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Pearson correlations between rates of change and between 

baseline intracranial volume and rates of change in the 
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Abstract 363 

 364 

Human brain structure changes throughout our lives. Altered brain growth or rates of 365 

decline are implicated in a vast range of psychiatric, developmental, and 366 

neurodegenerative diseases. Here, we identified common genetic variants that affect 367 

rates of brain growth or atrophy, in the first genome-wide association meta-analysis of 368 

changes in brain morphology across the lifespan. Longitudinal MRI data from 15,640 369 

individuals were used to compute rates of change for 15 brain structures. The most 370 

robustly identified genes GPR139, DACH1 and APOE are associated with metabolic 371 

processes. We demonstrate global genetic overlap with depression, schizophrenia, 372 

cognitive functioning, insomnia, height, body mass index and smoking. Gene-set 373 

findings implicate both early brain development and neurodegenerative processes in the 374 

rates of brain changes. Identifying variants involved in structural brain changes may 375 

help to determine biological pathways underlying optimal and dysfunctional brain 376 

development and ageing.  377 

 378 
Main text 379 
 380 
Under the influence of genes and a varying environment, human brain structure changes 381 

throughout the lifespan. Even in adulthood, when the brain seems relatively stable, 382 

individuals differ in the profile and rate of brain changes
1
. Longitudinal studies are crucial to 383 



identify genetic and environmental factors that influence the rate of these brain changes 384 

throughout development
2
 and ageing

3
. Inter-individual differences in brain development are 385 

associated with general cognitive function
4,5

, and risk for psychiatric disorders
6,7

 and 386 

neurological diseases
8,9

. Genetic factors involved in brain development and ageing overlap 387 

with those for cognition
10

 and risk for neuropsychiatric disorders
11

. A recent cross-sectional 388 

study showed brain age to be advanced in several brain disorders. Brain age is an estimate of 389 

biological age based on brain structure, which can deviate from chronological age. Several 390 

shared loci were found between the genome wide association study (GWAS) summary 391 

statistics for advanced brain age and psychiatric disorders
12

. However, we still lack 392 

information on which genetic variants influence an individual‘s brain changes throughout 393 

life, since this requires longitudinal data. Discovering genetic factors that explain variation 394 

between individuals in brain structural changes may reveal key biological pathways that drive 395 

normal development and ageing, and may contribute to identifying disease risk and 396 

resilience: a crucial goal given the urgent need for new treatments for aberrant brain 397 

development and ageing worldwide.  398 

As part of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) 399 

consortium
13

 the ENIGMA Plasticity Working Group quantified the overall genetic 400 

contribution to longitudinal brain changes, by combining evidence from multiple twin 401 

cohorts across the world
14

. Most global and subcortical brain measures showed genetic 402 

influences on change over time, with a higher genetic contribution in the elderly (heritability 403 

16 – 42%). Genetic factors that influence longitudinal changes were partially independent of 404 

those that influence baseline volumes of brain structures, suggesting that there might be 405 

genetic variants that specifically affect the rate of development or ageing. However, the genes 406 

involved in these processes are still not known, with only a single, small-scale GWAS 407 

performed for longitudinal volume change in gray and white matter of the cerebrum, basal 408 



ganglia, and cerebellum
15

. Here, we set out to find genetic variants that may influence rates 409 

of brain changes over time, using genome-wide analysis in individuals scanned with 410 

magnetic resonance imaging (MRI) on more than one occasion. We also aimed to identify 411 

age-dependent effects of genomic variation on longitudinal brain changes in mostly healthy, 412 

but also neurological and psychiatric, populations. 413 

In our GWAS meta-analysis, we sought genetic loci associated with annual change rates in 8 414 

global and 7 subcortical morphological brain measures in a coordinated two-phased analysis 415 

using data from 40 longitudinal cohorts (Extended Data Fig 1 and Supplementary Table 1). 416 

We extracted global and subcortical brain measures, and assessed annual change rates, using 417 

additive genetic association analyses to estimate the effects of genetic variants on the rates of 418 

change within each cohort. As brain change is not constant over age
1
 and gene expression 419 

also changes during development and ageing
16

, we determined whether the estimated genetic 420 

variants were age-dependent, i.e., differentially affected rates of brain changes at different 421 

stages of life, by using genome-wide meta-regression models with linear or quadratic age 422 

effects (Methods). It must be noted that although the cohorts analysed in this study together 423 

cover the full lifespan, there is relatively little age overlap between them. This implies that 424 

we cannot rule out that cohort-specific characteristics other than age could influence our 425 

meta-regression findings. 426 

We employed a rolling cumulative meta-analysis and -regression approach
17

. In phase 1, for 427 

which data collection ended on Feb 1
st
, 2019, we analysed the cohorts of European descent 428 

(N=9,623). We sought replication by adding data from three additional cohorts that became 429 

available after our analysis of phase 1: one developmental cohort (average age 10 at baseline) 430 

and two in ageing populations (N =5,477; all of European descent; total N=15,100 in phase 431 

2). For all follow-up analyses we used results from phase 2. Finally, we added cohorts of 432 

non-European ancestry (total N=15,640). 433 



 434 

Longitudinal trajectories 435 

Brain measures showed differing trajectories of change with age (Figures 1,2 and Extended 436 

Data Video 1) - either monotonic increases (lateral ventricles), monotonic decreases (cortex 437 

volume, cerebellar grey matter volume, cortical thickness, surface area, total brain volume), 438 

or increases followed by stabilization and subsequently decreases (cerebral and cerebellar 439 

white matter, thalamus, caudate, putamen, nucleus accumbens, pallidum, hippocampus and 440 

amygdala volumes). Each brain structure showed a characteristic trajectory of change. Within 441 

two of our largest cohorts in phase 1 (one in childhood and one in older age), we computed 442 

correlations between the rates of change of all possible pairs of these 15 brain structures. 443 

These correlations in both childhood and older age were generally low in our data (Extended 444 

Data Fig. 2), except for  the correlation between rates of change of cortical thickness and 445 

cortex volume.  Therefore, we chose to investigate all brain structures separately, maximizing 446 

sensitivity of the GWAS to identify region-specific associations of genetic variants. Using the 447 

correlation structure, we estimated the effective number of independent variables through 448 

matrix spectral decomposition on the rates of change, yielding 14 independent traits for 449 

multiple testing corrections (Methods). 450 

 451 

Age-independent associations  452 

Two loci showed genome-wide significant effects on the rate of brain change in phase 1, one 453 

of which was also genome-wide significant in phase 2 (Figure 3; Supplementary Table 4; p-454 

value replication sample 0.08). This lead SNP, rs72772740 on chromosome 16, is an intronic 455 

variant located in the GPR139 gene and was associated with rate of change in lateral ventricle 456 

volume (Figure 4). Functional annotation identified numerous significant expression 457 

quantitative trait loci (eQTL) associations (FDR < 0.05) in different datasets and highlighted 458 



