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Genetic determinants of cognition are poorly characterized and their relationship to 

genes that confer risk for neurodevelopmental disease is unclear. Here, we used a 

systems-level analysis of genome-wide gene expression data to infer gene-regulatory 

networks conserved across species and brain regions. Two of these networks, M1 and 

M3, showed replicable enrichment for common genetic variants underlying healthy 

human cognitive abilities including memory. Using exome sequence data from 6,871 

trios, we find that M3 genes are also enriched for mutations ascertained from patients 

with neurodevelopmental disease generally, and intellectual disability and epileptic 

encephalopathy in particular. M3 consists of 150 genes whose expression is tightly 

developmentally regulated, but which are collectively poorly annotated for known 

functional pathways. These results illustrate how systems-level analyses can reveal 

previously unappreciated relationships between neurodevelopmental disease genes in 

the developed human brain, and provide empirical support for a convergent gene-

regulatory network influencing cognition and neurodevelopmental disease.  

 

Cognition refers to human mental abilities such as memory, attention, processing speed, 

reasoning and executive function. Performance on cognitive tasks varies between individuals 

and is highly heritable1 and polygenic2,3. However, to date, progress in identifying molecular 

genetic contributions to healthy human cognitive abilities has been limited4,5.  

 

A distinction can be made between cognitive domains such as the ability to apply acquired 

knowledge and learned skills (so called crystallized abilities) and fluid cognitive abilities such 

as the capacity to establish new memories, reason in novel situations or perform cognitive 

tasks accurately and quickly6. Notably, within individuals, performance on different measures 

of cognitive ability tend to be positively correlated such that people who do well in one 

domain, such as memory, tend to do well in other domains7. Seemingly disparate domains of 

cognitive ability also show high levels of genetic correlation in twin studies, typically in 

excess of 0.68, and analyses using genome-wide similarity between unrelated individuals 
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(genome-wide complex trait analysis, GCTA) has also demonstrated substantial genetic 

correlation between diverse cognitive and learning abilities9,10. These studies suggest genes 

that influence human cognition may exert pleiotropic effects across diverse cognitive domains, 

such that genes regulating one cognitive ability might influence other cognitive abilities.  

 

Since impairment of cognitive function is a core clinical feature of many neurodevelopmental 

diseases including schizophrenia11, autism12, epilepsy13 and intellectual disability (by 

definition), we sought to investigate gene-regulatory networks for human cognition and to 

determine their relationship to neurodevelopmental disease. An overview of our experimental 

design is provided in Supplementary Fig. 1.  

 

 

RESULTS 

Gene co-expression network analysis 

We hypothesized that unsupervised genome-wide co-expression network analysis starting 

from the human hippocampus may be informative for genes and pathways influencing 

cognition. Specifically, gene co-expression network analysis could prioritize sets of genes 

preferentially enriched for common variants (i.e., SNPs) associated with cognitive abilities 

and so reveal novel genetic pathways influencing variable cognitive performance.  

 

We used as our starting material 122 fresh-frozen whole-hippocampus samples surgically 

resected en bloc from patients with temporal lobe epilepsy (TLE) (Supplementary Table 1). 

We chose surgical hippocampus samples from living patients in order to avoid potential 

unwanted effects on gene expression related to the variable agonal state or time to autopsy 

associated with post-mortem samples. In addition, we used several gene expression datasets 

(detailed below) to assess the reproducibility of the identified gene networks in non-TLE 

hippocampi both across species and across brain regions.  
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We first determined gene co-expression networks in the human hippocampus by weighted 

gene co-expression network analysis (WGCNA), which groups sets of covarying genes across 

the sample set into co-expression ‘modules’14. Applied to the full set of 122 samples, 

WGCNA grouped the human hippocampus transcriptome into 24 distinct co-expression 

modules (M1-M24), which varied in size from 29 to 1,148 genes (Fig. 1a, Supplementary 

Table 2).  

 

To identify which of the 24 hippocampus modules from patients with TLE had co-expression 

patterns unrelated to epilepsy, for each module, we compared its co-expression topology in 

patients with TLE with that from hippocampus samples ascertained from persons with no 

history of psychiatric or neurological illness15. This comparative network analysis was 

undertaken using the default network dissimilarity measure in WGCNA based on the 

topological overlap matrix (TOM)14. Empirical P values for the validity (i.e., reproducibility) 

of modules were calculated by comparing the average topological overlap for module genes 

to the average connectivity of 10,000 randomly sampled networks (Methods). After 

Bonferroni adjustment for the number of modules tested we found that 16 of the 24 modules 

were significantly preserved in 63 non-diseased human post-mortem hippocampus samples 

(empirical P≤0.002) (Fig. 1a, Supplementary Table 3), suggesting the co-expression of 

genes in these 16 modules is unrelated to epilepsy. Additionally, preservation of these 16 co-

expression modules in a distinct human hippocampus gene expression dataset provides an 

independent line of evidence to support the validity of these modules.  

 

Since molecular pathways underlying cognitive processes might be evolutionarily 

conserved16,17,18 and indeed the rodent hippocampus has long been the primary model for 

studying molecular processes related to learning and memory19, we next aimed to identify 

which of the human hippocampus co-expression modules are preserved in the healthy mouse 

hippocampus. To this aim, we carried out high-throughput sequencing of mRNA (RNA-seq) 

on snap-frozen hippocampus samples from 100 healthy adult mice and assessed the co-
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expression patterns between the mouse orthologs of human hippocampus module genes 

(Methods). Of the 16 human hippocampus modules preserved between non-diseased post-

mortem hippocampus and surgical hippocampus samples from patients with TLE, four 

modules (M1, M3, M11 and M19) were also significantly preserved in the healthy mouse 

hippocampus (empirical P≤0.002) (Fig. 1a, Supplementary Table 3).  

 

To assess whether the four cross-species conserved hippocampus modules (M1, M3, M11, 

M19) are specific to the hippocampus or more widely expressed and co-expressed across the 

human cortex, we then analyzed genome-wide gene expression data from 102 post-mortem 

human brains from the UK Brain Expression Consortium (UKBEC)20 across the following 

brain regions: cerebellum, temporal cortex, occipital cortex, and frontal cortex. Each brain 

region was treated as an independent dataset and gene expression levels in UKBEC were 

adjusted for age, gender, post-mortem interval, cause of death and brain bank ID. 

Comparative network analysis was undertaken as above, and showed preservation of all four 

hippocampus co-expression modules in multiple other brain regions (Supplementary Table 

4). Therefore, despite the modules being originally re-constructed from hippocampus gene 

expression data, these results suggest the modules are not specific to the hippocampus and so 

might be capturing functions that are more widely distributed in the human cortex.  

 

Analyses of biological terms and canonical pathways enriched among the genes in all 24 

hippocampus modules from TLE patients are shown in Supplementary Table 5. As a general 

observation, the different hippocampal co-expression modules demonstrated notable 

functional specificity. Of the four modules conserved in healthy hippocampi across species 

(M1, M3, M11, M19), only M1 (n=1,148 genes) and M3 (n=150 genes) were enriched for 

functional categories explicitly related to synaptic processes (Fig. 1b). Module M1 was 

highly enriched for Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways ‘calcium 

signaling’ (Benjamini-Hochberg (BH) corrected P=7.3×10-7, ratio of enrichment (r)=3.0), 

‘axon guidance’ (BH P=9.0×10-5, r=2.5) and ‘long-term potentiation’ (LTP) (BH P=4.0×10-3, 
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r=5.0), and for the gene ontology (GO) terms ‘synapse’ (BH P=6.9×10-15, r=2.5), ‘neuron 

projection’ (BH P =1.4×10-14, r=2.2) and ‘synaptic vesicle’ (BH P=2.9×10-8, r=3.5). Module 

M3 was enriched for genes belonging to ‘postsynaptic density’ (PSD) (BH P=9.0×10-4, r=6.6) 

and ‘Reelin signaling pathway’ (BH P=0.049, r=12.5). We therefore investigated further 

whether M1 and M3 were enriched for genes for post-synaptic complexes using a set of 671 

proteins in human neocortical PSD and 79 proteins related to NMDAR/ARC complexes 

previously implicated in neurodevelopmental disease, memory and intelligence21,17,22,5. We 

found that genes comprising the PSD and NMDAR/ARC complexes were significantly 

overrepresented in M1 (Fisher’s exact test (FET) P=5.4×10-13, Odds Ratio (OR)=2.10, 95% 

confidence interval (95% CI) [1.73-2.55] and P=2.6×10-8, OR=4.25, 95% CI [2.57-6.90], 

respectively) but not in M3 (Fig. 1c). However, manual annotation of gene function for M3 

genes revealed that 58 of the 121 genes with a reported putative function had a biological 

activity potentially related to neurodevelopment (Supplementary Table 6), suggesting M3 is 

also capturing novel connectivity between genes that share related neural functions. Analysis 

of physical interactions between the protein products of genes in M1 and M3 using the InWeb 

database23 found significant enrichment for direct protein-protein interactions (PPI) for M1 

(551 of 1,148 genes, P=0.001) and M3 (17 of 150 genes, P=0.02), providing a further line of 

evidence to support the validity of these two co-expression modules.  

