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Abstract—
We propose XRC, an explicit rate control algorithm that

overcomes the poor performance of commonly used TCP variants
in cellular networks. XRC exploits explicit feedback from the
radio access network that is aware of the physical, network
and transport layer information of all UEs as well as resource
distribution policies for users with different traffic characteristics.
XRC co-exists fairly with other XRC and non-XRC flows at the
wireless and non-wireless bottlenecks while it strictly controls
queuing delay within a small threshold. We implement XRC in
NS-3 and examine its performance across a range of network
loads and dynamics. When competing with CUBIC at a wireless
bottleneck, XRC achieves a Jain’s fairness index of 99.7% while
providing a 3x lower median queuing delay compared to when
CUBIC competes with CUBIC in the same setup.

I. INTRODUCTION

Most of today’s cellular end-to-end data flows are originated
from Transmission Control Protocol (TCP) servers [1]. TCP
is desirable for its ability to offer reliable packet delivery and
rate control, essential for error-prone cellular links. However,
it is known that TCP and its end-to-end variants [2], [3],
[4], [5], [6], [7] suffer from notoriously poor performance
over cellular networks due to the rapid fluctuation of wireless
channel conditions (i.e., milliseconds [8], [9]). The extent of
the fluctuation may even be worse with emerging high capacity
wireless technologies (e.g., mmWave), which exhibit a volatile
signal propagation behavior with high sensitivity to foliage
and blockage. Several contributing factors to this fluctuation
include user mobility, signal propagation characteristics (slow-
fading and path-loss), and interference. When the capacity is
suddenly dropped, TCP connections experience severe packet
losses that typically lead to exponentially increasing timeouts.
Similarly, TCP cannot adapt to utilize sudden increases in
capacity quickly, resulting in a waste of radio resources.

On the other hand, as we emerge into 5G, applica-
tions/services are expected to vary significantly, from stringent
ultra-low latency (e.g., for autonomous cars) to a very high rate
(e.g., for video streaming). Some applications even require
high rates and low latency simultaneously (e.g., VR/AR).
These diverse traffic flows are expected to share the cellular
last hop bottleneck. The simultaneous co-existence of these
heterogeneous traffic flows in the cellular last hop bottleneck
further magnifies the limitations of existing TCP congestion
control algorithms, given that they fail to co-exist in the same
bottleneck fairly. TCP fairness is a long-lasting non-trivial

⇤Part of this article was written by Dr. Morteza Kheirkhah while he was
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problem and despite the recent efforts [10], [11], achieving
fairness between heterogeneous – in terms of traffic require-
ments, and used congestion control – flows is still unsolvable.

To address the above challenges, several cellular-specific
end-to-end congestion control algorithms have been pro-
posed [8], [9], [12], [13], [11], [10]. Although these solutions
outperform standard TCP, they are sub-optimal in being unable
to accurately and quickly track capacity changes. This issue
is fundamentally challenging to tackle for a highly dynamic
environment, especially when a congestion control algorithm
only acts upon end-to-end measurements, which are often vul-
nerable to network jitter, ACK delay and noise. Additionally,
end-to-end measurements also require several RTTs before
providing stable/meaningful statistics to the sender to adapt
the sending rate. On top of that, these schemes have failed to
achieve fairness in co-existence between their flows running
different applications with distinct requirements.

In this paper, we propose using an explicit feedback ap-
proach to update the TCP sender on wireless physical layer
capacity changes, thereby enabling accurate adjustment of the
congestion window (i.e., at the sender) to track the available
capacity. We argue that a base-station-centric explicit feed-
back approach is more accurate and practical for future cellular
networks compared to an endpoint-centric approach (such as
PBE-CC [14]) for several reasons. First, users’ available wire-
less capacity changes over a time scale known as the wireless
coherence time, which is as small as milliseconds especially,
in mobility and high-frequency technologies (e.g., mmWave).
Such abrupt changes of the wireless capacity cannot be tracked
sufficiently fast at the last hop mobile endpoint. Second, the
mobile endpoint is unaware of the radio resources assigned to
other users in the same cell, and accordingly, is unaware of
the capacity they use. This limited view hinders the congestion
control algorithm from achieving a fair share of available
resources among the multiple users. Other approaches that
rely on eavesdropping on all mobile users’ downlink control
information (DCI) messages are not practical in 5G networks
where these control messages will be encrypted. Third, the
physical location of the bottleneck is not at a mobile user,
but rather at the base station. Therefore, critical bottleneck
statistics (e.g., RLC buffer occupancy) cannot be available at
the mobile endpoint. These statistics are crucial for efficient
queue management and minimizing the end-to-end latency to
meet the stringent requirements of the latency-sensitive traffic.

