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Abstract
This paper discusses the interpretation of nominalizations in
domain independent wide-coverage text. We present a statis-
tical model which interprets nominalizations based on the co-
occurrence of verb-argument tuples in a large balanced cor-
pus. We propose an algorithm which treats the interpretation
task as a disambiguation problem and achieves a performance
of approximately 80% by combining partial parsing, smooth-
ing techniques and domain independent taxonomic informa-
tion (e.g., WordNet).

Introduction
The automatic interpretation of compound nouns has been
a long-standing unsolved problem within Natural Language
Processing (NLP). Compound nouns in English have three
basic properties which pose difficulties for their interpreta-
tion: (a) the compounding process is extremely productive,
(b) the semantic relationship between the compound head
and its modifier is implicit (this means that it cannot be eas-
ily recovered from syntactic or morphological analysis), and
(c) the interpretation can be influenced by a variety of con-
textual and pragmatic factors.

To arrive at an interpretation of the compoundonion tears
(e.g., onionsCAUSE tears) it is necessary to identify that
tearsis a noun (and not the third person singular of the verb
tear) and to use semantic information aboutonionsandtears
(for example the fact that onions cannot be tears or that tears
are not made of onions). Even in the case of a compound
like government promotionwhere the head noun is derived
from the verbpromoteand the modifiergovernmentis its ar-
gument, it is necessary to determine whethergovernmentis
the subject or the object. One might argue that the preferred
analysis forgovernment promotionis “government that is
promoted by someone”. However, this interpretation can be
easily overridden in context as shown in example (1) taken
from the British National Corpus: here it is the government
that is doing the promotion.
(1) By the end of the 1920s,government promotionof agricul-

tural development in Niger was limited, consisting mainly of
crop trials and model sheep and ostrich farm.

The interpretation of compound nouns is important for sev-
eral NLP tasks, notably machine translation. Consider the

Copyright c© 2000, American Association for Artificial Intelli-
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compoundsatellite observationwhich may meanobserva-
tion by satelliteor observation of satellites. In order to trans-
latesatellite observationinto Spanish, we have to work out
whethersatellite is the subject or object of the verbob-
serve. In the first casesatellite observationtranslates asob-
servación por satelite(observation by satellite), whereas in
the latter it translates asobservaci´on de satelites(observa-
tion of satellites).

A considerable amount of work within NLP focused on
the interpretation of two word compounds whose nouns are
related via a basic set of semantic relations (e.g.,CAUSE re-
latesonion tears, FORrelatespet spray). With the exceptions
of Wu (1993) and Lauer (1995) who have proposed proba-
bilistic models for the interpretation of compounds, the ma-
jority of proposals are symbolic: most algorithms rely on
hand-crafted knowledge bases or dictionaries containing de-
tailed semantic information for each noun; a sequence of
rules exploit this information in order to choose the cor-
rect interpretation for a given compound (Leonard 1984;
Vanderwende 1994). Most of the proposals contain no qual-
itative evaluation. The exceptions are Leonard (1984) who
reports an accuracy of 76% (although on the training set),
Vanderwende (1994) whose algorithm attains an accuracy
of 52%, and Lauer (1995) who reports an accuracy of 47%.
The low accuracy is indicative of the difficulty of the task
given the variety of contextual and pragmatic factors which
can influence the interpretation of a compound.

In this paper, we focus solely on the interpretation of nom-
inalizations, i.e., compounds whose head noun is a nominal-
ized verb and whose prenominal modifier is derived from ei-
ther the underlying subject or direct object of the verb (Levi
1978) (see the examples in (2)–(3)).

(2) a. SUBJ child behaviour⇒ child behaves
b. OBJ car lover⇒ love cars
c. OBJ soccer competition⇒ compete in soccer

(3) a. SUBJ|OBJ government promotion
b. SUBJ|OBJ satellite observation

The nominalized verb can either take a subject (cf. (2a)), a
direct object (cf. (2b)) or a prepositional object (cf. (2c)). In
some cases, the relation of the modifier and the nominalized
verb (SUBJor OBJ) can be predicted either from the subcat-
egorization properties of the verb (cf. (2a) wherechild can
only be the subject of the intransitive verbbehave) or from
the semantics of the of the nominalization suffix of the head
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noun (cf. (2b) where the agentive suffix-er of the nounlover
indicates that the modifiercar is the object oflove). In other
cases, the relation of the modifier and the head noun is gen-
uinely ambiguous (see (3)).

