

for 1 ≤ i ≤ m− 1. So ∫
∂Kr

D2j−1hdS → 0 as r ↓ 0

for 1 ≤ 2j − 1 ≤ m− 1, that is for 1 ≤ j ≤ m/2.

Hence

〈H,h〉Hm(Rn) = Vol(K) + lim
r↓0

∑
m/2<j≤m

(−1)j
(
m

j

)∫
∂Kr

D2j−1hdS,

and we have proved:

Theorem 5. Suppose that K is a compact convex set in Rn which has nonempty
interior. Let H be any function in Hm(Rn) such that H = 1 on K. Then the
unique solution h ∈ Hm(Rn) to the problem

(I −∆)mh = 0 weakly on Rn \K
h = 1 on K

satisfies

〈H,h〉Hm(Rn) = Vol(K) +
∑

m/2<j≤m

(−1)j
(
m

j

)
lim
r↓0

∫
∂Kr

∂

∂ν
∆j−1hdS.

In particular, taking H = h,

(15) ‖h‖2Hm(Rn) = Vol(K) +
∑

m/2<j≤m

(−1)j
(
m

j

)
lim
r↓0

∫
∂Kr

∂

∂ν
∆j−1hdS.

If the boundary of K is sufficiently regular to allow the invocation of boundary
regularity for elliptic equations we may realise this formula more succinctly as

‖h‖2Hm(Rn) = Vol(K) +
∑

m/2<j≤m

(−1)j
(
m

j

)∫
∂K

∂

∂ν
∆j−1hdS.

The main virtue of Theorem 5 is that it explicitly demonstrates the dependence of
the m-extremal energy upon the volume of K and integrals over its boundary. It is
analogous to the representation of the classical capacity inf{

∫
|∇u|2 : u = 1 on K}

as
∫
∂K

∂u
∂ν dS for u satisfying ∆u = 0 off K, u = 1 on ∂K and u → 0 at ∞. The
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fact that ‖h‖2Hm(Rn) = 〈h,H〉Hm(Rn) for any H ∈ Hm(Rn) which is identically 1 on

K when m = (n + 1)/2 is more general and due to Meckes [17], Proposition 4.2.
One may wonder whether the alternating sum in Theorem 5 reflects an underlying
“Euler characteristic”, and whether the individual terms appearing might have
some separate meaning. It is also of interest to determine whether or not the
solutions of the boundary value problems are always positive. See for example [6]
for a discussion of such matters.

As mentioned in the Introduction, Leinster and Meckes have an alternative ap-
proach to calculating magnitudes. Indeed, Theorem 4.16 of [13], specialised to the
case of Euclidean spaces, shows that up to a constant, the magnitude of a compact
subset of Rn is the integral of its potential function, provided the potential function
is in L1(Rn). In the context of Theorem 5 and formula (15) this translates simply
as

‖h‖2Hm(Rn) =

∫
Rn

h.

While this formula arguably offers some comptational advantages over formula (15),
it does not bring out the important role that the boundary of K plays. In this regard
see also the last remark in Section 10.

6. Combinatorial preliminaries

For our discussion of solutions to certain ordinary differential equations we shall
need to consider some special polynomials which have a combinatorial flavour.

We define g0(t) := 1 and, given gj , we define gj+1 by

gj+1(t) := t3g′j(t) + tgj(t).

Lemma 7. For j ≥ 1 we have

gj(t) =
∑
k

cjkt
k

where cjk = 0 for k < j and k ≥ 2j, cjj = 1 for all j, and each cjk for j ≤ k ≤ 2j − 1
is a nonnegative integer.

The easy proof is left to the reader. The defining formula for gj leads us immediately

to a recurrence relation for the coefficients cjk:

Lemma 8. For j + 1 ≤ k ≤ 2j − 1 we have

(16) cj+1
k+1 = (k − 1)cjk−1 + cjk

and

(17) cj+1
2j+1 = (2j − 1)cj2j−1.

Moreover for j + 1 ≤ k ≤ 2j − 1 we have

2jcj+1
k+1 = (k − 1)kcjk−1 + 2kcjk.
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Proof. We have by definition

gj+1(t) = t3

2j−1∑
k=j

cjkkt
k−1

+ t

2j−1∑
k=j

cjkt
k


=

2j−1∑
k=j

cjkkt
k+2 +

2j−1∑
k=j

cjkt
k+1 =

2j∑
k=j+1

cjk−1(k − 1)tk+1 +

2j−1∑
k=j

cjkt
k+1

= cjjt
j+1 +

2j−1∑
k=j+1

(cjk−1(k − 1) + cjk)tk+1 + cj2j−1(2j − 1)t2j+1.

On the other hand,

gj+1(t) =

2j+1∑
k=j+1

cj+1
k tk =

2j∑
k=j

cj+1
k+1t

k+1,

and then (16) and (17) follow by comparing the two expressions. The final identity
follows readily from the expression (18) below.

�

Pictorially, identity (16) can be represented as a Pascal triangle as follows, (with
the first row representing c11, the second c22, c

2
3, etc.):

1

1 1

1 3 3

1 6 15 15

1 10 45 105 105

1 15 105 420 945 945

...

An explicit formula for cjk for j < k ≤ 2j − 1 is given by

(18) cjk =
(k − 1)(k − 2) · · · (2j − k)

2k−j(k − j)!

and this follows immediately from equations (16) and (17) together with the fact

that cjj = 1 for all j.