ABC [15] follows a base-station-centric approach. A base
station marks each packet with either ”accelerate” or ”break”



command using Explicit Congestion Notification (ECN),
which results in the increase or decrease of the sender’s
congestion window, respectively. However, due to the nature
of the ECN signal, ABC cannot co-exist gracefully with other
TCP variants at the same queue. Thus, its traffic should be
segregated into a separate queue from other traffic.

We introduce XRC, an adaptive TCP congestion control
that exploits explicit feedback from the cellular’s base station.
XRC requires two pieces of information from the base station:
(1) the rate available to UEs’ active flows; and (2) the head
of line (HoL) delay of the base station’s RLC buffer. The
former enables XRC’s sender to respond to the capacity
changes in millisecond granularity when the bottleneck is
at the cellular link. When the bottleneck is on the Internet,
XRC incorporates the RLC’s HoL delay and continuous end-
to-end probing for available capacity with careful end-to-end
queuing delay monitoring to adjust the sending rate accurately.
Thus, XRC provides efficient utilization of radio resources as
the available capacity rapidly fluctuates and achieves fairness
across heterogeneous – both in terms of applications and
congestion control – competing flows at a shared bottleneck.

Overall XRC aims to achieve the following key goals: (i)
full utilization of scarce radio resources; (ii) low queuing delay
(i.e., essential to meet the low-latency traffic requirements);
and (iii) fair co-existence between heterogeneous competing
flows. The key contributions of XRC are:

• A new rate control algorithm harnesses multiple bits of
feedback from the base station to the sender to optimize
the sending rate. XRC quickly adapts to channel condition
changes while maintaining a small queuing delay. In
particular, the XRC monitors the end-to-end queuing
delay and the RLC HoL delay to force the RLC buffer
to drain when the delay is above a threshold.

• A prototype implementation is developed over NS-3 to
thoroughly evaluate XRC’s performance across a wide
range of scenarios and network settings. When competing
with CUBIC at a wireless bottleneck, XRC achieves a
Jain’s index of 99.7% while providing a 3x lower median
queuing delay compared to when CUBIC competes with
CUBIC in the same setup. Also, when heterogeneous traf-
fic flows (e.g., latency-sensitive, video-streaming) com-
pete at the bottleneck, XRC enables fair co-existence,
helping these flows to meet their traffic requirements.

II. BACKGROUND AND MOTIVATION

In this section, we demonstrate how the widely deployed
TCP variants such as CUBIC [2], NewReno [4], Illinois [16],
and Veno [6] fall short over cellular links. To study the
performance of these TCP variants over the time-varying cel-
lular link, we configure NS-3 simulated LTE link with a total
bandwidth of 10MHz. The RLC buffer can hold 128 MTU-
sized packets. We randomly change the distance between the
UE to the base station to model sudden changes in channel
conditions. The scheduler at the base station’s MAC layer
selects the Modulation Coding and Scheme (MCS) according
to the received channel quality indicator (CQI) feedback from
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Figure 1. Performance of TCP variants under time-varying channel condition
of the cellular link. Figure 1(a) shows the achieved rate as the available
capacity to UE fluctuates (shaded area). XRC constantly achieves close to
maximum possible rate while it maintains the HoL delay within a small
threshold (10ms).

the UE. It then allocates a transport block size (TBS) to the
UE that dictates the UE’s available capacity. As the distance
between UE and base station increases, the CQI value drops
sharply, and in turn, the MCS value becomes smaller, resulting
in a lower TBS allocation by the scheduler. In this setup, UE
has only a single flow; thus, the theoretical rate of the UE’s
flow fluctuates between 6.7Mbps and 34Mbps.