 

In summary, these comparative genome-wide network analyses starting from human surgical 

hippocampus samples identify four modules (M1, M3, M11 and M19) that are cross-species 

conserved and whose constituent genes are widely co-expressed across the human brain. Two of 

these modules (M1 and M3) are highlighted as having potential function related to neural activity.  

 

Integrated cognitive GWAS and gene network analysis  

To determine the relationship between the four cross-species preserved co-expression modules 

(M1, M3, M11 and M19) and human cognitive function we tested each module for an enriched 

genetic association with four cognitive phenotypes (general fluid cognitive ability, processing 
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speed, crystalized cognitive ability and verbal delayed recall) in two independent cohorts of 

cognitively healthy subjects. Our Discovery cohort consisted of genome-wide association 

study (GWAS) data relating to 6,732 (after QC) cognitively healthy subjects participating in 

the “Generation Scotland: Scottish Family Health Study” (GS:SFHS)24. The Replication 

cohort consisted of independent GWAS data relating to 1,003 (after QC) cognitively healthy 

subjects participating in the Lothian Birth Cohort 1936 (LBC1936)25. Mean age at assessment 

was 55 years (standard deviation (SD)=11.35) in GS:SFHS and 69.6 years (SD=0.8) in 

LBC1936. Details describing how the cognitive phenotypes were derived and GWAS analysis 

are provided in Methods.  

 

To test each module’s association to the four cognitive phenotypes we first used VEGAS26 

(versatile gene-based association study) to account for the number of SNPs in each gene and 

the linkage disequilibrium (LD) between those SNPs followed by GWAS-enrichment analysis 

using the Z-score enrichment method27 (Methods). As a negative control, and to assess 

specificity of the GWAS-enrichments, each module was also tested against five large GWAS 

of clinical phenotypes with no known relationship to healthy cognitive performance (waist-

hip ratio, fasting glucose homeostasis, glucose challenge homeostasis, systolic blood pressure 

and diastolic blood pressure (Supplementary Table 7).  

In the larger Discovery cohort (GS:SFHS), we found nominal enrichment of association 

(P<0.05) for M1 with general fluid cognitive ability, processing speed, crystalized cognitive 

ability and verbal delayed recall, and for M3 with general fluid cognitive ability, processing 

speed and verbal delayed recall (Table 1). Neither M1 nor M3 was enriched for association to 

any of the five non-cognitive control phenotypes despite the substantial sample size and 

power of these GWAS studies (Supplementary Table 7). M11 and M19 were not 

significantly (P<0.05) enriched for association with any cognitive phenotype. We adopted a 

false discovery rate (FDR) adjustment based on the number of modules and phenotypes tested 

in the Discovery cohort GS:SFHS, and modules significantly enriched for association at FDR 
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<10% were taken forward for replication in LBC1936. The strongest replicable enrichment of 

association was between M3 and general fluid cognitive ability (GS:SFHS P=0.002, Z-

score=2.95; LBC1936 P=0.004, Z-score=2.66) (Table 1). In addition, we observed replicable 

enrichment of association between M3 and delayed recall (GS:SFHS P=0.038, Z-score=1.77; 

LBC1936 P=0.005, Z-score=2.56). For M1, we observed replicable enrichment of association 

with delayed recall (GS:SFHS P=0.016, Z-score=2.14; LBC1936 P=0.006, Z-score=2.51) and 

crystalized cognitive ability (GS:SFHS P=0.020, Z-score=1.96; LBC1936 P=0.045, Z-

score=1.70).  

These results suggest modules M1 and M3 are enriched for genes related to general cognitive 

ability including memory. We therefore further explored M1 and M3 by investigating their 

expression in different stages of human brain development following the method of Pletikos28 

and by undertaking a detailed analysis of brain region expression of M1 and M3 genes. 

Utilizing data from Kang and colleagues29 consisting of gene expression measurements from 

11 topographically defined cortical areas from 53 human brains spanning 10 weeks post-

conception (PCW) to 82 years of age (Methods), we observed a clear developmental gradient 

of expression of both M1 and M3 beginning in early mid-fetal development (16 ≤ PCW ≤ 19), 

maximal by birth and then persisting through all post-natal periods (Fig. 1d). Consistent with 

the co-expression analyses using UKBEC data (above and Supplementary Table 4), we 

observed that following birth M1 and M3 genes are highly expressed across the human cortex 

with the exception of striatum, mediodorsal nucleus of thalamus and cerebellar cortex. The 

developmentally regulated expression of M1 and M3 genes across diverse brain regions is 

consistent with the genetic evidence (Table 1 and above) suggesting these modules play a 

broader role in human cognitive abilities beyond hippocampal memory.  

 

The tightly regulated developmental trajectory of expression of M1 and M3 led us to explore 

their transcriptional control. Using the WebGestalt toolkit30 to test for enrichment of 

transcription factor binding sites (TFBS) among M1 and M3 genes, we found M1 was highly 
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enriched for NRSF/REST (repressor element 1-silencing transcription factor) targets (BH 

P=0.0006), and this was confirmed using a set of previously published and experimentally 

derived targets of REST31 (enrichment P=0.007). For M3, the maximum TFBS enrichment 

was for SRY (sex determining region Y) transcription factor (BH P=0.01). However, using 

publicly available data on sex-biased gene expression in the brain29 we found no evidence of 

enrichment for male-specific genes in M3 (data not shown). In addition, we found no 

significant enrichment for experimentally derived REST targets in M3 (P=0.67), suggesting 

different processes underlie the transcriptional regulation of M1 and M3 in the brain.  

 

Burden of neurodevelopmental de novo mutations in gene networks  

Extensive epidemiological and genetic evidence suggest that clinically distinct 

neurodevelopmental disorders could be thought of as reflecting different patterns of 

symptoms (or impairments) of a shared neurodevelopmental continuum32. The co-occurrence 

of clinical symptoms and diagnostic overlap between neuropsychiatric disorders has also 

meant that diseases such as epilepsy are increasingly considered within the 

neurodevelopmental spectrum33. Since cognitive impairment is a core component of many 

neurodevelopmental disorders including schizophrenia11, autism12 and epilepsy13, we set out 

to explore the relationship between the four cross-species conserved gene co-expression 

modules (and in particular M1 and M3) and susceptibility to neurodevelopmental disease.  

 

To this aim, we first assessed if any of the modules were enriched for genes intolerant to 

functional mutation using the Residual Variation Intolerance Score (RVIS)34; genes 

considered to be intolerant to mutation according to their RVIS are more likely to be 

associated with developmental disease when mutated34,35. Using the individual RVIS for each 

gene in a module we calculated a module-level RVIS and compared the distribution of RVIS 

scores for each module to the distribution of intolerance scores from all hippocampus-

expressed protein-coding genes outside of that module (Methods). Of the four cross-species 

conserved modules, three (M1, M3 and M11) were significantly enriched for intolerant genes 



 10 

(Supplementary Table 8), meaning that these modules contain an excess of genes intolerant 

to functional genetic variation relative to the genome-wide expectation. Given their cross-

species preservation of co-expression, this finding suggests selective constraints on these 

modules in terms of both their coding sequence and transcriptional regulation.  