The numbers cjk are reminiscent of Stirling numbers and are sometimes called Bessel
numbers of the first kind; the gj are related to Grosswald’s polynomials. See [8]
and [21]. The gj can also be expressed in terms of generalised Laguerre polynomials
and hypergeometric functions; we thank Jim Wright, Chris Smyth and Adri Olde
Daalhuis for pointing these connections out to us.
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7. Explicit radial solutions to (I −∆)mh = 0

When K is a Euclidean ball, the unique solution to problem (11) with g = 1 is
necessarily radial (since an average over rotates of a solution is also a solution). So
in this section we seek radial solutions h ∈ Hm(Rn) to

(I −∆)mh = 0 on {|x| > R}
where R > 0. Then we shall impose the extra (boundary) condition h = 1 on {|x| ≤
R}. We are particularly interested in the case where n is odd and m = (n+ 1)/2.
We shall systematically abuse notation and not distinguish between the function
h(| · |) defined on {|x| > R} in Rn and the function h(·) defined on (R,∞).

Recall that the action of the Laplacian in Rn on radial functions is given by

∆f(r) = f ′′(r) +
n− 1

r
f ′(r)

and so we define, for an integer ν ≥ 0,

∆νf := f ′′ +
2ν

r
f ′

and consider solutions of

(19) (I −∆ν)mh = 0

on (R,∞) where R > 0, with h(| · |) ∈ L2(Rn). (We hope that the the use of ν both
as a proxy for (n− 1)/2 in this section and as a normal direction to K in previous
sections will not cause confusion.) If n is odd and ν = (n − 1)/2 this amounts to
finding radial solutions in L2 of

(I −∆)mh = 0 on |x| > R.

Let us set up some notation. We define, for k ≥ 0,

fk(r) :=
e−r

rk
.

We define ψ0(r) = e−r and, for j ≥ 1

ψj(r) :=

2j−1∑
k=j

cjkfk(r) = e−rgj(1/r)

where the gj are defined in Section 6.

From Pascal’s triangle for the coefficients cjk, (Lemma 8), we can write down the
first few ψj explicitly:

ψ0 = f0 = e−r,

ψ1 = f1 = e−r/r,

ψ2 = f2 + f3 = e−r(r−2 + r−3),

ψ3 = f3 + 3f4 + 3f5 = e−r(r−3 + 3r−4 + 3r−5),

ψ4 = f4 + 6f5 + 15f6 + 15f7 = e−r(r−4 + 6r−5 + 15r−6 + 15r−7),

ψ5 = f5 + 10f6 + 45f7 + 105f8 + 105f9 = e−r(r−5 + 10r−6 + 45r−7 + 105r−8 + 105r−9)

...
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Lemma 9. For k ≥ 0 and ν ≥ 0 we have

(∆ν − I)fk = 2(k − ν)fk+1 + k(k + 1− 2ν)fk+2.

In particular,

(∆ν − I)f0 = −2νf1.

Proof. Let us calculate

f ′k = −e
−r

rk
− k e

−r

rk+1
= −fk − kfk+1

so that
f ′′k = −f ′k − kf ′k+1

= −(−fk − kfk+1)− k(−fk+1 − (k + 1)fk+2)

= fk + 2kfk+1 + k(k + 1)fk+2.

Therefore

(∆ν − I)fk = fk + 2kfk+1 + k(k + 1)fk+2 − 2ν

(
fk
r

+
kfk+1

r

)
− fk

= 2kfk+1 + k(k + 1)fk+2 − 2ν (fk+1 + kfk+2)

= 2(k − ν)fk+1 + k(k + 1− 2ν)fk+2.

�

Proposition 5. For j ≥ 0 and ν ≥ 0 we have

(∆ν − I)ψj = 2(j − ν)ψj+1.

In particular,

(∆ν − I)ψν = 0.

Proof. The case j = 0 is a special case of Lemma 9. For j ≥ 1 we have

(∆ν − I)ψj = (∆ν − I)

2j−1∑
k=j

cjkfk =

2j−1∑
k=j

cjk(∆ν − I)fk

=

2j−1∑
k=j

cjk [−2(ν − k)fk+1 + k(k + 1− 2ν)fk+2]

by Lemma 9. Rearranging, this equals

2j−1∑
k=j

2(k − ν)cjkfk+1 +

2j∑
k=j+1

(k − 1)(k − 2ν)cjk−1fk+1

= 2(j − ν)cjjfj+1 + (2j − 1)(2j − 2ν)cj2j−1f2j+1+

+

2j−1∑
k=j+1

{2(k − ν)cjk + (k − 1)(k − 2ν)cjk−1}fk+1

= 2(j − ν){fj+1 + (2j − 1)cj2j−1f2j+1}+

+

2j−1∑
k=j+1

{2(k − ν)cjk + (k − 1)(k − 2ν)cjk−1}fk+1.
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Now since

2(j − ν)ψj+1 = 2(j − ν)

2j+1∑
k=j+1

cj+1
k fk(r) = 2(j − ν)

2j∑
k=j

cj+1
k+1fk+1(r)

we see that the coefficients of fj+1 agree (as cjj = 1 for all j), and it is therefore
enough to see that

cj+1
2j+1 = (2j − 1)cj2j−1

and, for j + 1 ≤ k ≤ 2j − 1 and arbitrary ν

2(j − ν)cj+1
k+1 = 2(k − ν)cjk + (k − 1)(k − 2ν)cjk−1.