The interpretation of nominalizations poses a challenge
for empirical approaches since the argument relations be-
tween a head and its modifier are not readily available
in the corpus. We present a probabilistic algorithm which
treats the interpretation task as a disambiguation problem,
and show how the severe sparse data problem in this task
can be overcome by combining partial parsing, smoothing
techniques, and domain independent taxonomic information
(e.g., WordNet). We report on the results of five experiments
which achieve a combined precision of approximately 80%
on the British National Corpus (BNC), a 100 million word
collection of samples of written and spoken language from
a wide range of sources designed to represent a wide cross-
section of current British English, both spoken and written
(Burnard 1995).

The model
Given a nominalization, our goal is to develop a procedure
to infer whether the modifier stands in a subject or object
relation to the head noun. In other words, we need to as-
sign probabilities to the two different relations (SUBJ, OBJ).
For each relationrel we calculate the simple expression
P(rel|n1,n2) given in (4) below.

P(rel|n1,n2) =
f (n1, rel,n2)

f (n1,n2)
(4)

Since we have a choice between two outcomes we will use
a likelihood ratio to compare the two relation probabilities
(Mosteller & Wallace 1964). In particular we will compute
the log of the ratio of the probabilityP(OBJ|n1,n2) to the
probabilityP(SUBJ|n1,n2). We will call this log-likelihood
ratio the argument relation (RA) score.

RA(rel,n1,n2) = log2
P(OBJ|n1,n2)
P(SUBJ|n1,n2)

(5)

Notice, however, that we cannot read offf (n1, rel,n2) di-
rectly from the corpus. What we can obtain from a corpus
(through parsing) is the number of times a noun is the object
or the subject of a given verb. By making the simplifying
assumption that the relation between the nominalized head
and its modifier noun is the same as the relation between the
latter and the verb from which the head is derived, (4) can
be rewritten as follows:

P(rel|n1,n2) ≈ f (vn2, rel,n1)
∑
i

f (vn2, reli ,n1)
(6)

where f (vn2, rel,n1) is the frequency with which the modi-
fier nounn1 is found in the corpus as the subject or object of
vn2, the verb from which the head noun is derived. The sum
∑i f (vn2, reli ,n1) is a normalization factor.

Parameter estimation
Verb-argument tuples
A part-of-speech tagged and lemmatized version of the BNC
(100 million words) was automatically parsed by Cass (Ab-

ney 1996). Cass is a robust chunk parser designed for the
shallow analysis of noisy text. We used the parser’s built-
in function to extract verb-subject and verb-object tuples.
The tuples obtained from the parser’s output are an imper-
fect source of information about argument relations. For
example, the tuples extractor mistakes adjectives for verbs
(cf. (7a)) and nouns for verbs (cf. (7b)).
(7) a. SUBJ isolated people

b. SUBJ behalf whose

In order to compile a comprehensive count of verb-argument
relations we discarded tuples containing verbs or nouns with
a BNC frequency of one. This resulted in 588,333 distinct
types of verb-subject pairs and 615,328 distinct types of
verb-object pairs.

The data
It is beyond the scope of the present study to develop an
algorithm which automatically detects nominalizations in a
corpus. In the experiments described in the subsequent sec-
tions compounds with deverbal heads were obtained as fol-
lows:

1. Two word compound nouns were extracted from the BNC by
using a heuristic which looks for consecutive pairs of nouns
which are neither preceded nor succeeded by a noun (Lauer
1995).

2. A dictionary of deverbal nouns was created using: (a) Nomlex
(Macleodet al. 1998), a dictionary of nominalizations con-
taining 827 lexical entries and (b) Celex (Burnage 1990), a
general morphological dictionary, which contains 5,111 nom-
inalizations;

3. Candidate nominalizations were obtained from the com-
pounds acquired from the BNC by selecting noun-noun se-
quences whose head (i.e., rightmost noun) was one of the de-
verbal nouns contained either in Celex or Nomlex. The pro-
cedure resulted in 172,797 potential nominalizations.