 

We then investigated the relationship between the four cross-species conserved modules and 

neurodevelopmental disease by testing each module for enrichment of validated non-

polymorphic de novo single nucleotide variant mutations (DNMs) identified in 

neurodevelopmental whole-exome sequencing (WES) studies that shared similar sequencing 

technologies, coverage criteria and variant calling methodology (Methods). Collectively, the 

neurodevelopmental disease cohort consisted of 5,738 non-overlapping published parent-

offspring trios across four disease phenotypes; autism spectrum disorder (ASD, n=4,186), 

schizophrenia (SCZ, n=1,004), intellectual disability (ID, n=192) and epileptic 

encephalopathy (EE, n=356) (see Methods  for cohort references). Additionally, we 

considered DNMs from an independent cohort of 1,133 trios with severe, previously 

undiagnosed developmental disease from the Deciphering Developmental Disorders (DDD) 

study36,37. For controls, we used 1,891 non-neurological control samples from seven published 

studies38,39,40,41,42,43,44. 

 

Each module’s genetic relationship to disease was then tested using two statistical approaches. 

First, we compared rates of DNMs in each module compared to random expectation based on 

the collective consensus coding sequence (CCDS) of module genes. The expected number of 

DNMs for each gene set (i.e., module) was calculated based on the length of CCDS sequence 

of genes in the set and the overall frequency of DNM in all CCDS genes. Then to estimate the 

enrichment we used the ratio between the observed number of DNMs in the gene set and the 

expected number based on this length model using binomial exact test (BET, two-tail).  

Secondly, to accommodate for sequence context factors such as the inherent mutability of 

genes in a module, we adopted a FET (two-tail) to empirically compare the rates of DNMs 



 11 

overlapping the CCDS real estate of a module in case- and control cohorts. This approach is 

also able to identify modules comprised of genes that are preferentially depleted of DNMs in 

healthy controls. For each module, we report DNM enrichments by both approaches and by 

considering three main classes of mutation: (a) predicted deleterious DNM (pdDNM) 

consisting of loss-of-function (nonsense and splice-site mutations) and predicted functional 

missense mutations, (b) non-synonymous DNM (nsDNM) consisting of all missense, 

nonsense and splice-site mutations and (c) synonymous DNM (as a negative control). For 

completeness, we also report enrichments considering only loss-of-function (i.e., nonsense 

and splice-site) mutations, although we expect limited power to detect significant enrichments 

given that single nucleotide DNMs in this class were relatively uncommon in the 

neurodevelopmental disease cohorts used here. Finally, to assess specificity of the module-

level enrichment results, for each class of DNM detailed above we calculated an enrichment 

of DNM among all genes significantly expressed in the human hippocampus (hereon termed 

“Background” genes), taking the conservative route of including in this set of genes all the 

genes contributing to the individual co-expression modules.  

 

We observed that module M3 was strongly and specifically enriched for genes that when 

mutated are associated with intellectual disability and epileptic encephalopathy, and that this 

enrichment holds true for both pdDNM (ID BET P=6.6x10-5, FET P=3.1x10-4, OR=10.29, 

95% CI [2.56-48.91]; EE BET P=1.9x10-6 , FET P=7.1x10-5 , OR=9.1, 95% CI [2.64-39.47]) 

and all nsDNM (ID BET P=3.3x10-5, FET P=1.4x10-5, OR=11.22, 95% CI [3.51-38.84]; EE 

BET P=1.3x10-5 , FET P=9.1x10-6, OR=8.52, 95% CI [2.99-27.56]) (see Fig. 2 and 

Supplementary Table 9). These enrichments remained significant after adjustment for the 

number of modules and phenotypes tested. M1 was not significantly enriched for any 

neurodevelopmental disease above the Background (Fig. 2). There was no enrichment in M3 

of disease-ascertained synonymous DNM for either ID (BET P=0.251, FET P=0.239) or EE 

(BET P=0.576, FET P=0.522), or any other neurodevelopmental phenotype (Supplementary 

Table 9).  



 12 

 

For ASD and SCZ, there was a trend towards enrichment of disease-ascertained DNM in M3 

but estimates of the 95% confidence intervals of the odds ratio overlapped with those from 

Background genes (Fig. 2). However, when combining all 5,738 trios with 

neurodevelopmental disease (i.e., ID + EE + ASD + SCZ) we observed significant enrichment 

of nsDNM in M3 above Background (BET P=3.54x10-6 , FET P=9.0x10-4, OR=3.54, 95% CI 

[1.51-9.74]) (Fig. 2), suggesting M3 is enriched for genes impacted by DNM associated with 

neurodevelopmental disease broadly and with ID and EE in particular. Consistent with this 

interpretation, M3 was also significantly enriched for nsDNM ascertained from unselected 

developmental phenotypes from the independent DDD study36,37 (BET P=2.2x10-3, FET 

P=1.0x10-3, OR=4.08, 95% CI [1.60-12.35]) (Fig. 2, Supplementary Table 9).  

 

In total, almost a third of genes in M3 (43 out of 150) were impacted by one or more nsDNM 

across the five disease cohorts considered here (ID, EE, ASD, SCZ, DDD). These 43 genes 

and their corresponding mutation (with functional consequence) and disease phenotype are 

shown in Table 2 and Fig. 3. Among the 43 genes in M3 impacted by nsDNM several genes 

including SCN2A, GABRB3, GNAO1, TCF4, GRIN2A and UPF3A are known 

neurodevelopmental disease genes. Thus starting from an unsupervised gene network 

perspective, M3 reveals previously unappreciated co-expression between genes for 

heterogeneous neurodevelopmental disorders in the developed human brain.  

 

The finding that M3 is highly enriched for genes that confer risk for neurodevelopmental 

disease when mutated led us to explore the relationship between M3 and neuropsychiatric 

disease using GWAS data relating to the Psychiatric Genomics Consortium (PGC) traits 

attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), major depressive 

disorder (MDD) and SCZ45, as well as GWAS data relating to common forms of epilepsy 

from the International League Against Epilepsy (ILAE) Consortium on Complex Epilepsies46 

and those from a risk and age of onset of Alzheimer’s disease (AD)47. M3’s enrichment of 
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association to each phenotype was tested as previously described (Methods). After 

Bonferroni correction for multiple testing, the only significant association was between M3 

and SCZ (enrichment P=0.003, Z-score=2.76) (Supplementary Table 10). The 

corresponding enrichment statistics for SCZ trio-ascertained DNM were as follows: pdDNM 

BET P=2.14x10-3, FET P=0.013, OR=4.52, 95% CI [1.25-20.27] and nsDNM BET P=0.08, 

FET P=0.029, OR=3.35, 95% CI [1.1-11.28], suggesting M3 may be enriched for genes in 

which both common and rare variants contribute risk for schizophrenia.  

 

DISCUSSION 

In these studies, we have used a step-wise procedure to prioritize gene networks whose gene 

co-expression relationships were significantly reproducible across brain regions and species 

in order to facilitate the identification of functionally conserved and replicable networks. We 

have demonstrated replicable association between two of these co-expression networks (i.e., 

M1 and M3) and healthy human cognitive abilities. Since M1 is functionally enriched for 

genes involved in synaptic processes, these findings provide systems-level evidence for a 

relationship between LTP and post-synaptic processes and human cognition, as previously 

suggested by an analysis of known post-synaptic signaling complexes5. In contrast to the 

functional specialization of M1, M3 is relatively poorly annotated for known functional 

categories or canonical pathways, and reveals previously unappreciated co-expression 

relationships between genes influencing cognitive abilities. The finding that M1 and M3 

influence cognitive abilities generally (as opposed to influencing specific cognitive domains 

such as memory) is in agreement with the evidence from twins and GCTA analysis 

demonstrating high genetic correlation between diverse cognitive and learning abilities9,10,48. 