genes by either eQTL mapping (GPRC5B, IQCK, KNOP1, C16orf62) or chromatin 459 

interaction mapping (ACSM1, ACSM5, UMOD, GP2). GPR139 is the G-protein-coupling 460 

receptor gene 139, which encodes a member of the rhodopsin family of G-protein coupled 461 

receptors. The gene is almost exclusively expressed in the central nervous system, with 462 

highest expression from 12 to 26 weeks post-conception, and has been suggested as a 463 

therapeutic target for metabolic syndromes and motor diseases
18

. GPR139 may play a role in 464 

foetal brain development
19

. Mice lacking GPR139 exhibited schizophrenia-like behavioural 465 

abnormalities
20

, and functional cell assays showed the inhibitory influence of GPR139 on 466 

dopamine receptor 2 (D2R) signalling
20

. The second lead SNP, rs449998, an intronic variant 467 

on chromosome 21 located in the Down Syndrome Cell Adhesion Molecule (DSCAM) gene, 468 

was associated with rate of change in nucleus accumbens volume in phase 1, but this 469 

association was not significant in the replication sample, or phase 2. Three SNPs were 470 

significant in the phase 2 analysis only. These include rs10990953, intergenic on 471 

chromosome 9, associated with rate of change in lateral ventricle volume; rs1425034, 472 

intergenic and located in long intergenic non-protein coding RNA on chromosome 2, 473 

associated with rate of change in pallidum volume; and rs12325429, intron of CDH8 on 474 

chromosome 16, associated with rate of change in total brain volume (Supplementary Table 475 

5; Supplementary Figs. 1,2 provide Manhattan plots, QQ plots, locus plots and circos plots). 476 

The association of CDH8 with total brain volume rate of change is particularly interesting, 477 

since CDH8 has been associated previously with learning disability and autism
21

. CDH8 is a 478 

protein-coding gene and encodes a type II classical cadherin from the cadherin superfamily, 479 

integral membrane proteins that mediate calcium-dependent cell–cell adhesion. Genome-480 

wide significant SNPs in phase 1 or phase 2 did not show heterogeneity (I
2
 < 10.2; p(I

2
) > 481 

0.31; Supplementary Tables 4,5, Supplementary Fig.3 for forest plots). 482 

 483 



Age-dependent associations  484 

Three additional loci had an association with rate of change that was variable across the 485 

lifespan in phase 1 (Figure 3; Supplementary Tables 6,8). For two of these, the association 486 

remained significant in the phase 2 analysis: rate of change in white matter cerebrum volume 487 

was affected by rs573983368 (intronic variant) in the Dachshund Family Transcription Factor 488 

1 (DACH1) gene, and 5:157751672 (intergenic and located in long intergenic non-protein 489 

coding RNA LINC02227) on chromosome 5 had an age-dependent effect on the rate of 490 

change in surface area (Figure 4; Supplementary Tables 6-9). Rate of change in cerebellar 491 

white matter volume was affected by the intronic rs10674957 in the Thyrotropin Releasing 492 

Hormone Degrading Enzyme (TRHDE) gene, but this third locus was not significant in phase 493 

2.  494 

The DACH1 locus shows significant chromatin interaction, which can play an important role 495 

in gene expression regulation.  DACH1 encodes a chromatin-associated protein that 496 

associates with DNA-binding transcription factors to regulate gene expression and cell fate 497 

determination during development. DACH1 is highly expressed in the proliferating neural 498 

progenitor cells of the developing cortical ventricular and subventricular regions, and in the 499 

striatum
22

. We found the effect of DACH1 to have a quadratic age-dependence, with the 500 

variant being associated with faster growth in childhood and earlier but slower decline with 501 

ageing (Figure 4).  The effect of 5:157751672 had a linear age-dependence, with the tested 502 

variant being associated with less growth of surface area in childhood, and less decline at 503 

older age.  504 

For seven additional loci we found a significant age-dependent association with rate of 505 

change only in phase 2 (Supplementary Tables 7,9; Supplementary Figs. 1,2 provide 506 

Manhattan plots, QQ plots, locus plots and circos plots). One of these, rs429358, a missense 507 

variant of the Alzheimer‘s disease (AD)-related
23 

apolipoprotein E gene (APOE) gene, was 508 



associated with change rate in hippocampus, showing prolonged growth into adulthood and 509 

faster reductions of volume of the hippocampus for carriers of the AD risk variant. APOE 510 

plays a role in maintenance of cellular cholesterol homeostasis by delivering cholesterol to 511 

neurons on apoE-containing lipoprotein particles. Cholesterol is important for synapse and 512 

dendrite formation, and cholesterol depletion has been shown to cause synaptic and dendritic 513 

degeneration
24

. Other findings include rs12019523, an intronic variant in the CAB39L gene 514 

associated with rate of change of the caudate volume; rs34342646, an intronic variant in the 515 

NECTIN2 gene associated with rate of change in surface area and rs73210410, an intronic 516 

variant in the SORCS2 gene associated with rate of change in pallidum volume.  517 

To visualize the age-dependent effects, we plotted the meta-regression results for the 518 

significant loci (Methods, Supplementary Fig. 3). Genome-wide significant SNPs in phase 1 519 

or phase 2 did not show significant residual heterogeneity (p > 0.23; except for the age-520 

dependent effect of rs429358 on hippocampus change rate (p=0.02)). A summary of the 521 

genome-wide significant results and the top-10 loci for each phenotype and age model are 522 

presented in Supplementary Tables 4-9.  523 

 524 

Gene-based analyses  525 

Gene-based associations with all phenotypes were estimated using MAGMA (Methods). We 526 

found six genome-wide significant genes influencing structural rates of change in phase 1, 527 

four of which were also significant in phase 2 (Supplementary Table 10, 11); among these, 528 

DACH1 and GPR139, which were implicated through SNP-based GWAS, also reached 529 

genome-wide significance in this gene-based GWAS. In addition, we found APOE to be 530 

associated with change rates for both hippocampus and amygdala. The phase 2 analysis 531 

showed two new findings: an association of the FAU gene with rate of change in cerebellum 532 

white matter volume, and again APOE, associated with rate of change in surface area. Of 533 



note, the APOE findings were based on GWAS and subsequent gene analysis, and we did not 534 

investigate the classical APOE status, since that is determined by a combination of two SNPs. 535 

However, we observed that the effect of APOE on change rate of hippocampus and amygdala 536 

was fully driven by rs429358, with the risk variant for AD causing prolonged growth into 537 

adulthood      and faster decay for both amygdala and hippocampus volumes later in life.  538 