From these candidate nominalizations a random sample of
2,000 tokens was selected. The sample was manually in-
spected and compounds with modifiers whose relation to the
head noun was other than subject or object were discarded.
Nominalizations whose heads were derived from verbs tak-
ing prepositional objects (cf. (2c)) were also discarded. Af-
ter manual inspection the sample contained 796 nominal-
izations. From these, 596 tokens were used as training data
for the experiments described in the following sections. The
remaining 200 nominalizations were used as test data and
also to evaluate whether humans can reliably disambiguate
the argument relation between the nominalized head and its
modifier.

Agreement
Two judges decided whether the modifier is the subject or
object of a nominalized head. The nominalizations were dis-
ambiguated in context: the judges were given the corpus sen-
tence in which the nominalization occurred together with the
preceding and following sentence. The judges were given a
page of guidelines but no prior training We measured agree-
ment using the Kappa coefficient (Siegel & Castellan 1988),
which is the ratio of the proportion of times,P(A), that k
raters agree to the proportion of times,P(E), that we would



expect the raters to agree by chance (cf. (8)). If there is a
complete agreement among the raters, thenK = 1, whereas
if there is no agreement among the raters (other than the
agreement which would be expected to occur by chance),
thenK = 0.

K =
P(A)−P(E)

1−P(E)
(8)

The judges’ agreement on the disambiguation task wasK =
.78 (N = 200,k = 2). The agreement was good given that
the judges were given minimal instructions and no prior
training. However, note that despite the fact that context
was provided to aid the disambiguation task, the annotators
were not in complete agreement. This points to the intrinsic
difficulty of the task. Argument relations and consequently
selectional restrictions are influenced by several pragmatic
factors which may not be readily inferred from the imme-
diate context. In the following we propose a method which
faces a greater challenge: the interpretation of nominaliza-
tions without taking context into account.

Mapping

In order to estimate the frequencyf (vn2, rel,n1) and conse-
quently the probabilityP(rel|n1,n2), the nominalized heads
were mapped to their corresponding verbs. Inspection of
the frequencies of the verb-argument tuples contained in
the sample (596 tokens) revealed that 372 verb-noun pairs
had a verb-object frequency of zero in the corpus. Similarly,
378 verb-noun pairs had a verb-subject frequency of zero.
Furthermore, a total of 287 tuples were not attested at all
in the BNC either in a verb-object or verb-subject relation.
This finding is perhaps not surprising given the productiv-
ity of compounds. Considering the ease with which novel
compounds are created it is to be expected that some verb-
argument configurations will not occur in the training cor-
pus.

We estimated the frequencies of unseen verb-argument
pairs by experimenting with three types of smoothing tech-
niques proposed in the literature: back-off smoothing (Katz
1987), class-based smoothing (Resnik 1993) and similarity-
based smoothing (Dagan, Lee, & Pereira 1999).

Smoothing

Back-off smoothing

Back-off n-gram models were initially proposed by Katz
(1987) for speech recognition but have been also success-
fully used to disambiguate the attachment site of structurally
ambiguous PPs (Collins & Brooks 1995). The main idea be-
hind back-off smoothing is to adjust maximum likelihood
estimates like (6) so that the total probability of observed
word co-occurrences is less than one, leaving some probabil-
ity mass to be redistributed among unseen co-occurrences.
In general the frequency of observed word sequences is dis-
counted using Good Turing’s estimate and the probability
of unseen sequences is estimated by using lower level con-
ditional distributions. Assuming that the denominator in (6)
f (vn2, rel,n1) is zero we can approximateP(rel|n1,n2) by

backing-off toP(rel|n1):

P(rel|n1,n2) = α
f (rel,n1)

f (n1)
(9)

whereα is a normalization constant which ensures that the
probabilities sum to one. If the frequencyf (rel,n1) is also
zero backing-off continues by making use ofP(rel).

Class-based smoothing
Class-based smoothing recreates co-occurrence frequencies
based on information provided by taxonomies such as Word-
Net or Roget’s thesaurus. Taxonomic information can be
used to estimate the frequenciesf (vn2, rel,n1) by substi-
tuting the wordn1 occurring in an argument position by
the concept with which it is represented in the taxonomy
(Resnik 1993). Hence,f (vn2, rel,n1) can be estimated by
counting the number of times the concept corresponding to
n1 was observed as the argument of the verbvn2 in the cor-
pus.