The widespread expression and co-expression of M1 and M3 genes across the human cortex, 

and their tight developmental regulation, is also consistent with these modules playing a role 

across cognitive domains.  
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By analyzing de novo mutations reported in whole-exome sequencing studies of 

neurodevelopmental disease parent-offspring trio cohorts, we found that rare genetic risk 

variants for neurodevelopmental disease also converge on module M3. In total, almost a third 

of genes in M3 were impacted by one or more non-synonymous DNM ascertained from 

neurodevelopmental disease cases. Among the individual genes in M3 mutated in two or 

more cases, most were associated with more than one neurodevelopmental phenotype (Table 

2). These results reveal a convergence of genetic risk variants contributing toward healthy 

human cognitive abilities and neurodevelopmental disease on a shared set of genes under tight 

developmental regulation and widely co-expressed in the human cortex. Nonspecific (or 

pleotropic) effects of pathogenic mutations have recently emerged as a key theme among 

neurodevelopmental disease genes35. Here we provide empirical evidence to suggest this 

pleiotropy also extends to healthy cognitive function, although the underlying mechanisms for 

mutational non-specificity remain unknown.  

One observation from our study is the extent to which the expression of M1 and M3 genes is 

temporally specified. Following birth, the expression of M1 and M3 genes appeared 

remarkably stable over time, consistent with an enduring role for these genes in cognitive 

function throughout life. This is in keeping with the finding of the modules’ association with 

cognition in two independent cohorts that differ in their age at assessment (Table 1). Whilst a 

number of studies have suggested that sequence variation in genes that are developmentally 

regulated can be related to susceptibility to neurodevelopmental disease43,42, here we have 

shown that genes under tight developmental regulation and later co-expressed in the 

developed human brain are also related to this class of disorder, as well as healthy cognitive 

processes. These observations provide a starting point for the identification of gene-regulatory 

factors influencing cognition and neurodevelopmental disease.  

Our analyses integrating DNMs with gene regulatory networks revealed that M3 was 

associated most strongly with intellectual disability and epileptic encephalopathy and to a 
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lesser extent with neurodevelopmental disease in general. This is consistent with the 

hypothesis that genetic variation affecting quantitative variation in cognitive abilities overlaps 

with that underlying related monogenic phenotypes. However, when considering common 

risk variants (i.e., SNPs) for neuropsychiatric disease, we observed an association between 

M3 and schizophrenia but not with common forms of epilepsy. Potential explanations for the 

lack of GWAS enrichment of association between M3 and common epilepsy include different 

gene contributions to severe childhood epileptic encephalopathy arising from rare de novo 

mutations compared to the (mostly) adult epilepsies considered in the ILAE study46, and/or 

insufficient power to detect common variant associations using the ILAE GWAS (which 

although consisting of only 8,696 epilepsy cases and 26,157 controls is the largest epilepsy 

GWAS yet undertaken). Further studies will be required to clarify the specific contribution of 

M3 genes to disease risk across the allelic spectrum, and to elucidate the role of both rare and 

common sequence variants in the complex inheritance of childhood and adult epilepsy.  

 

In conclusion, starting from an unsupervised analysis of gene expression variation in the 

hippocampus and across the brain, we report two cross-species conserved gene co-expression 

networks (M1 and M3) associated with healthy human cognitive abilities and we identify one 

of these (M3) as a convergent gene network for both cognition and neurodevelopmental 

disease. Our experimental framework, which integrates gene network analysis with genetic 

susceptibility data, can be applied generally to any human behavioral or cognitive phenotype 

for which relevant genetic data (GWAS, WES, etc.) are available. We therefore make all our 

human hippocampal gene network and data accessible by means of an integrated web tool 

(Neurodevelopmental disease Brain Integrated Gene Networks, available at 

www.nbign.co.uk). This framework and underlying data may help to tackle the fundamental 

challenge of understanding how genetic risk variants for neurodevelopmental disease and 

related cognitive phenotypes exert their effects in the developed human brain.  

 

  

http://www.nbign.co.uk/
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FIGURE LEGENDS 

Figure 1. Gene co-expression network analysis. (a) Dendrogram showing clustering of co-

expressed genes (modules) based on human surgical hippocampus samples. Top color bar 

(line 1): the 24 modules (M1-M24) generated by unsupervised hierarchical clustering of the 

surgical hippocampal transcriptome; second color bar (line 2): the 16 (of 24) modules whose 

gene co-expression relationships are significantly preserved in non-diseased post-mortem 

human hippocampus; third color bar (line 3): the 5 (of 24) human surgical hippocampus 

modules whose gene co-expression relationships are preserved in the healthy mouse 

hippocampus; bottom color bar: the 4 co-expression modules conserved across all three 

expression datasets (1–3). (b) KEGG and Pathway Commons (Pathways) and Gene Ontology 

(GO) enrichments for M1 (blue) and M3 (black). BP, biological process; MF, molecular 

function; CC, cellular component. For each functional category the ratio of enrichment is 

reported on top of each bar. (c) Enrichment of proteins comprising the postsynaptic density 

(PSD) and N-methyl-D-aspartate (NMDA) receptor/activity-regulated cytoskeleton (ARC) 

complexes in M1 (blue) and M3 (black). ORs of enrichment are reported on top of each bar. 

(d) Heatmap of gradient of expression of modules M1 and M3 spanning fetal development to 

late adulthood and in topographically distinct cortical regions. A1C: auditory cortex; AMY: 

amygdala; CBC: cerebellar cortex; DFC: dorsolateral prefrontal cortex; HIP: hippocampus; 

IPC: posterior inferior parietal cortex; ITC: inferior temporal cortex; M1C: primary motor 

cortex; MD: mediodorsal nucleus of thalamus; MFC: medial pre-frontal cortex; OFC: orbital 

prefrontal cortex; S1C: primary somatosensory cortex; STC: superior temporal cortex; STR: 

striatum; V1C: primary visual cortex; VFC: ventrolateral prefrontal cortex.  

 

Figure 2. Enrichment of non-synonymous single nucleotide de novo mutations (nsDNM) 

from patients with neurodevelopmental disease. Statistical significance of 

overrepresentation of nsDNM in cases compared to controls is reported using Fisher’s exact 

test for epileptic encephalopathy (EE – 356 trios), autism spectrum disorders (ASD – 4,186 
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trios), intellectual disability (ID – 192 trios), schizophrenia (SCZ – 1,004 trios) and across all 

four neurodevelopmental disorders consisting of EE, ID, ASD and SCZ (Combined – 5,738 

trios). The nsDNM of the Deciphering Developmental Disorders (DDD) study (1,133 trios) 

were not combined with the other neurodevelopmental disorders as some of the patients of the 

DDD study had congenital abnormalities without neuropsychiatric features. P value, Odds 

ratio (OR) and 95% confidence intervals (CI) are reported for M1, M3 and all genes 

expressed in the human surgical hippocampus samples (Background). In the forest plot, the 

magnitude of the ORs are represented by the size of the squares and the 95% CI are by 

horizontal lines. Blue = Modules; Red = Background.  

 

Figure 3. Graphical representation of the M3 co-expression network and its relationship 

to neurodevelopmental disease. Genes in M3 impacted by single nucleotide variant non-

synonymous de novo mutations (nsDNM) from neurodevelopmental disease cases are drawn 

separately in a circle (on the right). The size of each node is proportional to the number of 

nsDNM for that gene across the full cohort of 6,871 parent-offspring trios (see Methods). 