To visualize the age-dependent effects, we plotted the meta-regression results for the top SNP 539 

in each of the significant genes (Supplementary Fig. 3). Supplementary Tables 10, 11 display 540 

the top-10 genes for each phenotype and each age model. Supplementary Table 12 details 541 

putative biological functions of associated genes and genes harbouring genome-wide 542 

significant associated loci.  543 

 544 

Gene-set analyses 545 

To test whether genetic findings for brain structure change converged onto functional gene 546 

sets and pathways, we conducted gene-set analyses using MAGMA (Methods). Competitive 547 

testing was used and 10 and 12 genome-wide significant gene sets were found for phase 1 548 

and phase 2, respectively (Supplementary Tables 13, 14 for top-10 gene sets and genes 549 

included). Two main themes emerge from this analysis, as biological functions of the gene 550 

sets converge onto involvement in early brain development and involvement in 551 

neurodegeneration, respectively. 552 

 553 

One gene set was significant in both the phase 1 and phase 2 analyses, i.e.  554 

GO_neural_nucleus_development. This gene set consists of genes involved in the 555 

development of neural nuclei (compact clusters of neurons in the brain) and was associated 556 

with rates of change in cerebellar white matter volume in our study. Two other gene sets, 557 

significant in phase 1 (GO_substantia_nigra_development associated with rate of change in 558 



cerebellum white matter volume) and phase 2 (GO_midbrain_development associated with 559 

quadratic age-dependent surface area rates of change) were closely related to neural nucleus 560 

development in gene ontology terms.   561 

 562 

The most significant gene set was GO_response_to_phorbol_13_acetate_12_myristate (p-563 

value=1.42e-08) in phase 2, related to surface area change. Phorbol 13-acetate 12-myristate is 564 

a phorbol ester and an activator of protein kinase C (PKC)
25

. Two other gene sets, significant 565 

in phase 2 (GO_tau_protein_binding and GO_tau_protein_kinase_activity) and both 566 

associated with rate of change in caudate volume, imply genes involved in interacting with 567 

tau protein. Tau is a microtubule-associated protein, implicated in Alzheimer's disease, Down 568 

Syndrome and amyotrophic lateral sclerosis (ALS).  569 

  570 

Follow-up analyses: overlap with cross-sectional findings  571 

SNP-based heritability estimates (h
2
) of the rates of change based on linkage disequilibrium 572 

score regression (LDSC; Methods) were small overall (Supplementary Table 15). For all 573 

phenotypes, the h
2
 z-score was below 4. We thus tested for genetic overlap with cross-574 

sectional brain data and other phenotypes by applying approaches other than LDSC, although 575 

these do not provide a measure of genetic correlation. To investigate whether cross-sectional 576 

GWAS for brain structure and our GWAS on rates of change identify the same or different 577 

genetic variants, we investigated overlap between rate of change and earlier published data 578 

on cross-sectional brain structure of the same structure, where available (Methods). 579 

Supplementary Fig. 4 displays the number of overlapping genes tested against the expected 580 

number of overlapping genes that would occur by chance, in the first 1-1,000 ranked genes. 581 

Supplementary Table S11 lists the top-10 gene findings for each of the 15 change-rate 582 

phenotypes and compares these with the gene ranks from cross-sectional data. In the top-10 583 



ranked genes, APOE for hippocampus occurred in the top-10 for both cross-sectional data
26

 584 

and age-dependent effects on rate of change (p=0.006). No overlap was seen for the other 585 

measured phenotypes. Extending this search to the top 200 (~1% of genes), we found 586 

overlapping genes above chance level for cortical thickness of quadratic age-dependent genes 587 

and cross-sectional findings (p = 8.39e-05). In the top 1,000 ranked genes (~5% of genes), 588 

further overlapping genes did emerge (Supplementary Fig. 4). Overlapping genes at such a 589 

high aggregate level imply that largely different genetic backgrounds underlie changes in 590 

brain structure and brain structure per se.  591 

To test for global genomic overlap between our findings and GWAS of cross-sectional 592 

volumes we applied independent SNP-Effect Concordance Analyses (iSECA) (Methods) and 593 

tested for pleiotropy. We found no significant pleiotropy between longitudinal and cross-594 

sectional results, confirming a largely different genetic background for changes in brain 595 

structure and brain structure per se (Figure 5).  596 

 597 

Follow-up analyses: overlap with other traits 598 

We applied iSECA for overlap between our age-independent summary statistics for structural 599 

brain changes and several neuropsychiatric, neurological, physical, ageing and disease-600 

related phenotypes and psychological traits (Methods). We found significant genomic overlap 601 

(p < 1.6e-04) with genetic variants associated with depression
27

, schizophrenia
28

, cognitive 602 

functioning
29

, height
30

, insomnia
31

, body mass index (BMI)
30

 and ever-smoking
32

. Despite 603 

significant pleiotropy between rates of change and these traits, we did not find evidence for 604 

concordance or discordance of effects (Figure 5, Supplementary Figure 5). For comparison, 605 

we computed the genomic overlap between cross-sectional volumes and these phenotypes 606 

using the same method. In general, cross-sectional volumes showed overlap for the same 607 

traits and several others. Of note, there was also little overlap between the summary statistics 608 



for the longitudinal brain measures and summary statistics for the corresponding volumes, 609 

based on cross-sectional data. This implies that despite the fact that both cross-sectional brain 610 

volume and rates of changes are associated with traits such as schizophrenia or cognitive 611 

functioning, these associations are likely not driven by the same genomic locations. 612 

Additionally, there was little overlap in the genetic loci associated with the longitudinal brain 613 

measures and intracranial volume at baseline, indicating that overall head size did not drive 614 

our findings (Figure 5).   615 

 616 

Follow-up analyses: gene expression across the lifespan 617 

We determined mRNA expression for genome-wide significant genes and genes associated 618 

with genome-wide significant SNPs (Supplementary Tables S5,7,9) in 54 tissue types and in 619 

both the developing and adult human brain (Methods). For the prioritized genes, a gene 620 

expression heatmap was created, based on GTEx v8 RNAseq data
33

. This revealed 621 

considerable expression levels across several brain tissues for the following genes: APOE, 622 

CAB39L, FAU, NECTIN2 (alias PVRL2) and SORCS2, the latter showing higher expression 623 

in brain tissue compared to all other tissue types (Supplementary Fig. 6A). These genes show 624 

different expression patterns across the lifespan in the BrainSpan data
34

. DACH1 shows 625 

highest expression during early prenatal stages (8-9 post conception weeks), compared to 626 

postnatal stages. Several genes demonstrate stable high expression levels throughout 627 

development and across the lifespan (APOE, CAB39L, FAU, NECTIN2 (alias PVRL2)). 628 

CDH8 shows lower expression in the early prenatal stages and higher expression later in life 629 

(Supplementary Fig. 6B). 630 

 631 

Follow-up analyses: phenome-wide associations  632 



For the prioritized SNPs and genes (Supplementary Tables 5,7,9,11), exploratory pheWAS 633 

(i.e., ‗phenome‐wide‘) analysis was performed to systematically analyse many phenotypes 634 

for association with the genotype and individual genes (Supplementary Table 17). PheWAS 635 

was performed using publicly available data from the GWASAtlas
32

 (https://atlas.ctglab.nl). 636 

Gene associations of DACH1, GPR139 and SORCS2 showed pleiotropic effects mainly in the 637 

metabolic domain, e.g., with estimated glomerular filtration rate and BMI (Supplementary 638 