Figure 1 shows the results. The shaded area in Figure 1(a)
is the available rate and the curves are the achieved rate.
The corresponding results for the RLC’s Head-of-Line (HoL)
delays is illustrated in Figure 1(b). CUBIC, NewReno, and
Veno respond similarly to bandwidth changes by reducing
their rate only when they detect packet losses. Yet, they
neither reduce their rate sufficiently to cause the queue to
drain quickly as the capacity shrinks nor increase their rate
promptly when the capacity becomes available again. Figure 1
highlights the consequence of this poor rate adjustment as
CUBIC, NewReno, and Veno occupy a small fraction of the
queue, most of the time, which indicates their failure to utilize
the available capacity. At other times when they fully utilize
the available capacity, they tend to occupy the bottleneck
queue exceedingly. For example, at the 90th percentile, all
schemes, except XRC, suffer from 400ms HoL delay, an order
of magnitude higher than XRC. Illinois has shown slightly
better adaptation to capacity changes compared to CUBIC,
NewReno, and Veno (Fig. 1(a)), yet it still suffers from high
HoL due to its inaccurate sending rate adjustment. On the other
hand, XRC precisely responds to capacity fluctuations, fully
utilizing the available capacity offered by the base station to
UE quickly, while it controls end-to-end delay within its small
queuing budget (10ms in this experiment) at 80% of the time.

III. XRC DESIGN

XRC is an explicit rate control algorithm designed to utilize
the available wireless capacity while maintaining the queuing
delay within a small threshold. In particular, XRC has the
following objectives:

• To track wireless channel conditions quickly and accu-
rately, especially suited to wireless technologies (e.g., 4G,
5G and Beyond) ensuring high link utilization across a
wide range of network dynamics;



• To maintain the end-to-end queuing delay below a thresh-
old that can meet the stringent latency requirements of
emerging ultra-low latency applications;

• To support heterogeneous flows – in terms of traffic re-
quirements and congestion control – by fair co-existence
with at both cellular and Internet bottlenecks.

XRC has two components, (i) the XRC Sender, a novel
congestion control algorithm that operates at the transport
layer, and (ii) XRC Agent, a distributed subsystem that resides
at the PDCP layer with a set of API functions distributed
over the RLC and MAC layers of the 4G/5G stack. The
XRC Agent leverages the MAC layer scheduling information
to estimate the fair capacity-share for each active UE flow.
As the scheduling decision changes every Transmission Time
Interval (TTI), which is 1ms in 4G, the XRC Agent estimates
the capacity at millisecond granularity. This estimate can be
performed at microsecond granularity in the case of 5G-NR
due to a shorter TTI. The Agent also extracts the HoL delay
from the RLC layer, which represents the last hop queuing
delay. XRC Agent explicitly sends these measurements to the
XRC Sender by piggybacking them on the available ACK
packets. The Sender can then detect the bottleneck’s location
and instantaneously increase/decrease its sending rate to utilize
the available capacity while avoiding a high queuing delay.

A. XRC Agent and Deployment Feasibility

The next-generation cellular networks adopt an open and
flexible RAN architecture. The core idea is to decompose
the RAN into a chain of virtualized functions that can be
distributed and run over the cloud environment or commercial-
off-the-shelf (COTS) hardware. In the new architecture [17],
the virtualized RAN functions can be distributed among a
Centralized Unit (CU), Distributed Unit (DU), and Radio
Unit (RU), as shown in Figure 2. This functional split and
its variant dynamic logical split options (i.e., options 1-7)
provide the flexibility required to handle the diversity of
traffic requirements and deployment scenarios. It also allows
mobile operators to add new functions/services to their net-
work without hardware modifications. In light of this, we
envision the deployment of the XRC Agent as part of the
RAN virtualization, where the XRC Agent represents a set
of virtualized monitoring functions that do not intervene or
change the decision of the actual 4G/5G stack control modules
but rather monitor statistics and decisions, and report them to
the XRC Sender. In particular, the XRC Agent leverages MAC
layer scheduling decisions to estimate the capacity assigned
to each UE and the free resources at TTI granularity. It then
calculates the capacity available to a UE as a function of the
TBS (Transport Block Size) assigned by the scheduler and the
Modulation and Coding Scheme (MCS) observed on that UE,
together with the fair share of the free resource blocks. The
XRC Agent avoids over-estimating the cellular link capacity
by excluding the MAC layer retransmissions from this capacity
calculation. Specifically, with every scheduling decision, the
Agent counts only the new transport blocks identified by New
Data Indicator (i.e., NDI = 1) flag in a given TTI. The observed
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Figure 2. An overview of XRC deployment scenario in a 5G RAN functional
split architecture. The XRC Agent determines the available capacity for each
active UE flow, and the HoL delay from the MAC and RLC layers. This is
sent to the XRC Sender, which adjusts the send rate of its flows.