This latter splits as

cj+1
k+1 = cjk + (k − 1)cjk−1

(coefficient of ν) and

2jcj+1
k+1 = 2kcjk + (k − 1)kcjk−1

(ν = 0). All of these are true identities by Lemma 8. �

Corollary 1. For j ≥ 0 we have

(20) ψ′j(r) = −rψj+1(r).

For m ≥ 1, ν ≥ 0, and either 0 ≤ j ≤ ν −m or j > ν we have

(21) (∆ν − I)mψj = 2m(j +m− 1− ν)(j +m− 2− ν) · · · (j − ν)ψj+m,

while for ν −m < j ≤ ν we have

(22) (∆ν − I)mψj = 0.

Finally, for m ≥ 1, ν ≥ 0 and ψ =
∑ν
j=0 αjψj,

(23) ∆m
ν ψ =

ν−m∑
j=0

αj2
m(j +m− 1− ν) · · · (j − ν)ψj+m −

m−1∑
k=0

(−1)m−k
(
m

k

)
∆k
νψ.

Proof. Write the first identity of Proposition 5 as

ψ′′j +
2ν

r
ψ′j − ψj = 2(j − ν)ψj+1,

divide by ν, and let ν →∞ to obtain (20).

Let j ≥ 0 and m ≥ 1. By repeated application of Proposition 5 we obtain (21) and
(22).

By the binomial theorem,

(∆ν − I)mψj =

m∑
k=0

(−1)m−k
(
m

k

)
∆k
νψj ,

so that for j ≤ ν −m, by (21),

(24) ∆m
ν ψj = 2m(j +m− 1− ν) · · · (j − ν)ψj+m −

m−1∑
k=0

(−1)m−k
(
m

k

)
∆k
νψj
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while for ν −m < j ≤ ν, by (22),

(25) ∆m
ν ψj = −

m−1∑
k=0

(−1)m−k
(
m

k

)
∆k
νψj .

Finally (23) follows from (24) and (25) by taking linear combinations. �

We shall use Corollary 1 to systematically turn the calculus into algebra when
fitting the appropriate boundary conditions to the problem, and when calculating
the right hand side of formula (15) in Theorem 5 in the radial case. Note that (23)
tells us that for all m ≥ 1, if ψ =

∑ν
j=0 αjψj , then ∆m

ν ψ can be expressed in terms

of {ψ0, . . . , ψν}.
Returning now to the ordinary differential equation (19), we see that (22) from
Corollary 1 tells us that the general solution to

(I −∆ν)mh = 0

on {r > 0} with h(| · |) ∈ L2(Rn) at infinity (for suitable n) is given by a linear com-
bination of {ψν , ψν−1, . . . , ψν−m+1}. (Routine calculations similar to those carried
out at the beginning of this section reveal that the other m linearly independent
solutions will feature e+r, and so will not have the requisite decay at infinity to
belong to any L2(Rn).)

In particular, taking ν = (n− 1)/2 for n odd, the general radial solution to

(I −∆)mh = 0 on Rn \ {0}
with h ∈ L2(Rn) at infinity is

ανψv(|x|) + · · ·+ αν−m+1ψν−m+1(|x|)
where the α’s are arbitrary scalars.

Specialising further, taking m = (n+ 1)/2, we obtain:

Proposition 6. Suppose n is odd. Then the general radial solution to

(I −∆)(n+1)/2h = 0 on Rn \ {0}
with h ∈ L2(Rn) at infinity is

h(x) = α0ψ0(|x|) + · · ·+ α(n−1)/2ψ(n−1)/2(|x|)
where the α’s are arbitrary scalars.

8. The algorithm for extremal energy and magnitude

8.1. Fitting the boundary conditions. The next task is to determine the αj ’s

which permit the solution h =
∑(n−1)/2
j=0 αjψj(| · |) of

(I −∆)(n+1)/2h = 0 on {|x| > R}
h = 1 on {|x| ≤ R}

given by Proposition 6 to lie in H(n+1)/2(Rn). This amounts to forcing it to satisfy
appropriate boundary conditions at |x| = R. Now our radial solution h belongs
to H(n+1)/2(Rn) and so, by Lemma 4, its derivatives of order j lie in Hn/2−j of
spheres (for 0 ≤ j ≤ (n− 1)/2) and moreover vary continuously with small changes
in the radius of the sphere. Alternatively, the function h defined on (0,∞) belongs
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in H(n+1)/2(R) near |x| = R, and so by Sobolev embedding in the one-dimensional
case, the derivatives of h of order up to and including (n − 1)/2 are continuous
at R. In any case, since h = 1 on {|x| ≤ R}, this manifestly forces the (n + 1)/2
conditions

h(R) = 1

h′(R) = 0

∆h(R) = 0

(∆h)′(R) = 0

...

(∆(n−1)/4h)(R) = 0 or (∆(n−3)/4h)′(R) = 0

(26)

depending on whether n − 1 or n − 3 is a multiple of 4. In either case, this gives
us (n + 1)/2 linear conditions on the (n + 1)/2 unknowns α0, . . . , α(n−1)/2 which
therefore determine them. (Since we know that there is a unique solution to the
boundary value problem we know that the linear system (26) has a unique solution.
Hence the system is guaranteed to be nonsingular – otherwise there would be either
no solution or multiple solutions.) In practice, we shall need to use Corollary 1 in
conjunction with the explicit formulae for the ψj in order to evaluate the αj . As
above, we write ν = (n− 1)/2.