Table 17, Supplementary Fig. 7). SORCS2 and CDH8 also showed significant associations 639 

with psychiatric and cognitive traits. Both APOE and NECTIN2 showed strongest 640 

associations with Alzheimer‘s disease, cholesterol and lipids (Supplementary Table 17, 641 

Supplementary Fig. 7).  642 

 643 

Sensitivity analyses 644 

We repeated the SNP and gene analyses in various subgroups: 1) by adding four cohorts of 645 

non-European or mixed ancestry (N=540; total N=15,640); 2) by omitting cohorts that did 646 

not meet a minimum sample size criterion (N>75) or a minimum scanning interval (> 0.5 647 

years) leaving N=14,601; 3) by excluding diagnostic groups in each cohort, leaving 648 

N=13,034, and 4) by including a covariate adjusting for disease status (Supplementary Tables 649 

18,19). In SNP-based and gene-based analyses, effect sizes of SNPs were very similar in all 650 

subgroups, suggesting that our results are also applicable for individuals of non-European 651 

ancestry (with the caveat that the non-European subgroup was rather small) and were not 652 

driven by the smaller cohorts. Findings were also similar in the healthy subgroup and when 653 

correcting for disease status, with one notable exception: the association between APOE and 654 

rate of volume change in hippocampus and amygdala, with increasing influence of the top 655 

SNP with age, was no longer present after correcting for disease (see Supplementary Table 1 656 

for diagnoses). This suggests that these APOE findings were in part driven by the presence of 657 

https://atlas.ctglab.nl/


patients in the cohorts and could therefore be explained either by disease-related genes that 658 

also influence rates of change or by brain changes occurring as a consequence of the disease.  659 

Given that our main analyses included patients, and iSECA analyses showed several 660 

associations with disease, we repeated iSECA analyses excluding diagnostic groups in each 661 

cohort. These analyses implicate the same traits, associated with largely the same rates of 662 

change of brain measures (Supplementary Fig. 5). 663 

 664 

Discussion 665 

Here, we present the first GWAS investigating influences of common genetic variants on 666 

brain-structural changes in over 15,000 subjects covering the lifespan. The longitudinal 667 

design of our study combined with the large age range assessed provides a flexible 668 

framework to detect age-independent and age-dependent effects of genetic variants on rates 669 

of structural brain changes. We identified genetic variants for structural brain changes 670 

between 4 and 99 years of age. Some of these were independent of age, showing effects that 671 

were stable throughout life in terms of strength and direction, suggesting that these genetic 672 

variants are equally crucial for early brain development as for brain ageing. In addition, we 673 

identified age-dependent genetic variants, suggesting that some genetic variants are 674 

predominantly associated with brain development while others are mainly associated with 675 

brain ageing. 676 

 677 

Amongst our top findings is the APOE gene, a major risk factor for AD
23

, and specifically a 678 

missense variant in that gene, which influences rates of change in amygdala and 679 

hippocampus volume with varying and differential effects across the lifespan, with probably 680 

most pronounced effects in those affected with brain disorders. While most of the additional 681 

genetic loci identified here have not previously been associated with any brain-plasticity-682 



related phenotypes, several others were also linked to brain disorders, including psychiatric 683 

(e.g., GPR139 and CDH8) and neurodegenerative disorders (e.g., NECTIN2). Notably, 684 

DACH1 and NECTIN2 show increased expression during early development, while other 685 

genes‘ brain expression patterns are most pronounced during adulthood (e.g., APOE and 686 

CDH8), suggesting that these genes may exert specific effects during different developmental 687 

periods. 688 

 689 

Gene-set analysis also implies a role for both developmental and neurodegenerative 690 

processes. We found a gene-set involved in ‗neural nucleus development‘ that influenced 691 

rates of change in cerebellar white matter. Other closely related gene ontology terms,            692 

‗development of the substantia nigra and midbrain nuclei‘, were associated with rates of 693 

change of cerebral white matter volume and surface area. These all implicate the biological 694 

process of progression of a neural nucleus, a compact cluster of neurons in the brain, from its 695 

initial condition or formation to its mature state. This would also suggest that we observed      696 

the influence of genes involved in early developmental mechanisms of (subcortical) nuclei      697 

on cortical changes later in life. It is unclear whether this is a direct effect of these gene sets 698 

on cortical changes in adulthood, or the consequence of these early developmental pathways. 699 

In addition, we found several gene-sets interacting with tau-protein associated with rate of 700 

change in caudate volume, and a gene-set associated with rate of change in surface area that 701 

implicates phorbol 13-acetate 12-myristate, an activator of protein kinase C (PKC)
25

. PKC is 702 

a family of enzymes whose members transduce a large variety of cellular signals and plays a 703 

key role in controlling the balance between cell survival and cell death. Its loss of function is 704 

generally associated with cancer, whereas its enhanced activity is associated with 705 

neurodegeneration. PKC both directly phosphorylates tau and indirectly causes the 706 

dephosphorylation of tau, and has been suggested to play a key role in the pathology of 707 



Alzheimer‘s disease
35

. Together these results suggest involvement of genes in ageing and 708 

neurodegeneration.  709 

 710 

At the global, genome-wide level, we found significant genomic overlap between genetic 711 

variants associated with rate of change with genetic variants associated with depression, 712 

schizophrenia, cognitive functioning, insomnia, height, body mass index (BMI) and ever-713 

smoking. Several of these traits, such as schizophrenia, smoking, cognitive functioning, and 714 

body mass index, have been associated with longitudinal brain-structural changes
5,36–38

. The 715 

global overlap coincides with findings at the individual gene level: several of the identified 716 

genetic variants and genes were linked to metabolic processes (APOE, DACH1, GPR139, 717 

NECTIN2), cognitive functioning (CDH8), psychiatric traits (GPR139, SORCS2, CDH8) and 718 

Alzheimer‘s disease (NECTIN2 and APOE) as apparent from the pheWAS results. Despite 719 

the pleiotropic effects, concordance of effects was generally null. This is not surprising, as 720 

rate-of-change measures for brain structures are not constant and often switch sign over the 721 

course of the lifespan
1,39

, whereas the GWAS for other traits assume stability of both the 722 

phenotype and the genetic influences on the phenotype over time. As such, concordance and 723 

discordance of effects would not be expected. 724 

 725 

The advantage of longitudinal analyses is that each individual acts as their own control, 726 

allowing us to separate the genetic effects on volumes in cross-sectional studies from those 727 

on the rates of change
14

. Indeed, we found little overlap between the two: top genes identified 728 

in the GWAS on cross-sectional brain structure
26,40–42

 generally did not overlap with the top 729 

genes for the corresponding rates of change. Longitudinal analyses have long been shown to 730 

provide different information from cross-sectional approaches. On a phenotypic level, ageing 731 

patterns of the hippocampus show different results in cross-sectional studies than in 732 



longitudinal studies
43

. On a genetic level, a study that included a within-sample SNP-by-age 733 

interaction in the ADNI cohort showed that the power to detect genetic associations was 734 

larger for a longitudinal design than for a cross-sectional analysis
44

. Of note, that study also 735 

identified rs429358 in APOE as being associated with longitudinal hippocampal and 736 

amygdala volume change in older age (the ADNI cohort is also included in the current study). 737 