This would be a straightforward task if each word was
always represented in the taxonomy by a single concept or
if we had a corpus of verb-argument tuples labeled explic-
itly with taxonomic information. Lacking such a corpus we
need to take into consideration the fact that words in a taxon-
omy may belong to more than one conceptual classes: counts
of verb-argument configurations are reconstructed for each
conceptual class by dividing the contribution from the argu-
ment by the number of classes it belongs to (Resnik 1993;
Lauer 1995):

f (vn2, rel,c) ≈ ∑
n′1 ∈ c

count(vn2 , rel,n′1)
|classes(n′1)|

(10)

wherecount(vn2, rel,n′1) is the number of times the verbvn2
was observed with nounn′1 ∈ c bearing the argument relation
rel (i.e., subject or object) and|classes(n′1)| is the number of
conceptual classesn′1 belongs to. The frequencyf (vn2, rel,c)
is reconstructed for all classesc with which the argumentn1
is represented in the taxonomy. Since we do not know which
is the actual class of the nounn1 in the corpus we weigh
the contribution of each class by taking the average of the
reconstructed frequencies for all classesc:

f (vn2 , rel,n1) =

∑
c ∈ classes(n1)

∑
n′1 ∈ c

count(vn2 ,rel,n′1)
|classes(n′1)|

|classes(n1)|(11)

Similarity-based smoothing
Similarity-based smoothing is based on the assumption that
if a word w′

1 is “similar” to word w1, thenw′
1 can provide

information about the frequency of unseen word pairs in-
volving w1 (Dagan, Lee, & Pereira 1999). There are several
measures of word similarity which can be derived from lex-
ical co-occurrences, providing an alternative to taxonomies
such as WordNet (see Dagan, Lee, & Pereira (1999) for an
overview).

We have experimented with two measures of distribu-
tional similarity derived from co-occurrence frequencies:
the Jensen-Shannon divergence and the confusion proba-
bility. The choice of these two measures was motivated by
work described in Dagan, Lee, & Pereira (1999) where the



Jensen-Shannon divergence outperforms related similarity
measures on a word sense disambiguation task which uses
verb-object pairs. The confusion probability has been used
by several authors to smooth word co-occurrence probabil-
ities (e.g., Grishman & Sterling 1994). In the following we
describe these two similarity measures and show how they
can be used to recreate the frequencies for unseen verb-
argument tuples (for a more detailed description see Dagan,
Lee, & Pereira 1999).

Confusion Probability The confusion probabilityPC is an
estimate of the probability that wordw′

1 can be substituted
by wordw1, in the sense of being found in the same contexts.

PC(w1|w′
1) = ∑

s
P(w1|s)P(s|w′

1)(12)

wherePC(w′
1|w1) is the probability that wordw′

1 occurs in
the same contextss as wordw1, averaged over these con-
texts. Given a tuple of the formw1, rel,w2 we chose to treat
rel,w2 as context and smooth over the verbw1. By taking
verb-argument tuples into consideration (12) is rewritten as
follows:
(13) PC(w1|w′

1) = ∑
rel,w2

P(w1|rel,w2)P(rel,w2|w′
1)

= ∑
rel,w2

f (w1,rel,w2)
f (rel,w2)

f (w′
1,rel,w2)
f (w′

1)

The confusion probability can be computed efficiently as it
involves summation only over the common contextsrel,w2.

Jensen-Shannon divergence The Jensen-Shannon diver-
genceJ is a measure of the “distance” between distributions:
(14)

J(w1,w
′
1) =

1
2

[
D

(
w1

∥∥∥∥w1 +w′
1

2

)
+D

(
w′

1

∥∥∥∥w1 +w′
1

2

)]

D(w1‖w′
1) = ∑

rel,w2

P(rel,w2|w1) log
P(rel,w2|w1)
P(rel,w2|w′

1)
(15)

whereD in (14) is the Kullback-Leibler divergence, a mea-
sure of the dissimilarity between two probability distribu-
tions (cf. equation (15)) and(w1 +w′

1)/2 is a shorthand for
the average distribution:

1
2
(P(rel,w2|w1)+P(rel,w2|w′

1))(16)

Similarly to the confusion probability, the computation ofJ
depends only on the common contextsrel,w2. Dagan, Lee,
& Pereira (1999) provide for theJ divergence a weight func-
tion WJ(w,w′

1):

WJ(w1,w
′
1) = 10−βJ(w1,w′

1)(17)

The parameterβ controls the relative influence of the neigh-
bors (i.e., distributionally similar words) closest tow1: if β
is high, only words extremely close tow1 contribute to the
estimate, whereas ifβ is low distant words also contribute to
the estimate.