We shall use (23) from Corollary 1, directly on the equations involving ∆jh(R),
and (23) together with (20) on the equations involving (∆jh)′(R).

The first equation is simply

α0ψ0(R) + · · ·+ ανψν(R) = 1

while subsequently we have, by (23) and the boundary conditions on the terms
h, ∆h, . . . (∆)m−1h,

∆mh(R) = 2m
ν−m∑
j=0

(j +m− 1− ν)(j +m− 2− ν) · · · (j − ν)αjψj+m(R)− (−1)m.

Since the terms (j + m − r − ν) are all negative and there are m of them, the
boundary condition ∆mh(R) = 0 reduces this to

2m
ν−m∑
j=0

(ν − j)(ν − j − 1) · · · (ν − j −m+ 1)αjψj+m(R) = 1.

Similarly, the boundary condition (∆mh)′(R) = 0 reduces to

2m
ν−m∑
j=0

(ν − j)(ν − j − 1) · · · (ν − j −m+ 1)αjψj+m+1(R) = 0.

Thus we have the ν + 1 = (n+ 1)/2 equations
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α0ψ0(R) + α1ψ1(R) + · · ·+ ανψν(R) = 1

α0ψ1(R) + α1ψ2(R) + · · ·+ ανψν+1(R) = 0

2να0ψ1(R) + 2(ν − 1)α1ψ2(R) + · · ·+ 2αν−1ψν(R) = 1

2να0ψ2(R) + 2(ν − 1)α1ψ3(R) + · · ·+ 2αν−1ψν+1(R) = 0

4ν(ν − 1)α0ψ2(R) + 4(ν − 1)(ν − 2)α1ψ3(R) + · · ·+ 4.2.1αν−2ψν(R) = 1

4ν(ν − 1)α0ψ3(R) + 4(ν − 1)(ν − 2)α1ψ4(R) + · · ·+ 4.2.1αν−2ψν+1(R) = 0

...
... =

...

(27)

to solve for the ν+1 = (n+1)/2 unknowns α0, α1, . . . , αν . (We know the system is

nonsingular, but it is perhaps not so obvious that this is the case by direct inspec-
tion.) Notice that the “input” here involves only the values of ψ0(R), . . . , ψν+1(R).

We implement the explicit solution of these equations in the first few cases corre-
sponding to n = 1, 3, 5 and 7 below.

8.2. Calculating the extremal energy. Once we have determined the αj =
αj(R) which satisfy (27), we can use Theorem 5 to calculate the extremal energy
‖h‖2

H(n+1)/2(Rn)
for h = α0ψ0 + · · ·+ ανψν . Indeed, we have, with m = (n+ 1)/2,

‖h‖2H(n+1)/2(Rn) = Vol(K) +
∑

(n+1)/4<j≤(n+1)/2

(−1)j
(n+1

2

j

)
lim
r↓0

∫
∂Kr

∂

∂ν
∆j−1hdS

= ωnR
n + σn−1R

n−1
∑

(n+1)/4<j≤(n+1)/2

(−1)j
(n+1

2

j

)
(∆j−1h)′(R)

= ωnR
n

1 + nR−1
∑

(n+1)/4<j≤(n+1)/2

(−1)j
(n+1

2

j

)
(∆j−1h)′(R)


(28)

where ωn is the volume of the unit ball in Rn and σn−1 = nωn is the surface
area of the unit sphere Sn−1 in Rn. We emphasise that by (∆j−1h)′(R) we mean
limr↓R(∆j−1h)′(r) here and subsequently below.

The calculation of (∆j−1h)′(R) is carried out using (23) from Corollary 1. Indeed,
this gives us, for j ≥ 2,

∆j−1h = 2j−1

ν−j+1∑
i=0

(i+ j − 2− ν)(i+ j − 3− ν) · · · (i− ν)αiψi+j−1

−
j−2∑
k=0

(−1)j−1−k
(
j − 1

k

)
∆kh.

Now invoking ψ′j(r) = −rψj+1(r) (that is, (20) from Corollary 1), we obtain

(∆j−1h)′(R) =−R2j−1

ν−j+1∑
i=0

(i+ j − 2− ν)(i+ j − 3− ν) · · · (i− ν)αiψi+j(R)

−
j−2∑
k=0

(−1)j−1−k
(
j − 1

k

)
(∆kh)′(R).
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The boundary conditions imply that we have (∆kh)′(R) = 0 for 0 ≤ k ≤ (ν − 2)/2
when ν is even, and 0 ≤ k ≤ (ν−1)/2 when ν is odd. So in the k-sum we only need
consider terms k with k > (ν − 1)/2, and therefore, recalling that ν = (n − 1)/2,
we have, for j ≥ 2,

(29)

(∆j−1h)′(R) = −R2j−1

ν−j+1∑
i=0

(i+ j − 2− ν) · · · (i− ν)αiψi+j(R)

−
∑

(ν−1)/2<k≤j−2

(−1)j−1−k
(
j − 1

k

)
(∆kh)′(R).

This allows us to effectively compute the terms (∆j−1h)′(R) recursively for j ≥ 2
in terms of the values of ψ0(R), . . . , ψν+1(R) and α0, . . . , αν . We need this for those
j such that (n+ 1)/4 < j ≤ (n+ 1)/2. Once done, we can substitute into formula
(28) for the extremal energy, and we carry this out explicitly in the cases n = 1, 3,
5 and 7 below.