Through our meta-regression approach, we now show this variant to exert an effect across the 738 

lifespan, with the risk variant for AD causing faster increases in childhood for amygdala 739 

volume and faster volume reductions for both amygdala and hippocampus later in life. 740 

 741 

Given the dynamics of brain structural changes during the lifespan, we investigated both age-742 

independent and age-dependent genetic effects. The age-independent effects can be 743 

interpreted as neurodevelopmental influences that also impact brain structure at older 744 

ages
45,46

,
 
whereas the age-dependent effects can be interpreted as possible changing effects of 745 

genes or gene expression during life
16

. The genome-wide meta-regression approach 746 

employed here may enable future GWAS for other phenotypes that change over the human 747 

lifespan.  748 

 749 

We chose to analyse longitudinal changes for 15 separate brain structures, because we 750 

observed generally low correlations between these phenotypic changes. This approach 751 

allowed us to find brain-structure-specific associations. However, several longitudinal studies 752 

have described phenotypic correlations between structural changes 
39,47,48

; combining several 753 

phenotypes could thus be an alternative approach to identify genetic variants that exert a 754 

global effect. Of note, cohort and age are intertwined in our meta-regression analysis.  755 

Although the cohorts analysed in this study together cover the full lifespan, there is relatively 756 

little age overlap between them; therefore, we cannot be sure that differences between 757 



cohorts can be exclusively attributed to age. Mega-analysis would circumvent this problem, 758 

but was not feasible in practice. Moreover, we imposed the same stringent criteria of 759 

genome-wide significance for the age-independent meta-analysis and age-dependent meta-760 

regression, which renders chance findings equally unlikely in either type of analysis. In 761 

addition, residual heterogeneity for the top findings was generally small. That said, our 762 

sample size is still relatively modest for GWAS purposes, and replication in larger samples 763 

and inclusion of other ancestries is needed once more longitudinal data becomes available.  764 

 765 

How exactly variation in these genes impacts brain changes in health and disease cannot be 766 

answered based on genome-wide association studies. To this end, our findings may direct 767 

future studies into brain development and ageing, and prevention and treatment of brain 768 

disorders. For example, biological pathways that guide neural nucleus development in the 769 

foetal subcortical brain may be particularly relevant to the cerebral white matter growth and 770 

cortical thinning that takes place during childhood and adolescence. Neurodegenerative 771 

disorders might be better understood when we identify genetic variants that influence brain 772 

atrophy over time, compared with identification of static genetic differences. In conclusion, 773 

our study shows that our genetic architecture is associated with the dynamics of human brain 774 

structure throughout life. 775 

 776 

 777 
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Figure Legends 1193 

Figure 1: Phenotypic brain changes throughout the lifespan.  1194 

Visualization of growth and decline of brain structures throughout the lifespan. The 1195 

subcortical structures are shown in exploded view .  1196 

 1197 

Figure 2: Annual rates of change Δ per cohort for each structure (a-o).  The estimated 1198 

trajectories with 95% confidence intervals (in green) are displayed in the top row. Mean 1199 

values of individual cohorts are displayed as points, with error bars representing 1200 

standard errors displayed in grey. The size of the points represents the relative size of 1201 



the cohorts, total sample size N=15640. Means and standard deviations are based on 1202 

raw data – no covariates were included. Cohorts that were added in phase 2 are 1203 

displayed in grey. Only cohorts that satisfy N>75 and mean interval > 0.5 years are 1204 

shown. The estimated trajectories of the volumes themselves are displayed in the 1205 

bottom row, for all subjects (solid line) and for subjects not part of diagnostic groups 1206 

(dashed line). 1207 

 1208 

Figure 3: Genetic effects on rates of brain changes throughout the lifespan. 1209 

Genome-wide significant SNPs and genes with effects on brain changes at their 1210 

respective loci across the human genome, from phase 2 (total N=15,100). This plot was 1211 

created using PhenoGram (http://visualization.ritchielab.org).  1212 

 1213 

Figure 4: Summary of findings for two top-SNPs. 1214 
 1215 
Shown here is a summary of findings for a top-SNP of an age independent effect 1216 

(rs72772746; intron to GPR139; associated with rate of change of lateral ventricle volume; 1217 

left column) and a top-SNP of an age dependent effect (13:72353395; intron to DACH1; 1218 

associated with rate of change in cerebral white matter volume; right column). Displayed are 1219 

the locus plots (a) and (d), forest plot (b; total N = 14593, means and 95% confidence 1220 

intervals are displayed for each cohort; confidence intervals that are outside the axis of the 1221 

plot are marked with an arrow) and plot of meta-regression (e; total N = 13864, center of the 1222 

circles represent the effect size of the tested allele for each cohort, radius of the circles are 1223 

proportional to sample size) and inferred lifespan trajectories for carriers (in red) and non-1224 

carriers of the effect allele (in black) (c) and (f). Note that 13:72353395 was not in the 1225 

reference dataset containing LD structure; the displayed LD structure is based on 1226 

13:7234009, R2 = 0.87 with the top-SNP. 1227 

http://visualization.ritchielab.org/


 1228 

Figure 5: Genetic overlap with other phenotypes. 1229 
 1230 
P-values for pleiotropy between change rates of structural brain measures (rows, 1231 

indicated by Δ for change rate) and neuropsychiatric, disease-related and psychological 1232 

traits (columns on the left). P-values for pleiotropy between change rates of structural 1233 

brain measures and head size (intracranial volume) and the cross-sectional brain 1234 

measure are displayed on the right. The colour legend is displayed on the right, 1235 

indicating the -log10 p-value. Significant overlap (p < 1.6e-04; obtained through 1236 

permutation testing, two-sided, Bonferroni corrected) is marked with *. P-values 1237 

underlying this figure can be found in Supplemental Table 16.  1238 

 1239 
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 1355 

Methods 1356 
 1357 
Ethical approval  1358 

All participants gave written informed consent and all participating sites obtained approval 1359 

from local research ethics committees/institutional review boards. Ethics approval for meta-1360 

analyses within the ENIGMA consortium was granted by the QIMR Berghofer Medical 1361 

Research Institute Human Research Ethics Committee in Australia (approval: P2204).  1362 

 1363 

Inclusion criteria 1364 

Cohorts that had longitudinal magnetic resonance imaging (MRI) data of the brain and 1365 

genotyped data extracted from blood or saliva available were invited to participate, 1366 

irrespective of disease status and age. Patients were not excluded as aberrant brain 1367 

trajectories are often observed and we hypothesize that genetic risk for disease may be 1368 

associated with genetic influences on rates of change. We included cohorts that had a 1369 

preferred sample size of at least 75 subjects and a follow up duration (for repeated MRI 1370 

scans) of at least six months. After quality control of individual subject‘s imaging and 1371 

genotyping data, not all the cohorts could meet these criteria. In total, we included 15,640 1372 

subjects aged 4 to 99 (49% female, 14% patients). Please see Extended Data Fig. 1 and 1373 