Individual nsDNM, their predicted affect and corresponding neurodevelopmental disease 

phenotypes are detailed in Table 2.  
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Table 1: Module enrichment for genetic association with cognitive abilities  
 

   
Discovery (GS:SFHS) 

n=6,732 subjects¶ 
  

Replication (LBC1936) 
n=1,003 subjects¶ 

Module Phenotype Genes* Z-score P-value** (FDR)   Genes* Z-score P-value** 

M1 

General f luid cognitive ability 983 2.33 0.010 (5.3%)   1051 0.73 0.230 

Processing speed 983 1.79 0.040 (8.9%)   1051 0.51 0.300 

Crystalized cognitive ability 983 1.96 0.020 (6.4%)   1051 1.70 0.045 

Delayed recall 1051 2.14 0.016 (6.4%)   1046 2.51 0.006 

M3 

General f luid cognitive ability 135 2.95 0.002 (2.4%)   142 2.66 0.004 

Processing speed 135 2.80 0.003 (2.4%)   142 1.02 0.150 

Crystalized cognitive ability 135 1.60 0.050 (8.9%)   142 -0.10 0.540 

Delayed recall 142 1.77 0.038 (8.9%)   139 2.56 0.005 

M11 

General f luid cognitive ability 121 0.27 0.390 (52%)        

Processing speed 121 -0.63 0.740 (78%)        

Crystalized cognitive ability 121 1.62 0.050 (8.9%)   133 1.09 0.140 

Delayed recall 133 0.04 0.480 (59%)        

M19 

General f luid cognitive ability 466 1.28 0.100 (16%)        

Processing speed 466 -1.29 0.900 (90%)        

Crystalized cognitive ability 466 -0.27 0.610 (69%)        

Delayed recall 504 0.42 0.340 (49%)        

 
Discovery cohort, Generation Scotland: Scottish Family Health Study (GS:SFHS); Replication cohort, Lothian Birth Cohort 1936 (LBC1936); *Genes in the module with ≥1 

genotyped SNP within the transcription start and end positions of the gene (NCBI36, hg18); **P-value for enrichment of association determined by 100,000 bootstrap 

samples; Bold, enrichment of association P<0.05; False discovery rate (FDR) was calculated to account for the number of modules and cognitive domains tested (16 tests); 

Modules with FDR<10% in the Discovery cohort were taken forward for replication in LBC1936. ¶Total number of participants after genotype QC.  
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Table 2: Genes in M3 impacted by neurodevelopmental-ascertained non-synonymous de 

novo mutation.  

Gene 
symbol 

Total 
nsDNM 

Single nucleotide variant 
and predicted effect 

Sift 
Score 

Polyphen 
Score Neurodevelopmental disease cohort 

SCN2A 20 

2:166,245,137 A>T SV -- -- ASD 
    

2:166,201,379 C>A SG -- -- ASD     
2:166,210,819 G>T SG -- -- ASD 

    
2:166,152,367 G>A MS 0.11 0.025 ASD     
2:166,152,578 A>G MS 0 0.999 ASD 

    
2:166,170,231 G>A MS 0 0.999 ASD     
2:166,201,312 G>A MS 0 0.999 ASD     
2:166,231,378 T>C MS 0 1 ASD 

    
2:166,201,311 C>T MS 0 0.999 ASD     
2:166,234,111 C>T MS 0 0.996 ASD 

    
2:166,234,116 A>G MS 0 0.999  EE    
2:166,198,975 G>A MS 0 0.838 

 
EE 

   
2:166,201,311 C>T MS 0 0.999   ID   
2:166,231,415 G>A SG -- -- 

  
ID 

  
2:166,187,838 A>G SV -- --    SCZ  
2:166,153,563 C>T SG -- -- 

    
DDD 

2:166,165,305 G>A SV -- --     DDD 
2:166,245,954 G>A MS 0 0.997 

    
DDD 

2:166,243,484 T>A MS 0 0.972     DDD 
2:166,210,714 T>C MS 0 0.719 

    
DDD 

GABRB3 7 

15:27,017,557 C>T MS 0.04 0.444 ASD     
15:26,828,534 C>T MS 0 0.584 ASD     
15:26,866,594 T>C MS 0.15 0.999 

 
EE 

   
15:26,806,254 T>C MS 0 1  EE    
15:26,866,564 C>T MS 0 0.994 

 
EE 

   
15:26,828,484 T>C MS 0 0.967  EE    
15:26,806,242 A>G MS 0 0.999 

    
DDD 

RYR2 7 

1:237,870,440 C>A MS 0.23 0.034 ASD     
1:237,666,734 C>T MS 0.02 0.947 ASD 

    
1:237,868,631 C>T SG -- --  EE    
1:237,995,907 G>A MS 0 0.998 

  
ID 

  
1:237,982,492 G>T MS 0 0.998     DDD 
1:237,982,471 A>G MS 0 0.658 

    
DDD 

1:237,693,752 G>A MS 0.08 0.36     DDD 

GNAO1 6 

16:56,388,838 G>A MS 0 0.316 ASD     
16:56,385,380 A>C MS 0 0.999 

 
EE 

   
16:56,385,396 T>C MS 0 0.996  EE    
16:56,370,728 G>A MS 0.02 0.964 

   
SCZ 

 
16:56,370,674 C>T MS 0 1     DDD 
16:56,309,901 T>G MS 0 0.799 

    
DDD 

TCF4 5 

18:52,921,925 G>A SG -- --   ID   
18:52,896,230 C>T MS 0 1 

  
ID 

  
18:53,070,725 G>A MS 0 0.942   ID   
18:52,899,819 G>A SG -- -- 

    
DDD 

18:52,895,593 C>T SV -- --     DDD 

GRIN2A 3 
16:9,928,084 G>C MS 0 0.921 

  
ID 

  
16:9,923,342 G>C MS 0.01 0.999   ID   
16:9,857,517 A>G MS 0.01 0.816 

   
SCZ 

 
TCF20 2 

22:42,564,699 G>A MS 1 0   ID   
22:42,575,645 G>A SG -- --     DDD 



 26 

PPP6R2 2 
22:50,857,408 C>T MS 0.01 0.862 ASD     
22:50,857,843 T>C MS 0.01 0.898  EE    

NUAK1 2 
12:106,461,269 G>A SG -- -- ASD 

    
12:106,460,608 G>A MS 0.02 0.997 ASD     

MYCBP2 2 
13:77,700,568 A>G MS 0.54 0.039 ASD 

    
13:77,657,240 G>A MS 0.14 0     DDD 

KCNB1 2 
20:47,990,976 G>A MS 0 1 

 
EE 

   
20:47,990,924 T>G MS 0 1     DDD 

GNB5 2 
15:52,427,874 T>C MS 0 1 ASD 

    
15:52,416,801 T>C MS 0.38 0.68    SCZ  

DLG2 2 
11:83,497,765 G>C MS 0 0.786 ASD 

    
11:83,194,295 C>T SV -- --    SCZ  

BRSK2 1 11:1,471,005 G>C SV -- -- ASD 
    

CAMK1D 1 10:12,595,343 C>A MS 0.06 0.003 ASD     
CERS6 1 2:169,417,831 A>G MS 0.11 0.229 ASD 

    
CNST 1 1:246,754,937 G>A MS 0.07 0.09 ASD     

DENND5B 1 12:31,613,279 G>C MS 0.08 0.305 ASD     
DUSP3 1 17:41,847,180 G>A MS 0 0.921 ASD 

    
GLTSCR1L 1 6:42,796,946 C>G MS 0 1 ASD     

GRIA2 1 4:158,254,055 C>T SG -- -- ASD 
    

GSK3B 1 3:119,582,433 G>T MS 0.01 0.521 ASD     
HNRNPR 1 1:23,637,156 G>A MS 0 0 ASD 

    
KLHL28 1 14:45,400,640 A>G MS 0.99 0.324 ASD     
MAP1B 1 5:71,491,094 G>T MS 0.33 0 ASD 

    
MCM4 1 8:48,883,381 G>C MS 0.04 0.363 ASD     

NT5C3A 1 7:33,055,445 A>G MS 0.14 0.546 ASD 
    

PAPD5 1 16:50,263,085 G>A MS 0.09 0.027 ASD     
PIAS1 1 15:68,378,807 G>A MS 0.16 1 ASD 

    
PUM1 1 1:31,437,728 G>A MS 0 0.999 ASD     
UPF3A 1 13:115,057,116 G>A MS 0 1 ASD     

GABRB1 1 4:47,405,630 T>C MS 0 0.998 
 

EE 
   

SGK223 1 8:8,234,597 C>A MS 0.01 0.36  EE    
HIVEP3 1 1:42,047,669 G>A SG -- -- 

   
SCZ 

 
PCDHAC2 1 5:140,346,499 G>T SG -- --    SCZ  

SSBP3 1 1:54,870,560 G>A SG -- -- 
   

SCZ 
 

TAF13 1 1:109,607,282 G>A SG -- --    SCZ  
TNRC6C 1 17:76,083,048 C>G MS 0.01 0.808 

   
SCZ 

 
PHACTR1 1 6:12,933,928 G>A MS 0.02 0     DDD 
PLEKHB2 1 2:131,884,360 G>A SV -- -- 

    
DDD 

ROBO2 1 3:77,637,907 C>T MS 0.18 0.784     DDD 
SPIN1 1 9:91,083,440 A>G MS 0 1 

    
DDD 

USP14 1 18:203,143 C>T SG -- --     DDD 

 
M3 genes reported with non-synonymous de novo mutations (nsDNM) identified in  heterogeneous 

neurodevelopmental phenotypes. We detail the number and kind of nsDNM and for each single 

nucleotide variant, Sift and Polyphen2 scores were calculated using the Ensembl SNP Effect Predictor 

tool49. ASD, autism spectrum d isorder; ID, intellectual disability; EE, epilepsy; SCZ, schizophrenia; 