8.3. Summary of the algorithm. We first solve the equations (27) for the (n+
1)/2 unknowns α0, . . . , α(n−1)/2. Then we use formula (29) to calculate (∆j−1h)′(R)
for (n+ 1)/4 < j ≤ (n+ 1)/2, which we can substitute into formula (28), whose
value we then compute to give the extremal energy. Finally we divide by ωnn! to
obtain the magnitude.

8.4. Proof of Theorem 4. The discussion of the algorithm above immediately
gives that the magnitude of the closed ball of radius R in an odd-dimensional
Euclidean space is a rational function of R. Indeed, modulo the multiplicative
exponential term e−R, all of the inputs ψ0(R), . . . , ψν(R) are polynomials in R−1

with nonnegative integer coefficients. The solutions α0, . . . , αν to our system of
equations will be given, by Cramér’s rule, by a ratio of two determinants, each
of which is a polynomial in ψ0(R), . . . , ψν(R) with integer coefficients, up to a
multiplicative exponential term eR. Inspection of formulae (29) and (28) indicates
that the magnitude is given by Rn/n! plus an integer combination of various αrψs
for 0 ≤ r ≤ (n − 1)/2 and 0 ≤ s ≤ (n + 1)/2. So the multiplicative exponential
terms e±R will cancel throughout in every instance, and we will be left with Rn/n!
plus a rational function of R with integer coefficients.

9. Implementation of the algorithm

Recall that we have

ψ0(r) = e−r

ψ1(r) = e−r

r

ψ2(r) = e−r
(

1
r2 + 1

r3

)
ψ3(r) = e−r

(
1
r3 + 3

r4 + 3
r5

)
ψ4(r) = e−r

(
1
r4 + 6

r5 + 15
r6 + 15

r7

)
.



MAGNITUDES OF COMPACT SETS 31

9.1. Case n = 1. Notational fix: ν = 0, m = 1.

Inputs: ψ0(R), ψ1(R).

Outputs: α0, h′(R), extremal energy, magnitude.

The single equation for α0 is α0ψ0(R) = 1 which has solution α0 = 1/ψ0(R).

Equation (28) requires (∆j−1h)′(R) for j = 1 only, which is simply h′(R), and by
Corollary 1, equation (20), h′(R) = −Rα0ψ1(R).

Using (28), the extremal energy is given by

ω1R

(
1 +R−1(−1)

(
1

1

)
h′(R)

)
= ω1R

(
1−R−1h′(R)

)
= ω1R (1 + α0ψ1(R)) .

Substituting the value of α0 gives

ω1R (1 + ψ1(R)/ψ0(R)) = ω1(R+ 1).

Dividing by 1!ω1 gives the magnitude of the closed interval [−R,R] as

R+ 1,

in agreement with the results of [11] and [17].

9.2. Case n = 3.

Notational fix: ν = 1, m = 2.

Inputs: ψ0(R), ψ1(R), ψ2(R).

Outputs: α0, α1, h′(R), (∆h)′(R), extremal energy, magnitude.

Our two equations are

α0ψ0(R) + α1ψ1(R) = 1

α0ψ1(R) + α1ψ2(R) = 0

which have solution

α0 =
ψ2(R)

ψ0(R)ψ2(R)− ψ1(R)2

α1 =
−ψ1(R)

ψ0(R)ψ2(R)− ψ1(R)2
.

Now ψ0(R)ψ2(R)− ψ1(R)2 = e−2R(R−2 +R−3 −R−2) = e−2RR−3, so

α0 = eR(R+ 1)

α1 = −eRR2.

Note the appearance of the expression R+1 (as displayed in the previous subsection)
in the formula for α0.

Equation (28) requires (∆j−1h)′(R) for j = 2 only, and by formula (29) we have

(∆h)′(R) = −R(2)1(−1)α0ψ2(R)− 0 = 2Rα0ψ2(R)

Using (28), the extremal energy is given by

ω3R
3

(
1 + 3R−1(−1)2

(
2

2

)
(∆h)′(R)

)
= ω3R

3
(
1 + 3R−1(∆h)′(R)

)
= ω3R

3 (1 + 6α0ψ2(R)) .
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If we substitute in the explicit values for α0 and ψ2(R) we obtain

= ω3(R3 + 6R2 + 12R+ 6),

which upon dividing by 3!ω3 gives the magnitude of the closed ball of radius R in
R3 as

1

3!
(R3 + 6R2 + 12R+ 6) =

R3

3!
+R2 + 2R+ 1.

This verifies the Leinster–Willerton convex magnitude conjecture for balls in R3.

9.3. Case n = 5.

Notational fix: ν = 2, m = 3.

Inputs: ψ0(R), . . . , ψ3(R).

Outputs: α0, α1, α2, h′(R), ∆h′(R), (∆2h)′(R), extremal energy, magnitude.

Our three equations are

α0ψ0(R) + α1ψ1(R) +α2ψ2(R) = 1

α0ψ1(R) + α1ψ2(R) +α2ψ3(R) = 0

4α0ψ1(R) + 2α1ψ2(R) +0 = 1

which upon substitution of the values of ψj(R) become

α0 + α1R
−1 +α2(R−2 +R−3) = eR

α0R
−1 + α1(R−2 +R−3) +α2(R−3 + 3R−4 + 3R−5) = 0

α04R−1 + α12(R−2 +R−3) +0 = eR.