Supplementary Table 1 for further description of the cohorts.  1374 



 1375 

Longitudinal imaging 1376 

Eight global brain measures (total brain including cerebellum and excluding brainstem, 1377 

surface area measured at the grey-white matter boundary, average cortical thickness, total 1378 

lateral ventricle volume, and cortical and cerebellar grey and white matter volume) and seven 1379 

subcortical structures (thalamus, caudate, putamen, pallidum, hippocampus, amygdala and 1380 

nucleus accumbens) were extracted from the FreeSurfer processing pipeline
49–51

; see 1381 

Supplementary Table 2 for details per cohort). We chose these measures based on the fact 1382 

that they show generally high test-retest reliability for cross-sectional measures
52–54

, thereby 1383 

selecting those measures that would have sufficient signal to noise in change measures. 1384 

Image processing and quality control were performed at the level of the cohorts, following 1385 

harmonized protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/) which 1386 

included visual inspection of the segmentation. Annual rates of change were computed in 1387 

each individual for each phenotype by subtracting baseline brain measures from follow up 1388 

measures and dividing by the number of years of follow-up duration. We chose not to correct 1389 

for overall head size in the main analysis: while it is common practice to correct for 1390 

intracranial volume when investigating cross-sectional brain volumes
55

, the associations 1391 

between intracranial volume and brain changes over time are small (Extended Data Fig. 2) 1392 

and GWAS findings are very similar with and without correction (Supplementary Note; 1393 

Supplementary Figure 8). Distributions of baseline and follow-up measures - as well as 1394 

annual rates of changes - were visually inspected and change rates were centrally compared 1395 

for consistency.  1396 

 1397 

Longitudinal trajectories of brain structure rates of change were estimated by applying 1398 

locally, cohort-size weighted, estimated scatterplot smoothing with a Gaussian kernel, local 1399 

http://enigma.ini.usc.edu/protocols/imaging-protocols/


polynomials of degree 2 and a span of 1 (LOWESS
56

) implemented in R
57

. Integrating these 1400 

trajectories and then fitting these to the baseline values of the phenotypes in the cohorts 1401 

provides trajectories throughout the lifespan. Trajectories were estimated in the full dataset 1402 

including patients and by excluding diagnostic groups in each cohort separately.  1403 

 1404 

Genome-wide association analysis 1405 

At each participating site, genotypes were imputed using the 1000 Genomes project dataset
58

 1406 

through the Michigan imputation server
59

 (https://imputationserver.sph.umich.edu/) or the 1407 

Sanger imputation server
60

 (Supplementary Table 3). Subsequently, each site ran the same 1408 

multidimensional scaling (MDS) analysis protocol, computing MDS components from the 1409 

combination of their cohort's data with the HapMap3 population
61

. This ensured that all sites 1410 

corrected for ancestry in a consistent manner. See 1411 

http://enigma.ini.usc.edu/protocols/genetics-protocols/ for the imputation and MDS analysis 1412 

protocol. Within each cohort genome-wide association was conducted using an additive 1413 

model, modelling change rate as a function of the genetic variant plus covariates age, sex, 1414 

age*sex, age
2
, age

2
*sex and ancestry (the first four MDS components). While it is possible 1415 

that rates of brain structural changes are different in males and females, we did not have the 1416 

power to perform analyses separating the sexes. Dummy variables were added where 1417 

appropriate, e.g., when multiple scanners were used. We re-ran these analyses adding a 1418 

covariate for disease status if the cohorts contained patients and controls. Most sites used our 1419 

harmonized GWAS protocol, which used raremetalworker
62

 for analysis (Supplementary 1420 

Table 3). Regardless of the study design, a kinship matrix was incorporated in these analyses, 1421 

accounting for relatedness in family studies, or possible unknown kinship in the other studies.  1422 

Given the small sample sizes of the individual cohorts, a stringent cohort level quality control 1423 

was enforced, to exclude variants with a minor allele frequency (MAF) < 0.05 or variants 1424 

http://enigma.ini.usc.edu/protocols/genetics-protocols/


with imputation R
2
 / info score < 0.75. Across cohorts and phenotypes, GWAS summary 1425 

plots (Manhattan plots and QQ plots) were visually inspected at the central site. If a given 1426 

cohort / trait showed deviation from expectations, sites were asked to re-analyse their data, 1427 

which usually involved removal of outliers in the phenotypic data. QQ plots per cohort, per 1428 

phenotype can be found in Supplementary Figure 10. 1429 

 1430 

Meta-analysis and Meta-regression 1431 

In the phase 1 cohorts of European ancestry (N=9,604) we aggregated the cohort-level data 1432 

for each phenotype, using standard-error weighted meta-analysis or meta-regression. We 1433 

employed a cumulative meta-analysis and meta-regression approach for replication, in phase 1434 

2 (N=15,100). The meta-regression could not be performed separately in the three 1435 

independent cohorts added in phase 2 since a regression line based on three points is prone to 1436 

overfitting. For age-independent analyses, we list results in the added sample (Supplementary 1437 

Tables 4 and 10). We tested three models. Under the assumption that effect sizes of single 1438 

nucleotide polymorphisms (SNPs) were consistent across the lifespan (i.e., a standard meta-1439 

analytic approach), where the subscript C denotes a cohort and ε an error term:   1440 

1) Effect_SNPC ~ b0 + εC, under the null hypothesis that b0 = 0. 1441 

Given that brain changes throughout life are dependent on age, the effects of a genetic variant 1442 

on brain change are      likely to depend on age too. Within cohorts, such an age by SNP effect 1443 

analysis would not have been feasible since longitudinal cohorts that span the age-range 1444 

between 4-99 years do not exist. Given the widespread mean age among the cohorts included 1445 

(Extended Data Fig. 1 and Supplementary Table 1), it was possible to calculate the age-1446 

dependent effects across the life span by comparing effects of loci between cohorts, through 1447 

meta-regression. Meta-regression is a sophisticated tool for addressing heterogeneity between 1448 

cohorts in meta-analyses when the source of heterogeneity is known (in this case, age)
63

. We 1449 



estimated the following model under the assumption that the effects of SNPs may vary in size 1450 

or direction across the lifespan: 1451 

       2) Effect_SNPC ~ b0 + b1*ageC + εC under the null hypothesis that b1=0 (1 degree of 1452 

freedom), and 1453 

       3) Effect_SNPC ~ b0 + b1*ageC + b2*ageC
2
 + εC under the null hypothesis that 1454 

(b1=b2=0, 2 degrees of freedom).  1455 

SNP data were aligned using METAL
64

 for all three analyses. The age-independent effect of 1456 

SNPs (model 1) was computed in METAL. For the age-dependent analyses (model 2 for 1457 

linear age effects and model 3 for quadratic age effects) the aligned data were imported into 1458 