capacity is averaged over the most recent 40 TTI (i.e., four
frames in case of 4G) and sent to the PDCP layer where the
XRC’s Agent calculates the expected fair-share capacity as the
ratio between the capacity per UE to the total active flows at
the UE:

Ci =
C

af
(1)

where Ci is per-flow capacity, af is the UE’s active flows
and C is the UE’s capacity. The XRC Agent at the PDCP
layer identifies the active flows by monitoring the packet inter-
arrival time. Each flow is marked as inactive if the inter-
arrival time of its packets exceeds a certain threshold (e.g.,
200ms). This ensures that application-limited flows, such as
video, with an ON/OFF traffic pattern, would be treated as
inactive flow once they are in their OFF period. XRC considers
these flows as active when they start sending traffic again. This
ensures that the available capacity for the UE is distributed
efficiently across flows with non-continuous traffic patterns.
Finally, when ACK packets are present at the PDCP layer, the
Agent queries the XRC’s API at the RLC layer to retrieve
the current HoL delay of the RLC buffer, and then explicitly
sends this with the estimated fair-share of the capacity to the
XRC Sender by piggybacking on the available ACK packets,
as illustrated in Figure 2.

B. XRC Algorithm

Upon reception of an ACK with explicit feedback, XRC
calculates a target congestion window (twnd) as follows:

twnd = Rexp ⇤RTTmin (2)

where Rexp is the explicit advertised rate by the network
and RTTmin is the minimum observed RTT since connec-
tion startup. In an ideal condition, twnd should maximize
throughput with no queuing delay. However, adjusting the
congestion window (CWND) blindly to twnd is not practical
in today’s Internet because there can also be another end-to-
end bottleneck in the Internet portion of the path, which is not
reflected in twnd. As a result, monitoring the queuing delay
is crucial to detecting such a bottleneck.

The XRC Sender estimates the queuing delay (�) in every
window of data as the maximum of the average queuing delay
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Figure 3. XRC co-exists with non-XRC flows. (a) XRC competes with Illinois
(delay-based scheme), (b) XRC competes with CUBIC (loss-based scheme)

and the RLC HoL delay (HoLexp) as follows:

� = max{
NX

j=1

RTTj ⇤
1

N
�RTTmin, HoLexp} (3)

where � is the end-to-end average queuing delay estimation,
RTTj is jth RTT sample in a window, N is the total number
of RTT samples, and HoLexp is the explicit HoL delay of the
RLC buffer. The RLC HoL delay ensures a correct estimation
of the queuing delay when no accurate RTTmin has yet been
observed. This might be the case when XRC’s flow arrives at
a wireless bottleneck that is already carrying other flows (e.g.,
CUBIC, NewReno).

Detection of the bottleneck location. XRC operates dif-
ferently depending on the detected location of the bottleneck
link. To correctly identify the location of the bottleneck link,
we leverage both the end-to-end queuing delay measurements
and the explicit RLC HoL delay feedback. When the RLC HoL
delay is below the queuing budget and the observed end-to-
end queuing delay exceeds the RLC HoL delay by more than
the queuing budget, XRC deduces that the bottleneck link is
in the Internet portion of the path. On the other hand, when
the RLC HoL delay is larger than the queuing budget, XRC
assumes the bottleneck is at a cellular link.

Congestion Avoidance. XRC computes a weight factor (↵),
which dictates the aggressiveness of the XRC Sender. The
value of ↵ is large when the congestion window (CWND)
is lower than the estimated target window (defined in Equa-
tion 2), as well as the queuing delay (�) is smaller than the
queuing budget (�). That ensures a rapid increase (i.e., within
2 RTTs) to the CWND until it reaches the estimated target
window, (twnd). Once the estimated target window is reached,
XRC increases the CWND slowly (i.e., one segment per RTT).
XRC resets the CWND to the estimated target window when
the end-to-end queuing delay exceeds the pre-defined queuing
budget. XRC behaves similar to standard TCP (↵=1), when it
detects an Internet bottleneck, which continues until the sender
reaches the target rate, during which it sends with a steady
rate until a packet is dropped or the estimated queuing delay
becomes smaller than the budget.

Unfairness mode. When XRC flow competes with non-
XRC flows at a wireless bottleneck, it might experience a high
queuing delay (i.e., when competing with loss-based flows).
In such conditions, XRC increases slowly for N number of
RTTs (e.g., N=10) before it enters the unfairness mode, during

which ↵ becomes temporarily large until the competing flows
slow down due to packet losses. Finally, XRC follows standard
TCP’s loss recovery and slow start mechanism.