A visit to matrixcalc.org confirms that the solution of these equations is given
by

αj =
eRβj

2(R+ 3)

where

β0 = 6 + 12R+ 6R2 +R3

β1 = −R2(12 + 9R+ 2R2)

β2 = (2 +R)R4.

Note that the system is singular when R = −3, and note the appearance of the
expression R3/6 + R2 + 2R + 1 (as displayed in the previous subsection) in the
formula for α0.

Equation (28) requires (∆j−1h)′(R) for j = 2 and 3, and by formula (29) we have
(case j = 2)

(∆h)′(R) = −R.2
1∑
i=0

(i− 2)αiψi+2(R) + 0 = 2R(2α0ψ2(R) + α1ψ3(R)),
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and, (case j = 3),

(∆2h)′(R) = −R22(−1)(−2)α0ψ3(R)− (−1)1

(
2

1

)
(∆h)′(R)

= −8Rα0ψ3(R) + 4R(2α0ψ2(R) + α1ψ3(R))

= −8Rα0ψ3(R) + 8Rα0ψ2(R) + 4Rα1ψ3(R).

Using (28), the extremal energy is given by

ω5R
5

(
1 + 5R−1

{(3

2

)
(∆h)′(R)−

(
3

3

)
(∆2h)′(R)

})
= ω5R

5
(
1 + 5R−1{3(∆h)′(R)− (∆2h)′(R)}

)
= ω5R

5 (1 + 5{3[4α0ψ2(R) + 2α1ψ3(R)]− [−8α0ψ3(R) + 8α0ψ2(R) + 4α1ψ3(R)]})
= ω5R

5 (1 + 5{4α0ψ2(R) + 8α0ψ3(R) + 2α1ψ3(R)}) .

Substituting in the explicit values for ψ2(R) and ψ3(R) we see that this expression
equals

ω5

(
R5 + 5e−RR5[(4α0(R−2 +R−3) + 8α0(R−3 + 3R−4 + 3R−5) + 2α1(R−3 + 3R−4 + 3R−5)]

)
= ω5

(
R5 + 5e−R[α0(4R3 + 12R2 + 24R+ 24) + α1(2R2 + 6R+ 6)]

)
.

Now plugging in the explicit values for α0 and α1, we obtain

ω5R
5+

5ω5

2(R+ 3)

(
(6 + 12R+ 6R2 +R3)(4R3 + 12R2 + 24R+ 24)−R2(12 + 9R+ 2R2)(2R2 + 6R+ 6)

)
which, after some simplification and cancellation in the highest order terms, gives
that the extremal energy is given by

ω5R
5 + 5ω5

72 + 216R+ 216R2 + 105R3 + 27R4 + 3R5

R+ 3
.

Dividing by c5 = 5!ω5 we obtain that the magnitude of the ball of radius R in R5

is

R5

5!
+

3R5 + 27R4 + 105R3 + 216R2 + 216R+ 72

24(R+ 3)
.

Note that when R = 0 we obtain the value 1, but when R > 0 this quantity is
strictly greater than the conjectured value of

1

5!
R5 +

1

9
R4 +

2

3
R3 + 2R2 +

8

3
R+ 2R2 + 1.

We can expand our formula when R > 3 as

1

5!
R5 +

1

8
R4 +

3

4
R3 +

17

8
R2 +

21

8
R+

9

8
+O(

1

R
)

as R → ∞, but the coefficients (other than that of R5) do not agree either with
those conjectured by Leinster and Willerton.
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9.4. Case n = 7.

Notational fix: ν = 3, m = 4.

Inputs: ψ0(R), . . . , ψ4(R).

Outputs: α0, . . . , α3, h′(R), . . . , (∆3h)′(R), extremal energy, magnitude.

For brevity of expression we suppress the multiplicative factors e±R which should
appear below, and which ultimately cancel as described above. We have the four
equations

(30)



α0ψ0(R) + α1ψ1(R) + α2ψ2(R) + α3ψ3(R) = 1

α0ψ1(R) + α1ψ2(R) + α2ψ3(R) + α3ψ4(R) = 0

6α0ψ1(R) + 4α1ψ2(R) + 2α2ψ3(R) = 1

3α0ψ2(R) + 2α1ψ3(R) + α2ψ4(R) = 0

with solution

(31)

α0 = 360+1080R+1080R2+525R3+135R4+18R5+R6

360+288R+72R2+6R3 ,

α1 = − 360R2+555R3+345R4+105R5+16R6+R7

120+96R+24R2+2R3 ,

α2 = 120R4+150R5+66R6+13R7+R8

120+96R+24R2+2R3 ,

α3 = − 24R6+27R7+9R8+R9

360+288R+72R2+6R3

as another visit to matrixcalc.org confirms.

Note that the numerator in the formula for α0 is

360 + 1080R+ 1080R2 + 525R3 + 135R4 + 18R5 +R6

whereas the magnitude of the ball of radius R in R5 (calculated in the previous
subsection) is

R5

5!
+

3R5 + 27R4 + 105R3 + 216R2 + 216R+ 72

24(R+ 3)

=
360 + 1080R+ 1080R2 + 525R3 + 135R4 + 18R5 +R6

120(R+ 3)
,

with the same numerator as α0.