R
52

 and fixed effects meta-regression was performed using the R-package metafor
65

 (version 1459 

2.0-0). Results were filtered on SNPs that were present for at least 50% of the cohorts and in 1460 

at least 50% of the subjects.  1461 

 1462 

Functional mapping 1463 

Functional mapping was performed using the FUMA platform designed for prioritization, 1464 

annotation and interpretation of GWAS results
66

. As the first step, independent significant 1465 

SNPs in the individual GWAS meta-analysis summary statistics were identified based on 1466 

their p-value (p < 5 x 10
-8

) and independence of each other (r
2
 < 0.6 in the 1000G phase 3 1467 

reference) within a 1Mb window. Thereafter, lead SNPs were identified from independent 1468 

significant SNPs, which are independent of each other (r
2
 < 0.1). We used FUMA to annotate 1469 

lead SNPs in genomic risk loci based on the following functional consequences on genes: 1470 

eQTL data (GTEx v6 and v7
67

), blood eQTL browser
68

, BIOS QTL browser
69

, 1471 

BRAINEAC
70

, MuTHER
71

, xQTLServer
72

, the CommonMind Consortium
73

 and 3D 1472 

chromatin interactions from HI-C experiments of 21 tissues/cell types
74

. Next for eQTL 1473 

mapping and chromatin interaction mapping, genes were mapped using positional mapping, 1474 



which is based on a maximum distance between SNPs (default 10kb) and genes. Chromatin 1475 

interaction mapping was performed with significant chromatin interactions (defined as FDR 1476 

< 1 × 10
-6

). The two ends of significant chromatin interactions were defined as follows: 1477 

region 1 – a region overlapping with one of the candidate SNPs, and region 2 – another end 1478 

of the significant interaction, used to map to genes based on overlap with a promoter region 1479 

(250bp upstream and 50bp downstream of the transcription start site). 1480 

 1481 

Visualization of SNP effects 1482 

We visualized the effects of our top SNPs on the lifespan trajectory, assuming no effects of 1483 

the other SNPs, for easier interpretation of the direction of effect. Similar to the estimation of 1484 

the lifespan trajectory, we estimated a smoothed version f(x) of the phenotypic change rate 1485 

using LOWESS (see above) and integrated the rate of change. We added the unknown 1486 

volume C at the start of our age range by fitting the integrated curve to the baseline data. 1487 

Suppose h(x) is the unknown rate of change for non-carriers. The additional change rate g(x) 1488 

for carriers was estimated through the meta-analysis or meta-regression. The full dataset 1489 

contained a fraction p of the carriers of the tested allele. Assuming p + q = 1, f(x) = p*(h(x) 1490 

+ g(x)) + q*h(x) = h(x) + p*g(x). We created a rate of change curve for non-carriers as f(x)-1491 

p*g(x) and a rate of change curve of carriers as f(x)+q*g(x). The offset C is potentially 1492 

different in carriers and non-carriers, so we estimated this difference by taking the effect of 1493 

the cross-sectional GWAS data (see below) in this SNP, or a proxy SNP in high linkage 1494 

disequilibrium (LD).  1495 

 1496 

Gene-based and gene-set analyses 1497 

Gene-based associations with 15 phenotypes were estimated using MAGMA
75

 (version 1498 

1.09a) using the summary statistics from age-independent and age-dependent GWAS meta-1499 



analyses of rate of change of global brain measures. Gene names and locations were based on 1500 

NCBI 37.3 locations as provided by MAGMA. Association was tested using the SNP-wise 1501 

mean model, in which the sum of -log(SNP p-value) for SNPs located within the transcribed 1502 

region was used as the test statistic. LD correction was based on estimates from the 1000 1503 

Genomes Project Phase 3 European ancestry samples
58

. To describe the direction of the age 1504 

effect for significant genes in the age-dependent analyses, we subsequently identified the 1505 

SNPs that were used in the gene-based p-value and plotted the age-dependent effect of the 1506 

top SNP that contributed to the gene-based p-value. 1507 

The generated gene-based p-values were used to analyse sets of genes in order to test for 1508 

association of genes belonging to specific biological pathways or processes. MAGMA 1509 

applies a competitive test to analyse if the genes of a gene set are more strongly associated 1510 

with the trait than other genes, while correcting for a series of confounding effects such as 1511 

gene length and size of the gene set. For gene sets we used 9,975 sets with 10 –1,000 genes 1512 

from the Gene Ontology sets
76

 curated from MsigDB 7.0
77

. 1513 

 1514 

Multiple testing corrections 1515 

We investigated annual rates of change for 15 brain phenotypes, but these are correlated to 1516 

some extent (Extended Data Fig. 2). We therefore estimated the effective number of 1517 

independent variables based on matrix spectral decomposition
78

 for the largest adolescent 1518 

cohort (IMAGEN; N=1,068) and for the largest elderly cohort from the phase 1 sample 1519 

(ADNI2; N=626). The most conservative estimate of the number of independent traits was 1520 

13.93. Despite the fact that models 2 and 3 are nested and therefore not independent, we also 1521 

corrected for performing three analyses per trait. The study-wide significant threshold for the 1522 

genome was therefore set at p < 1.2e-09 (5e-08/13.93*3). For gene-based significance, we 1523 

applied a genome-wide significance level of 0.05/17541= 2.85e-06, and a study wide 1524 



significance of 2.85e-06/(13.93*3), i.e. p < 6.82e-08. For gene-set significance, we applied a 1525 

genome-wide significance level of 0.05/9,975 = 5.01e-06 and a study-wide significance level 1526 

of 5.01e-06/(13.93*3), i.e. p < 1.20e-07. 1527 

 1528 

SNP heritability  1529 

SNP heritabilities, h
2

SNP, were estimated by using linkage disequilibrium (LD) score 1530 

regression
79

 (LDSR) for the European-ancestry brain change GWASs to ensure matching of 1531 

population LD structure. For LDSR, we used precomputed LD scores based on the European-1532 

ancestry samples of the 1000 Genomes Project
58

 restricted to HapMap3 SNPs
61

. The 1533 

summary statistics with standard LDSC filtering were regressed onto these scores. SNP 1534 

heritabilities were estimated based on the slope of the LD score regression, with heritabilities 1535 

on the observed scale calculated. To ensure sufficient power for the genetic correlations, rg 1536 

was calculated if the Z-score of the h
2

SNP for the corresponding GWAS was 4 or higher
79

.  1537 

 1538 

Comparison with cross-sectional results  1539 

For the genome-wide significant genes and genes associated with genome-wide significant 1540 

SNPs, we compared our findings with cross-sectional GWAS summary statistics when 1541 

available. To this end, datasets
26,40–42

 were requested and downloaded from 1542 

http://enigma.ini.usc.edu/research/download-enigma-gwas-results/ and 1543 

http://big.stats.ox.ac.uk/download_page. Gene-based association analyses for cross-sectional 1544 

brain GWAS summary statistics were performed using MAGMA (as described above). 1545 