We estimate the frequency of an unseen verb-argument
tuple by taking into account the similarw1s and the contexts
in which they occur (Grishman & Sterling 1994):

fs(w1, rel,w2) = ∑
w′

1

sim(w1,w
′
1) f (w′

1, rel,w2)(18)

Given a nominalizationn1 n2:
1. map the head nounn2 to the verbvn2 from which it is derived;
2. retrieve f (verbn2,OBJ,n1) and f (verbn2 ,SUBJ,n1) from the

corpus;
3. if f (verbn2 ,OBJ,n1) < k then

recreatefs(verbn2 ,OBJ,n1);
4. if f (verbn2 ,SUBJ,n1) < k then

recreatefs(verbn2 ,SUBJ,n1);
5. calculate probabilitiesP(OBJ|n1,n2) andP(SUBJ|n1,n2);
6. computeRA(rel,n1,n2);
7. if RA≥ j then

n1 is the subject ofn2;
8. else

n1 is the object ofn2;

Figure 1: Disambiguation algorithm for nominalizations

where sim(w1,w′
1) is a function of the similarity between

w1 andw′
1. In our experiments sim(w1,w′

1) was substituted
by the confusion probabilityPC(w1|w′

1) and the Jensen-
Shannon divergenceWJ(w1,w1

′).

The algorithm
The disambiguation algorithm for nominalizations is sum-
marized in Figure 1. The algorithm uses verb-argument tu-
ples in order to infer the relation holding between the mod-
ifier and its nominalized head. When the co-occurrence
frequency for the verb-argument relation is zero, verb-
argument tuples are smoothed. The sign of theRA score
(cf. equation (5) and steps 6–8) indicates the relation be-
tween the headn1 and its modifiern2: a positiveRA score
indicates an object relation, whereas a negative score indi-
cates a subject relation. Depending on the task and the data
at hand we can require that an object or subject analysis
is preferred only ifRA exceeds a certain thresholdj (see
steps 7 and 8 in Figure 1). We can also impose a thresh-
old k on the type of verb-argument tuples we smooth. If
for instance we know that the parser’s output is noisy, then
we might choose to smooth not only unseen verb-argument
pairs but also pairs with attested frequencies in the corpus
(e.g., f (verbn2, rel,n1) ≥ 1, see steps 3 and 4 in Figure 1).

Experiments
The task
The algorithm was trained on 596 nominalizations and
tested on 200. The 596 nominalizations were also used
as training data for finding the optimal parameters for the
two parameterized similarity-based smoothing approaches.
In particular we examined whether the size of the vocabulary
(e.g., number of verbs used to find the nearest neighbors) has
an impact on disambiguation performance and what the best
value for the parameterβ is. As far as class-based smoothing
is concerned we experimented with two concept hierarchies,
Roget’s thesaurus and WordNet. Although the class-based
and back-off methods are not parameterized, we report their
performance both on training and test set for completeness.

The algorithm’s output was compared to the manual clas-
sification and precision was computed accordingly. For 59%



Method Accuracytrain Accuracytest

Default 59.0% 61.8%
Back-off 63.0% 67.0%
Confusion 68.3% 73.7%
Jensen 67.9% 67.0%
WordNet 67.9% 70.6%
Roget 64.6% 66.5%

Ripper 79.7% 78.3%

Table 1: Disambiguation performance

of the nominalizations contained in the train data the mod-
ifier was the object of the deverbal head, whereas in the
remaining 41% the modifier was the subject. This means
that a simple heuristic which defaults to an object relation
yields a precision of approximately 59%. Our decision pro-
cedure defaults to an object relation when there is no evi-
dence to support either analysis (e.g., whenf (vn2,OBJ,n1)
= f (vn2,SUBJ,n1)).