From equation (28) the extremal energy is given by

ω7R
7 + 7ω7R

6

(
−
(

4

3

)(
∆2u

)′
(R) +

(
4

4

)(
∆3u

)′
(R)

)
= ω7

(
R7 + 7R6(−4

(
∆2u

)′
(R) +

(
∆3u

)′
(R)
)

= ω7

(
R7 − 28R6

(
∆2u

)′
(R) + 7R6

(
∆3u

)′
(R)
)

= ω7

(
R7 + 7R6

{(
∆3u

)′
(R)− 4

(
∆2u

)′
(R)
})

.

(32)

So we need to calculate
(
∆2u

)′
(R) and

(
∆3u

)′
(R).
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Using the recurrence relation (29) with j = 3 gives

(∆2h)′(R) = −R22
1∑
i=0

(i− 2)(i− 3)αiψi+3(R) + 0

= −4R(6α0ψ3(R) + 2α1ψ4(R))

= −8R(3α0ψ3(R) + α1ψ4(R)).

Next, using the recurrence relation (29) with j = 4 gives

(∆3h)′(R) = 6R23α0ψ4(R) +

(
3

2

)
(∆2h)′(R)

= 48Rα0ψ4(R) + 3(−8R(3α0ψ3(R) + α1ψ4(R)))

= 48Rα0ψ4(R)− 24R(3α0ψ3(R) + α1ψ4(R))

= 24R(2α0ψ4(R)− 3α0ψ3(R)− α1ψ4(R)).

Now

3α0ψ3 + α1ψ4 =
360 + 1080R+ 1080R2 + 525R3 + 135R4 + 18R5 +R6

120 + 96R+ 24R2 + 2R3
× 3 + 3R+R2

R5

− 360 + 555R+ 345R2 + 105R3 + 16R4 +R5

120 + 96R+ 24R2 + 2R3
× 15 + 15R+ 6R2 +R3

R5

= −4320 + 9405R+ 8820R2 + 4545R3 + 1380R4 + 246R5 + 24R6 +R7

R5 (120 + 96R+ 24R2 + 2R3)

(noticing the cancellation in the R8 terms), and so(
∆2u

)′
(R) =

8(4320 + 9405R+ 8820R2 + 4545R3 + 1380R4 + 246R5 + 24R6 +R7)

R4 (120 + 96R+ 24R2 + 2R3)
.

Moreover

3ψ3−2ψ4 =
3

R3
+

9

R4
+

9

R5
− 2

R4
− 12

R5
− 30

R6
− 30

R7
=
−30− 30R− 3R2 + 7R3 + 3R4

R7
,

so that

α0 (3ψ3 − 2ψ4) + α1ψ4

equals

360 + 1080R+ 1080R2 + 525R3 + 135R4 + 18R5 +R6

360 + 288R+ 72R2 + 6R3
× −30− 30R− 3R2 + 7R3 + 3R4

R7

− 1080R2 + 1665R3 + 1035R4 + 315R5 + 48R6 + 3R7

360 + 288R+ 72R2 + 6R3
× 15 + 15R+ 6R2 +R3

R7

= −10800 + 43200R+ 82080R2 + 90045R3 + 61380R4 + 26685R5 + 7380R6 + 1254R7 + 120R8 + 5R9

R7 (360 + 288R+ 72R2 + 6R3)

(noticing the cancellation in the R10 terms), which gives that(
∆3u

)′
(R)
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equals

24(10800 + 43200R+ 82080R2 + 90045R3 + 61380R4 + 26685R5 + 7380R6 + 1254R7 + 120R8 + 5R9)

R6 (360 + 288R+ 72R2 + 6R3)
.

Combining these, we see that

R6
(
∆3u

)′
(R)− 4R6

(
∆2u

)′
(R)

equals

24(10800 + 43200R+ 82080R2 + 90045R3 + 61380R4 + 26685R5 + 7380R6 + 1254R7 + 120R8 + 5R9)

360 + 288R+ 72R2 + 6R3

− 96(4320R2 + 9405R3 + 8820R4 + 4545R5 + 1380R6 + 246R7 + 24R8 +R9)

360 + 288R+ 72R2 + 6R3

=
43200 + 172800R+ 259200R2 + 209700R3 + 104400R4 + 34020R5 + 7440R6 + 1080R7 + 96R8 + 4R9

60 + 48R+ 12R2 +R3
.

Finally, we insert this into (32) and divide by 7!ω7 to see that the magnitude of the
closed ball of radius R in R7 is given by

R7

7!
+

1
180R

9 + 2
15R

8 + 3
2R

7 + 31
3 R

6 + 189
4 R5 + 145R4 + 1165

4 R3 + 360R2 + 240R+ 60

R3 + 12R2 + 48R+ 60
.

10. Concluding remarks

1. The three-dimensional convex conjecture predicts that the magnitude of the
convex body K should be

V0(K)

0! ω0
+
V1(K)

1! ω1
+
V2(K)

2! ω2
+
V3(K)

3! ω3

where Vj(K) is the j’th intrinsic volume and ω0 = 1, ω1 = 2, ω2 = π and ω3 = 4π/3.
Now V0(K) = 1, V2(K) = Surf (∂K)/2, V3(K) = Vol(K) and V1(K) = P2(K)/π
where P2(K) is the coefficient of t2 in the degree 3 polynomial vol (K + tB1). So
the magnitude of K should be

Vol (K)

8π
+

Surf (∂K)

4π
+
V1(K)

2
+ 1.