DDD, Deciphering Developmental Disorders; SV, splice variant; SG, stop gain; MS, missense. 
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METHODS 

 

Human surgical hippocampus gene expression data generation: Genome-wide gene 

expression data were generated from 122 snap frozen whole hippocampus samples surgically 

removed from patients who had undergone en bloc amygdalahippocampectomy for mesial 

temporal lobe epilepsy (MTLE) as previously described50. Informed consent was obtained 

from all patients and the study was approved by statutory Ethics Committees and Institutional 

Review Boards. Clinical data recorded for each patient included: date of birth, gender, 

handedness, age at epilepsy onset, laterality of TLE, operation date, age at operation, pre-

operative seizure frequency, antiepileptic drug therapy at the time of surgery and 

neuropathology. Genome wide gene expression was assayed as previously described50. 

Expression data were normalized by quantile normalization with background subtraction. 

Prior to network analysis, the data were filtered as follows: first, non-expressed probes were 

removed using the internal P values of detection provided by Illumina BeadArray Reader. 

Probes were retained if they passed 95% confidence threshold in at least 30% of the samples. 

Second, probes were removed if their sequences did not map uniquely to the reference 

genome or if the target regions contained at least one known SNP, as accessed by ReMOAT51. 

Third, the coefficient of variation (standard deviation/mean) in gene expression was used to 

remove the 5% of probes showing the lowest variation in gene expression in the TLE cohort. 

These filtering steps defined a final dataset of 11,837 probes, representing 9,616 protein 

coding unique genes (Ensembl version 72), which were then used for network analysis and as 

the “background” gene set for enrichment analyses. 

 

Gene co-expression network analysis of human surgical hippocampus samples: Before 

inferring gene co-expression networks, we used principal component (PC) analysis to 

calculate summary variables describing the variation in the microarray expression of the 

11,837 probes and estimate the potential effects of clinical covariates on global gene 

expression variability. The first three PCs explained the following fraction of variation in 

gene expression: PC1 - 25%, PC2 - 15% and PC3 - 8%, with other components explaining 

<5% of the variability in gene expression. We assessed the impact of clinical covariates age, 

gender, epilepsy severity, anti-epileptic drug (AED) load and hippocampal “pathology type” 

(i.e., Ammons Horn Sclerosis alone or in association with reactive astrogliosis and/or 

neuronal loss) on global gene expression by calculating univariate correlations between PC1-

PC3 and each clinical covariate. After Bonferroni correction for multiple testing, “pathology 

type” was the only covariate to show a significant effect on gene expression in epileptic 

hippocampus (P=1.1x10-4, R2=0.24 on PC1 of global gene expression). PC1 summarizes 25% 

of the global variation in gene expression and since “pathology type” explained only a limited 
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fraction of this variability (R2=0.24) this was considered the only relevant covariate. This is in 

keeping with our previous analyses where we showed no significant effects from clinical 

covariates (apart from epilepsy pathology as shown here)50. Gene expression levels were 

therefore adjusted to remove the effect of “pathology type” by fitting linear models on gene 

expression and accounting for pathology using the lm function in R. The residuals from the 

linear model were then used in the co-expression network analysis. 

 
Genes were then grouped into modules using weighted gene co-expression network analysis 

(WGCNA)14 on the set of 11,837 probes in 122 human hippocampus samples. WGCNA 

builds undirected co-expression networks where the nodes of the network correspond to genes 

and edges between genes are determined by the pairwise correlations between the genes’ 

expression levels. To avoid outlier bias, Tukey’s biweight method52 was used to compute 

robust pairwise correlations of gene expression. The strength of relationships between probes 

is defined as the adjacency matrix, which is calculated by applying a power function 

(connection strength = |correlation|β) on the biweight correlation matrix. The power function 

reduces the strength of weak correlations while preserving connection strength of highly 

correlated probes. Higher values of β increase this effect and increase specificity of gene 

interactions, while a lower β increases sensitivity. For the network analysis in the surgical 

hippocampus and for the comparative networks analyses in different datasets (see below), the 

beta was chosen to optimize the scale free property and the sparsity of connections between 

genes in each dataset. Then, the adjacency matrix is used to calculate the topological overlap 

matrix (TOM), which measures the number of neighbors that a pair of probes have in 

common, relative to the rest of the probes. Average hierarchical clustering was used to group 

genes based on the dissimilarity of gene connectivity, defined as 1 – TOM. The dynamic cut-

tree method53 was used to cut the dendrogram on a branch-by-branch basis to produce co-

expression clusters.  

 

Reproducibility of TLE hippocampal modules in control (non-diseased) human and 
mouse hippocampus samples: Several independent hippocampal gene-expression datasets 

were used to establish module reproducibility. To establish reproducibility of modules in non-

diseased human hippocampus we used human post-mortem hippocampus microarray 

expression data from 63 healthy post-mortem human brains publically available from Pritzker 

Neuropsychiatric Disorders Research Consortium 

(http://www.pritzkerneuropsych.org/?page_id=1196). To investigate module conservation 

across species, we generated mRNA-sequencing (RNA-seq) expression data from 100 healthy 

mouse hippocampi as follows: total RNA was isolated from snap frozen hippocampi from 

100 healthy (Crl:NMRI(Han)-FR) mice. Mouse hippocampus samples were ascertained 

http://www.pritzkerneuropsych.org/?page_id=1196
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strictly in accordance with statutory ethical guidelines/regulations. cDNA and sample 

preparation for RNA sequencing followed manufacturer protocol (TruSeq RNA kit, Illumina). 

Samples were sequenced on an Illumina HiSeq 2000 sequencer as paired-end 75-nucleotide 

reads. Raw reads were mapped to the reference mouse genome (mm10) using TopHat54 

version 2.0.8. Read counts per gene were calculated for each sample using HTseq version 

0.5.3 (http://www-huber.embl.de/users/anders/HTSeq) and subsequently normalized across 

all the samples using trimmed mean of M-value (TMM) approach55. For each replication gene 

expression dataset we checked whether human surgical modules had higher connectivity in 

the replication datasets than expected by chance. For each replication gene expression dataset, 

the adjacency matrix was calculated using biweight correlations and the β value was chosen 

to optimize scale free property of the networks. The adjacency matrix was used to calculate 

topological overlap matrix (TOM) using WGCNA. For each of the 24 networks (M1-M24) 

detected in the 122 TLE subjects, empirical P values for the significance of the co-expression 

relationships were calculated by comparing the average topological overlap for network genes 

in the replication datasets (human or mouse) to the average connectivity of 10,000 randomly 

sampled networks56. The randomly sampled networks had the same size of the networks 

detected in the TLE patients (M1-M24). 