Results

Before reporting the results of the disambiguation task, we
describe our experiments on finding the optimal parameter
settings for the two similarity-based smoothing methods.

Figure 2a shows how performance on the disambigua-
tion task varies with respect to the number and frequency of
verbs over which the similarity function is calculated. The y-
axis in Figure 2a shows how performance on the training set
varies (for bothPC andJ) when verb-argument pairs are se-
lected from the 1,000 most frequent verbs in the corpus, the
2,000 most frequent verbs in the corpus, etc. (x-axis). The
best performance for both similarity functions is achieved
using the 2,000 most frequent verbs. Furthermore, perfor-
mance betweenJ andPC is comparable (67.9% and 68.3%,
respectively). Another important observation is that perfor-
mance deteriorates less severely forPC than for J as the
number of verbs increases: when all verbs for which verb-
argument tuples are extracted from the BNC are used pre-
cision forPC is 66.94%, whereas precision forJ is 62.75%.
These results are perhaps unsurprising: verb-argument pairs
with low-frequency verbs introduce noise due to the errors
inherent in the partial parser.

Finally, we analyzed the role of the parameterβ. Recall
thatβ appears in the weight function forJ and controls the
influence of the most similar words. Figure 2b shows how
the value ofβ affects performance on the disambiguation
task when the similarity function is computed for the 1,000
and 2,000 most frequent verbs in the corpus. It is clear that
performance is low with very high or very lowβ values
(e.g.,β ∈ {2,9}). We chose to set the parameterβ to 5 and
the results shown in Figure 2a have been produced for this
value for all verb frequency classes.

Table 1 shows how the three types of smoothing, back-off,
class-based, and similarity-based, influence performance in
predicting the relation between a modifier and its nominal-
ized head. For the similarity-based methods we report the
results obtained with the optimal parameter settings (β =
5; 2,000 most frequent verbs). Let us concentrate on the
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Figure 2: Parameter settings forPC andJ

Back-off Jensen Confusion WordNet
Jensen .31
Confusion .26 .53
WordNet .01 .37 .75
Roget .25 .26 .49 0.46

Table 2: Agreement between smoothing methods

training set first. The back-off method is outperformed by
all other methods, although its performance is comparable
to class-based smoothing using Roget’s thesaurus (63% and
64.6%, respectively). Similarity-based methods outperform
concept-based methods, although not considerably (accu-
racy on the training set was 68.3% forPC and 67.9% for
class-based smoothing using WordNet). Furthermore, the
particular concept hierarchy used for class-based smoothing
seems to have an effect on disambiguation performance: an
increase of approximately 2% is obtained by using Word-
Net instead of Roget’s thesaurus. One explanation might be
that Roget’s thesaurus is too coarse-grained a taxonomy for
the task at hand (Roget’s taxonomy contains 1,043 concepts,
whereas WordNet contains 4,795). We used aχ2 test to ex-
amine whether the the observed performance is better than
the simple strategy of always choosing an object relation
which yields an accuracy of 59%. The proportion of nomi-
nalizations classified correctly was significantly greater than
59% (p < 0.01) for all methods but back-off and Roget.

Similar results were observed on the test set. AgainPC
outperforms all other methods achieving a precision of
73.7% (see Table 1). The portion of nominalization clas-
sified correctly byPC was significantly greater than 61.8%



Method SUBJ OBJ

Back-off 41.6% 78.0%
Jensen 34.7% 91.2%
Confusion 47.3% 82.9%
WordNet 47.8% 80.3%
Roget 50.6% 74.4%

Table 3: Performance on predicting argument relations

(p < 0.05) which was the percentage of object relations in
the test set. The second best method is class-based smooth-
ing using WordNet (see Table 1). The back-off method per-
forms as well asJ, reaching an accuracy of 67%.

An interesting question is the extent to which any of
the different methods agree in their assignments of subject
and object relations. We investigated this by calculating the
methods’ agreement on the training set using the Kappa
coefficient. We calculated the Kappa coefficient for all six
pairwise combinations of the five smoothing variants. The
results are reported in Table 2. The highest agreement is
observed forPC and the class-based smoothing using the
WordNet taxonomy (K = .75). This finding suggests that
methods inducing similarity relationships from corpus co-
occurrence statistics are not necessarily incompatible with
methods which quantify similarity using manually crafted
taxonomies. Agreement betweenJ andPC as well as agree-
ment between WordNet and Roget’s thesaurus was rather
low (K = .53 andK = .46, respectively). This suggests that
different similarity functions or taxonomies may be appro-
priate for different tasks.