Additionally, we compared the overlap in the first 1,000 ranked genes to the expected 1546 

number of overlapping genes based on chance. False discovery rate correction
80

 was applied 1547 

to determine over- or under-representation of genes from our longitudinal GWAS to the 1548 

cross-sectional previously published GWAS
26,40–42

.  1549 

http://enigma.ini.usc.edu/research/download-enigma-gwas-results/


 1550 

Overlap with cross-sectional results and other traits 1551 

To investigate genetic overlap with other traits across the genome we applied an adapted 1552 

version of iSECA
81

 (independent SNP effect concordance analysis) which examines 1553 

pleiotropy and concordance of the direction of effects between two phenotypes by comparing 1554 

expected and observed overlap in sets of SNPs from both phenotypes that are thresholded at 1555 

different levels. From the results at each threshold, heatmap plots were generated containing 1556 

binomial tests for pleiotropy and Fisher‘s exact tests for concordance. An empirical p-value 1557 

for overall pleiotropy and concordance was then generated through permutation testing. Our 1558 

implementation of iSECA also included a p-value for overall discordance, as we expect some 1559 

phenotypes to negatively influence brain-structural change rates. P-values were computed 1560 

using a two-step approach: we first ran 1,000 permutations. If the p-value for pleiotropy was 1561 

below 0.05/15 we reran the analyses with 10,000 permutations to obtain a more precise p-1562 

value. Summary statistics of change rates were first filtered on SNPs for which > 95% of the 1563 

subjects contributed data to remove the sample size dependency of p-values and subsequently 1564 

clumped (p=1,kb=1000) to ensure independence of input SNPs.   1565 

We investigated the genetic overlap between brain-structural changes and risk for 20 1566 

neuropsychiatric, neurological and somatic disorders, and physical and psychological traits. 1567 

Summary statistics were downloaded or requested for aggression
82

, alcohol dependence
83

, 1568 

Alzheimer's disease
84

, attention-deficit/hyperactivity disorder
85

, autism
86

, bipolar disorder
87

, 1569 

body mass index
30

, brain age gap
12

, cognitive functioning
29

, depression
27

, diabetes type 2
88

, 1570 

ever-smoking
32

, focal epilepsy
89

, height
30

, inflammatory bowel disease
90

, insomnia
31

, 1571 

multiple sclerosis
91

, Parkinson's disease
92

, rheumatoid arthritis
93

 and schizophrenia
28

. These 1572 

phenotypes were chosen because of known associations with brain structure or function, and 1573 

availability of summary statistics based on large GWA-studies. For comparison, we 1574 



computed the genetic overlap between cross-sectional brain structure and these phenotypes, 1575 

using the same method.  1576 

Apart from these, we also 1) included intracranial volume
94

 to investigate the effect of overall 1577 

head size and 2) tested the overlap between each structure‘s longitudinal change measure 1578 

against its cross-sectional brain structure. Pleiotropy, concordance or discordance was 1579 

considered significant when the p-value was smaller than 0.05/15*22 (#change rates * 1580 

#phenotypes tested) = 1.5e-04.  1581 

 1582 

Brain gene expression 1583 

GENE2FUNC, a core process of FUMA
66

 (Functional Mapping and Annotation of Genome-1584 

wide Association Studies), was employed to analyse gene expression patterns. For this, a set 1585 

of 8 genes was used as input, including all genome-wide significant genes and genes 1586 

harbouring genome-wide significant SNPs (compare Supplementary Tables      5,7,9,11). 1587 

Gene expression heatmap was constructed employing GTEx v8
33

; 54 tissue types) and 1588 

BrainSpan RNA-seq data across 29 different ages or 11 different developmental stages
32

. The 1589 

average of normalized expression per label (zero means across samples) was displayed on the 1590 

corresponding heatmaps. Expression values are TPM (Transcripts Per Million) for GTEx v8 1591 

and RPKM (Read per Kilobase Million) in the case of the BrainSpan data set.  1592 

 1593 

Phenome-wide association studies 1594 

To identify phenotypes associated with the candidate SNPs and genes (defined as genome-1595 

wide significant SNPs and the genome-wide significant genes and genes associated with 1596 

genome-wide significant SNPs), a phenome-wide association study (pheWAS) was done for 1597 

each SNP and/or gene. PheWAS was performed using public data provided by 1598 

GWASAtlas
32

(https://atlas.ctglab.nl). To correct for multiple testing, the total number of 1599 

https://atlas.ctglab.nl/


GWASs (4,756) was considered (including GWASs in which the searched SNP or gene was 1600 

not tested) and the number of tested SNPs and genes (n=14), resulting in a Bonferroni 1601 

corrected p-value threshold of 1.05e-05/14, i.e., p < 7.51e-07. 1602 

 1603 

Sensitivity analyses 1604 

The phase 2 analyses include available data from all cohorts with European ancestry 1605 

(N=15,100). The four cohorts of non-European and mixed ancestry together consist of 540 1606 

subjects, who are predominantly children and adolescents (Supplementary Table 3). The 1607 

number of subjects, heterogeneity in ancestry and the age-distribution do not allow for 1608 

separate meta-analysis or meta-regression. We therefore added the cohorts of non-European 1609 

ancestry to the original datasets and reran analyses (N=15,640). In a second analysis, we 1610 

excluded the 9 cohorts that had N < 75 or mean scanning interval < 0.5 years (Supplementary 1611 

Table 2), leaving N=14,601 subjects. The main analyses include data from all subjects 1612 

combined, without correction for disease. This approach was chosen because many 1613 

neurological and neuropsychiatric diseases are characterized by aberrant brain changes over 1614 

time, and genes involved in the disease may also be involved in these brain changes. To 1615 

check whether our results were confounded by disease, we repeated the main analyses 1616 

excluding diagnostic groups of each cohort (N=13,0349) and by correcting for disease status. 1617 

 1618 

Data availability: This work is a meta-analysis. Upon publication, the meta-analytic results 1619 

will be made available from the ENIGMA consortium webpage  1620 

 (http://enigma.ini.usc.edu/research/download-enigma-gwas-results). Cohort level data can be 1621 

shared upon request, after permission of cohort principal investigators. Individual level data 1622 

can be shared with interested investigators, subject to local and national ethics regulations 1623 

and legal requirements that respect the informed consent forms and national laws of the 1624 



country of origin of the persons scanned. Figures that contain cohort level (meta) data: 1625 

Figures 1, 2, Extended data Figures 1,2, Supplementary Figures 1,3,8,10. 1626 

Public data used in this work include the ABCD cohort (data release 3.0, accessible through 1627 

https://nda.nih.gov/abcd; http://dx.doi.org/10.15154/1519007),  ADNI cohort (accessible 1628 

through adni.loni.usc.edu), and the UK biobank cohort (data request 11559, 1629 

https://www.ukbiobank.ac.uk).  1630 

 1631 

 1632 

Code availability: 1633 

The code for processing of individual cohorts (including imaging and QC, imputation and 1634 

GWAS protocol) can be found on http://enigma.ini.usc.edu/ongoing/enigma-plasticity-1635 

working-group/. Code for the meta-regression is available through Github 1636 

https://github.com/RMBrouwer/GWAS_meta_regression.  1637 
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