Module co-expression across brain regions: To determine whether co-expression of genes 

in modules M1 and M3 are preserved across topographically distinct cortical regions, we 

analysed genome-wide gene expression data from four brain regions (cerebellum, temporal 

cortex, occipital cortex, frontal cortex) using 102 post-mortem human brains from the UK 

Brain Expression Consortium (UKBEC) (GSE60862)57. Each brain region was treated as an 

independent dataset. Raw expression profiles from the Affymetrix Human Exon 1.0 ST Array 

were processed to transcript-level expression with Affymetrix Power Tools (APT)                      

(http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx) 

using probe logarithmic intensity error (plier) normalisation58 with probe GC-content 

correction. Only the most reliable ‘core’ set of probes was used to generate transcript level 

expression profiles as defined by Affymetrix. Exons were considered as ‘expressed’ if more 

than 50% of the samples had detection above background P-values below 0.01, as calculated 

using APT. Gene-level expression was obtained by taking the median of the expression 

values of multiple exons mapping to the same gene. Expression profiles from each brain 

region were analysed as independent datasets and were processed separately. This means that 

some genes were considered as ‘expressed’ in some brain regions and not in others (number 

of unique Ensembl genes expressed per brain region as follows: Frontal Cortex 14,800, 

Temporal Cortex 14,777, Cerebellum 15,162, Occipital Cortex 14,815).  
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Gene expression profiles were corrected for measured clinical covariates – age, gender, post-

mortem interval, cause of death and the source of the samples (i.e., brain-bank ID). The data 

were also adjusted for any potential batch effects using probabilistic estimation of expression 

residuals (PEER)59. PEER uses factor analysis to infer hidden determinants that explain large 

proportions of variability in the data. This approach allows expression data to be corrected for 

the effects of measured covariates such as age and sex as well as other potential sources of 

bias such as batch effects, environmental influences, sample history and other unknown 

factors59. Comparative network analysis was undertaken as previously (above) using the 

default network dissimilarity measure in WGCNA based on the topological overlap matrix 

(TOM)14, and empirical P values for the reproducibility of networks calculated by comparing 

the average topological overlap for module genes to the average connectivity of 10,000 

randomly sampled networks. 

 
Spatiotemporal analysis of module expression: To determine the spatiotemporal expression 

dynamics of modules, we used quantile normalized gene level expression values (log2 

transformed) from GSE6086229. This transcriptome data was generated using Affymetrix 

Human Exon 1.0 ST array analysis of 16 brain regions comprising the cerebellar cortex, 

mediodorsal nucleus of the thalamus, striatum, amygdala, hippocampus, and 11 areas of the 

neocortex. The data were generated from 1,263 samples collected from 53 clinically 

unremarkable postmortem human brains, spanning embryonic development to late adulthood 

(from 10 weeks of post-conception to 82 years of age, which corresponded to periods 3–15, 

as previously designated)29. The log2-transformed gene expression data follows a bimodal 

distribution contributed by low (likely non functional) and high expressed genes60. We used 

the expectation maximization (EM) algorithm to model gene expression levels as mixture of 

normal distributions and identify the underlying distributions of low and high expressed genes. 

Only the genes, with mean of log2-transformed expression values over the 95% percentile of 

distribution of low-expressed genes (here > 5.61) were considered for further analysis 

(n=8,704). The EM algorithm was implemented using normalMixEM function from the 

mixtools R package. Spatio-temporal dynamics of co-expression modules M1 and M3 across 

16 brain regions and 13 developmental time points were illustrated as a heatmap (Figure 1d, 

main text), as previously described28. Module expression for each region and developmental 

time point was calculated by averaging the scaled expression across all genes in a module. 

The resultant heatmap graphs illustrate the changes in expression of genes of a co-expression 

module across brain development and cortical regions.  
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Functional enrichment analysis of networks: Co-expression modules were functionally 

annotated using WebGestalt30 with terms of Kyoto Encyclopedia of Genes and Genomes 

(KEGG)61, “Pathway Commons” and Gene Ontology (GO)62 terms. For each dataset, we 

conservatively used all hippocampus-expressed genes (including those that contributed to the 

individual co-expression modules) as the background in the functional enrichment analyses. 

For each gene set (module), the ratio of enrichment (r), r = k /ke is calculated as the number of 

genes in the module (k) over the expected value (ke) of genes in the reference as determined 

by WebGestalt30. 

 

Assessment of overrepresentation of synaptic genes in modules: Enrichment of 

postsynaptic genes in the modules was assessed by hypergeometric test (two-tail). The ARC 

or NMDAR gene list was sourced from a published study (80 genes – see supplementary 

table 9 in publication17). The postsynaptic density (PSD) gene list used was the consensus 

human PSD genes (supplementary table 2 in publication22) that had an Ensembl gene ID (745 

out of 748 genes). PSD and ARC/NMDAR genes were tested for overrepresentation in the 

modules using the list of brain expressed genes (n=9,616 genes).  

 
Genome-wide association study (GWAS) of cognitive phenotypes: We undertook analysis 

of four cognitive phenotypes in two independent community-based cohorts. Our Discovery 

cohort consisted of participants in “Generation Scotland: Scottish Family Health Study” 

(GS:SFHS)24 and our Replication cohort consisted of participants in the Lothian Birth Cohort 

1936 (LBC1936)25. The same four cognitive phenotypes were analyzed in both LBC1936 and 

GS:SFHS; these were general fluid cognitive ability, crystallized ability, memory (delayed 

recall) and information processing speed. For LBC1936, the general fluid factor was derived 

using the six non-verbal tests from the Wechsler Adult Intelligence scale IIIuk63: Matrix 

reasoning, Digit span backward, Symbol search, Digit symbol coding, Block design, and 

Letter-number Sequencing. The raw scores from each of these tests were used in a principal 

components (PC) analysis where the first unrotated PC was extracted using regression. Next, 

each participant’s score on this PC was linearly regressed against age, sex and the first four 

multidimensional scaling components (to control for population stratification) used as 

predictor variables. The residuals from this model were then used in subsequent analyses. For 

crystallized ability, the National Adult Reading Test (NART)64 was used. For memory and 

information processing speed, the Delayed memory section from the logical memory section 

and the Digit symbol section of the WAIS-IIIUK63 were used, respectively. For each of these 

single tests the effect of age, sex, and population stratification was controlled for using 

regression approaches (as described above), and the standardized residuals from the 

regression model were used in the downstream analyses.  
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In GS:SFHS: the general cognitive ability the raw scores from the Digit Symbol Substitution 

Task63, the delayed and immediate sections of the Logical Memory Test65, Verbal Fluency66, 

and the Mill Hill Vocabulary Scale67, were subjected to a principal components analysis 

where the first unrotated PC was extracted using regression. This PC was then used as the 

dependent variable in a linear regression model with age, sex and the first six principal 

components (to control for population stratification) used as predictor variables. The residuals 

from this model were then extracted and carried forward for enrichment analysis. Whilst 

different tests were used in the construction of the general factor in GS:SFHS and in 

LBC1936, correlations between general factors constructed from different test batteries is 

high68,69. As with LBC1936, for crystallized ability, memory, and information processing 

speed only a single test was used. For crystallized ability this was the Mill Hill Vocabulary 

Scale67, for memory the delayed section of the Logical Memory Test65, and for information 

processing speed the Digit Symbol Substitution Task63 was used. As for general cognitive 

ability, the effects of age, sex and population stratification were controlled for using 

regression. Using these cognitive phenotypes we then undertook a standard GWAS of 

cognitive phenotypes in GS:SFHS and LBC1936 separately, as follows.  

 

GWAS in GS:SFHS: GS:SFHS was composed of families recruited from the population of 

Scotland between 2006 and 2011. A total of 7,953 unrelated individuals aged between 35 – 

65 years were recruited from Glasgow, Tayside, Ayrshire, Arran, and the North-East of 

Scotland. 95% of subjects were contacted through their general practitioner (GP) with the 

remaining 5% contacted through word of mouth. These individuals family members were also 

recruited yielding a sample size of 24,084 with an age range of 18-100 years of age. A full 

description of the GS:SFHS is provided by Smith et al. , 200670 and Smith et al. , 201224. DNA 

from blood (or saliva from clinical and postal participants) was extracted following informed 

consent from 10,000 Caucasian participants who were born in the UK. DNA was processed 

and stored using the standard operating procedures at the Wellcome Trust Clinical Research 

Facility Genetics Core in Edinburgh71. Genotyping was undertaken on Illumina 

HumanOmniExpressExome-8 v1.0 DNA Analysis BeadChip. In order to ensure 

comparability between the LBC1936 cohort and GS:SFHS, the UCSC Batch Coordinate 

Conversion (liftOver) (https://genome.ucsc.edu/cgi-bin/hgLiftOver) tool was used to convert 

the hg 19 build of GS to hg 18. In order to control for the effect of shared environment 

subjects who were related to another participant were removed (estimated kinship >0.025) 

leaving a total of 6,816 unrelated participants. Following QC a total of 594,756 SNPs with a 

minor allele frequency (MAF) of >0.01 were included in the analysis. Cognitive phenotypes 

were derived as described above and the effects of age, sex and population stratification 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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controlled for as described previously. The standardized residuals were used for subsequent 

single-SNP GWAS which was performed using PLINK72. Single SNP P values of association 

to individual cognitive scores were then used in the GWAS enrichment analysis (see below).  