Table 3 shows how the different methods compare for the
task of predicting the individual relations for the training
set. A general observation is that all methods are fairly good
at predicting object relations. Predicting subject relations is
considerably harder: no method exceeds an accuracy of ap-
proximately 50%. One explanation for this is that selectional
constraints imposed on subjects can be more easily overrid-
den by pragmatic and contextual factors than those imposed
on objects.J is particularly good at predicting object rela-
tions, whereasPC and class-based smoothing using Word-
Net seem to yield comparable performances when it comes
to predicting subject relations (see Table 3).

An obvious question is whether the precision is increased
when combining the five smoothing variants given that they
seem to provide complementary information for predicting
argument relations. For example, Roget’s thesaurus is best
for the prediction of subject relations, whereasJ is best for
the prediction of object relations. We combined the five in-
formation sources using a decision tree classifier (Ripper,
Cohen 1996). The decision tree was trained on the 596 nomi-
nalizations on which the smoothing methods were compared
and tested on the 200 unseen nominalizations for which the
inter-judge agreement was previously calculated. The aver-
age error rate of the decision tree learner was 20.30%±
1.65% on the training set and 21.65%± 2.96% on the test
set. The latter result translates into a precision of 78.3%
(cf. Table 1) which is significantly better (p < 0.01) than
61.8%, the percentage of object relations in the test set.

Conclusions
The work reported here is an attempt to provide a statisti-
cal model of nominalizations occurring in wide coverage
text. We showed that a simple algorithm which combines
information about the distributional properties of words and
domain independent symbolic knowledge (i.e., WordNet)
achieves high performance on unseen data. This is an im-
portant result considering the simplifications in the system
and the sparse data problems encountered in estimating the
probabilityP(rel|n1,n2). Finally, we explored the merits and
limitations of various smoothing methods and systemati-
cally showed how recreated frequencies can be used in a task
other than language modeling to produce interesting results.

References
Abney, S. 1996. Partial parsing via finite-state cascades. In Carroll,
J., ed.,Workshop on Robust Parsing, 8–15. Prague: ESSLLI.
Burnage, G. 1990. Celex – a guide for users. Technical report,
Centre for Lexical Information, University of Nijmegen.
Burnard, L. 1995.Users Guide for the British National Corpus.
British National Corpus Consortium, Oxford University Comput-
ing Service.
Cohen, W. W. 1996. Learning trees and rules with set-valued fea-
tures. InProceedings of 13th National Conference on Artificial
Intelligence, 709–716. Portland, Oregon: AAAI Press.
1994. Proceedings of the 15th International Conference on Com-
putational Linguistics, Kyoto: COLING.
Collins, M., and Brooks, J. 1995. Prepositional phrase attachment
through a backed-off model. InProceedings of the 3rd Workshop
on Very Large Corpora, 27–38. Cambridge, MA: ACL.
Dagan, I.; Lee, L.; and Pereira, F. C. N. 1999. Similarity-based
models of word cooccurrence probabilities.Machine Learning1–
3(34):43–69.
Grishman, R., and Sterling, J. 1994. Generalizing automatically
generated selectional patterns. In COLING (1994), 742–747.
Katz, S. M. 1987. Estimation of probabilities from sparse
data for the language model component of a speech recognizer.
IEEE Transactions on Acoustics Speech and Signal Processing
33(3):400–401.
Lauer, M. 1995. Designing Statistical Language Learners: Ex-
periments on Compound Nouns. Ph.D. Dissertation, Macquarie
University, Sydney.
Leonard, R. 1984.The Interpretation of English Noun Sequences
on the Computer. Amsterdam: North-Holland.
Levi, J. N. 1978.The Syntax and Semantics of Complex Nominals.
New York: Academic Press.
Macleod, C.; Grishman, R.; Meyers, A.; Barrett, L.; and Reeves,
R. 1998. Nomlex: A lexicon of nominalizations. InProceedings
of the 8th International Congress of the European Association for
Lexicography, 187–193. Liège, Belgium: EURALEX.
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