In the notation of Theorem 5, the question of validity of the convex magnitude
conjecture reduces to whether for the solution h ∈ H2(R3) of the boundary value
problem (I −∆)2h = 0 off K, h = 1 on K, we have

1

8π

∫
∂K

∂∆h

∂ν
dS =

surf (∂K)

4π
+
V1(K)

2
+ 1.

When K is the cuboid [−R1, R1]× [−R2, R2]× [−R3, R3] we have V1(K) = 2(R1 +
R2 +R3), so that we expect the magnitude of K to be

R1R2R3

π
+

(R1R2 +R2R3 +R3R1)

2π
+ (R1 +R2 +R3) + 1.
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In particular in the case of the cuboid do we have

1

8π

∫
∂K

∂∆h

∂ν
dS =

(R1R2 +R2R3 +R3R1)

2π
+ (R1 +R2 +R3) + 1?

Even when Rj = R for j = 1, 2, 3, why should the quantity

1

8π

∫
∂K

∂∆h

∂ν
dS

be a polynomial of degree 2, still less the specific polynomial 3R2/2π + 3R + 1?
One of the difficulties in addressing this problem lies in not having explicit formulae
for solutions of these types of boundary value problems in the absence of spherical
symmetry.

On the other hand, matters may be better if we instead consider ellipsoids. Khavin-
son and Lundberg [9] note that ellipsoidal harmonics can be used to study elliptic
boundary value problems in the interior of ellipsoids. It may be possible to use
them in the current context to obtain explicit solutions of (I − ∆)2u = 0 in the
exterior of an ellipsoid in R3 which might then lead to explicit formulae for the
magnitudes of ellipsoids in R3. Note however that the mixed volumes, even the
surface area, of a general ellipsoid in R3 are not expressible as elementary functions
of the semi-axes, but instead involve elliptic integrals.

2. The methods presented here can be extended to obtain explicit expressions for
the magnitude of general compact sets possessing spherical symmetry.

3. An as-yet-unexplained (empirical) phenomenon is that in the formula for the
coefficient α0(R) in the n-dimensional setting, with n odd and small, the formula for
magnitude of the ball of radius R in Rn−2 makes a rather mysterious appearance,
see the previous section. Further observations of this kind have been made by
Willerton, (private communication), who has also developed a more streamlined
approach to solving the ODE (19) and fitting the boundary conditions. This leads
to a more symmetric system of linear equations for the unknowns αj . Using the
new approach to calculating magnitude of Leinster and Meckes ([13], Theorem
4.16), he is able to derive a formula for the magnitude of a ball in odd dimensions
expressed in terms of the reverse Bessel polynomials. This formula can be re-cast
in a reasonably succinct and natural form in odd dimensions at least up to and
including 39 (where the coefficients of the numerator in the magnitude total over
60, 000 digits).

4. The methods here can also be used to study the extremal energies or Bessel-like
capacities

Cm(K,λ) := inf{‖(λI −∆)m/2h‖2L2(Rn) : h ≡ 1 on K}

for λ > 0 for convex bodies K when m ∈ N and to calculate them explicitly when
K is a ball. Indeed, a simple scaling argument shows that

Cm(K,λ) = λm−n/2Cm(λ1/2K, 1)

and we have shown the asymptotic behaviour of C(n+1)/2(K, 1) and how to calcu-

late it explicitly for balls above. In particular, C(n+1)/2(K,λ) ∼ λ1/2 as λ→ 0 and

C(n+1)/2(K,λ) ∼ λ(n+1)/2Vol(K)/n!ωn as λ→∞. When m = 1 and n = 3 for ex-
ample, we can calculate using Theorem 5 and the formula for ψ1 that C1(B(0, R), 1)
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is simply 4π(R3/3 +R+ 1). So

C1(B(0, R), λ) = λ−1/2C1(B(0, λ1/2R), 1)

= 4πλ−1/2(λ3/2R3/3 + λ1/2R+ 1)

= 4πλR3/3 + 4πR+ 4πλ−1/2.

5. There remains the possibility that a reformulated version of the convex mag-
nitude conjecture might be true if we replaced magnitude by some closely related
notion which coincides with it in dimensions one and three, and is strictly smaller
than it for nontrivial balls in odd dimensions five and above. It would be very
interesting to find a such a notion. The notion of maximum diversity

|X|+ :=
1

n!ωn
inf
{
‖f‖2H(n+1)/2(Rn) : f ∈ H(n+1)/2(Rn), f ≥ 1 on X

}
found for example in [16], [17] and the references therein, and which is much more in-
tune than magnitude with classical potential theory, unfortunately does not satisfy
these criteria. One should note the parallel between the definition of maximum
diversity and certain obstacle problems for higher-order operators (see for example
[3] and [4]) though this does not seem to have been exploited yet.) We thank E.
Milakis for bringing this parallel to our attention.

6. In forthcoming work, H. Gimperlein and M. Goffeng [7] use methods from semi-
classical analysis together with our Theorem 5 to exhibit an asymptotic expansion
of the magnitude |RX| as R → ∞, where X ⊆ Rn is open and bounded with
smooth boundary, when n ≥ 3 is odd. In particular, they prove

|RX| = Vol(X)

n! ωn
Rn +

(n+ 1) Surf(∂X)

2 n! ωn
Rn−1 + cRn−2 + o(Rn−2) ,

where c is proportional to an integral of a curvature of ∂X. (The coefficient of
Rn−1 differs from the prediction of Leinster and Willerton unless n = 3.)
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