 

GWAS in LBC1936: The LBC1936 cohort consisted of 1,091 cognitively healthy individuals 

(548 men and 543 women) assessed on cognitive and medical traits at a mean age 69.6 years 

(SD = 0.8). Informed consent was obtained from all subjects. All subjects were of Caucasian 

descent and almost all lived independently in the Lothian region (Edinburgh city and 

surrounding area) of Scotland. Genotyping using the Illumina 610-Quadv1 array was 

performed at the Wellcome Trust Clinical Research Facility, Edinburgh. Quality control 

measures were as follows: individuals were excluded from the study based on unresolved 

gender discrepancy, relatedness (so that no pair remained with estimated kinship >0.025), 

SNP call rate (≤ 0.95) and evidence of non-Caucasian descent. A total of 542,050 single 

nucleotide polymorphisms (SNPs) meeting the following conditions were included in the 

analysis: call rate ≥0.98, minor allele frequency ≥0.01 and Hardy–Weinberg equilibrium test 

with P≥0.001. After QC, we included 1,003 participants in the association analysis. 

Derivation of the cognitive phenotypes is described above, followed by correction for age, 

sex and population stratification. The standardized residuals were used for genotype-

phenotype analyses by PLINK72. Single SNP P values of association to individual cognitive 

scores were then used in the GWAS enrichment analysis (see below).  

 

GWAS-enrichment analysis: To test for enrichment of genetic association in a gene-set (i.e., 

co-expression module) we used VEGAS26 to generate a gene-based association statistic (P-

value) controlled for the number of SNPs in each gene and the LD between those SNPs. In all 

analyses gene-based P-values were calculated using VEGAS and the top 10% option with 

100,000 iterations and a gene window consisting of the transcriptional start and stop position 

of each gene. For both GS:SFHS and LBC1936 the genotype data from the GWAS 

participants was used to control for LD (rather than the default HapMap population) as this is 

expected to provide a more accurate estimate of the LD structure, which can be specific of the 

population cohort analyzed. For the other GWAS for which raw genotype data were not 

available (the Psychiatric Genomics Consortium (PGC) traits, International League Against 

Epilepsy (ILAE) Consortium on Complex Epilepsies - see Supplementary Table 9, and the 

non-cognitive control GWAS datasets of waist-hip ratio, fasting glucose homeostasis, glucose 

challenge homeostasis, systolic blood pressure and diastolic blood pressure - see 

Supplementary Table 6) the default HapMap population was used to control for LD in the 

VEGAS analysis. The GWAS-enrichment statistic was calculated for a given module from 

the gene-based association P-values (from VEGAS) using the Z-test based bootstrapping 
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method73 (one-sided) where, for each network, 100,000 random gene sets of same size as the 

network were sampled from the list of all hippocampus expressed genes (n=9,616). P-values 

of enrichment for the Discovery cohort were considered significant if they passed false 

discovery rate correction for the number of modules tested, as indicated in each case. 

 

Using RVIS to assess the genic intolerance properties of specific modules. The extent of 

human-specific genic constraint was estimated for each of the 24 co-expression modules by 

using the genic protein-coding intolerance scores (RVIS)34. RVIS was only calculated for 

protein-coding genes that had at least one protein-coding transcript that was publically 

approved among the CCDS Release 9 database74, and that had ≥70% of their CCDS real-

estate adequately covered among the population database adopted in their original manuscript 

(ESP6500)34. This resulted in scores for 16,956 assessable CCDS release 9 genes, thus all 

RVIS comparisons are restricted to these 16,956 “assessable” genes. We found that 89.4% of 

the genes across all modules had an assessable RVIS score. To determine whether a module 

was enriched for genes that are relatively more intolerant to functional variation than the rest 

of the genes expressed in the human hippocampus (n=8,414 with CCDS), a two-tail Mann-

Whitney U test was used to compare the distribution of genic RVIS scores for each module to 

the distribution from the rest of the hippocampus-expressed protein-coding genes outside of 

the module (module-level RVIS results are reported in full in Supplementary Table 7). 

 

Assessing the relationship between co-expression modules and neurodevelopmental 
disorder ascertained rare de novo mutations: We collated published de novo mutation 

(DNM) datasets to determine whether any relationships exists between co-expression 

modules and the DNMs reported in neurodevelopmental trio whole-exome sequencing (WES) 

studies. Collectively, the neurodevelopmental disease cohort consisted of 5,738 non-

overlapping published parent-offspring trios across four disease phenotypes; autism spectrum 

disorder (ASD, n=4,186)44,75, schizophrenia (SCZ, n=1,004)21,76,43,42,77 intellectual disability 

(ID, n=192)41,78,79 and epileptic encephalopathy (EE, n=356)80,81. Additionally, we considered 

DNMs from an independent cohort of 1,133 trios with severe, previously undiagnosed 

developmental disease from the Deciphering Developmental Disorders (DDD) study36,37. For 

controls, we used 1,891 non-neurological control samples from seven published 

studies38,39,40,41,42,43,44. 

 

Each module’s genetic relationship to disease was tested using two approaches. First, we 

compared rates of DNMs in each module compared to random expectation based on the 

collective consensus coding sequence (CCDS) of module genes. In the absence of individual 

trio data across the different studies, we cannot determine the effectively sequenced real-
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estate for each gene so we took the conservative route by assuming each gene has 100% of its 

CDDS sequence covered across all trios, appreciating that some genes will not have been 

adequately covered due to reasons such as capture kit specifications or low coverage. Thus, 

the expected numbers of DNM for each gene set is calculated based on the length of CCDS 

sequence of genes in the set and the overall frequency of DNM in all CCDS genes. Then to 

estimate the enrichment we used the ratio between the observed number of DNM in the gene 

set and the expected number based on this length model using binomial exact test (BET, two-

tail). Secondly, to accommodate for sequence context factors such as the inherent mutability 

of genes in a module, we adopted a Fisher's exact test (FET, two-tail) to empirically compare 

the rates of DNMs overlapping the CCDS real estate of a module in case- and control cohorts. 

This approach is also able to capture modules comprised of genes that are preferentially 

depleted of DNMs in healthy control cohorts. For each module, we report single nucleotide 

variant (SNV) DNM enrichments by both approaches and by considering three main classes 

of DNM: (a) predicted deleterious DNM (pdDNM) consisting of loss-of-function (i.e., 

nonsense and splice-site mutations) plus with missense mutations with SIFT82 score ≤0.05 

and Polyphen283 score ≥0.5, (b) non-synonymous DNM (nsDNM) consisting of all missense, 

nonsense and splice-site SNV mutations and (c) synonymous DNM (as a negative control). 

Polyphen2 and SIFT scores were obtained using the Variant Effect Predictor Ensembl tool49. 

For completeness, we also calculated enrichments considering only loss-of-function 

(nonsense and splice-site) mutations but because DNMs in this class were relatively 

infrequent, when considered alone, we expect limited power to detect significant enrichments. 

Finally, to establish specificity of the module-level results, we calculated enrichment of DNM 

for each class of DNM among all genes significantly expressed in the human hippocampus 

(termed “Background” genes, n=9,616) taking the conservative route of including among this 

set of genes all genes contributing to the individual modules.   

A supplementary methods checklist is available. 
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