To highlight key behaviors of XRC, we setup an experiment
where a XRC flow competes with a non-XRC flow at a
single UE. The non-XRC flows join the bottleneck link after
5 secs with the slow start threshold value of one segment
(i.e., the non-XRC flow goes to the congestion avoidance
phase immediately after its connection startup). We run the
experiment for CUBIC and Illinois. The results in Figure 3
demonstrates the following: (1) XRC’s behavior using an
empty pipe (Fig. 3(a) between 0-5 secs). XRC first reaches its
twnd quickly and then starts to slowly probe for path capacity
until the observed queuing delay reaches the queuing budget,
at which point the CWND is reset to twnd. A sawtooth wave
results from this cycle; (2) XRC’s behavior when competing
with a flow that is slow in ramping up to its fair capacity-share
(Fig. 3(a) between 5-15 secs). In such scenario, XRC’s probing
mechanisms takes longer to reach the queuing budget and thus,
it tends to avoid the link underutilization caused by slow non-
XRC flow (Illinois); (3) XRC’s behavior when competing with
a flow that respects its fair-share of the capacity (Fig. 3(a)
between 15-30 secs). This highlights the perfect co-existence
of XRC with a delay-based scheme. We expect a similar
outcome when XRC competes with BBR; and (4) XRC’s
behavior when competing with a flow that seeks to violate
its fair-share of capacity (Fig. 3(b) between 5-30 secs). In
such a scenario, XRC tries to maintain a low-queuing delay,
producing periodic packet losses that enforce the competing
flow (e.g., CUBIC) to slow down.

IV. EVALUATION

In this section, we evaluate XRC by focusing on the key
design objectives as follows:

• Fairness and Convergence: we examine XRC’s fairness
when competing with other XRC flows with the range of
RTTs and sharing the same wireless bottleneck.

• Efficiency and Co-existence: we highlight the XRC’s
performance when it competes with heterogeneous flows,
including (1) capacity-seeking flows; (2) video-streaming
flows with constant bit-rate and ON/OFF traffic patterns;
and (3) latency-sensitive flows.

Experiment setup. We implemented XRC in NS-3, and
emulated the cellular link using a modified LTE module in
NS-3. The end-to-end minimum RTT is configured with 38ms.
This includes 8ms RTT between the base station and UE on
the air interface and 30ms RTT between the sender and the
base station. The queue budget is 10ms. For the cellular link,
we configured a single base station with a total bandwidth of
10MHz (50 Physical Resource Blocks), and the RLC buffer
size of 128 MTU-sized packets.

A. Fairness and Convergence

Multiple TCP flows sharing the same bottleneck at a cellular
link should compete fairly with one another. In the light of
that objective, we compare how fast different TCP variants,
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Figure 4. (a) Convergence and fairness property of XRC flow with different minimum RTTs. Figures (b) CUBIC, (c) NewReno, and (d) Illinois show the
same experiment but use different congestion control algorithms. XRC’s flows quickly converge to their fair share as the bottleneck’s dynamic changes.
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including XRC, converge to their fair-share of capacity as
flows join and leave the bottleneck. We investigate this by
considering F number of XRC flows (e.g., F1 - F4 for four
flows) of different round-trip propagation delays (with RTT
differences of up to 30ms), sharing a cellular bottleneck.
Initially, 4 XRC flows to arrive at the UE with an inter-
arrival time of 10secs, making the base station a bottleneck.
After 70secs, the flows leave the bottleneck again with a
10secs gap between each flow’s departure. Figure 4 shows the
results. XRC (Fig. 4(a)) quickly converges to the fair share of
the bottleneck capacity with Jain’s fairness index of 99.5%
when competing with four simultaneous flows with different
RTT (100% is ideal). Both CUBIC (Fig. 4(b)) and NewReno
(Fig. 4(c)) suffer from slow convergence when competing
flows have different RTT; It is expected to see that CUBIC
performs better than NewReno under such conditions due to
its time-based cubical window increase function, however, due
to the small BDP (Bandwidth Delay Product) across the flows
in this setup, NewReno performs slightly better than CUBIC
because it can ramp up faster. The behavior is reflected in the
observed Jain’s fairness index for both the CUBIC (85.71%)
and NewReno (86.74%) flows. Illinois (Fig. 4(d)) suffers a
severe RTT fairness problem due to imprecise estimation of
the bottleneck capacity when competing with other flows.
Illinois tends to converge and stay in an unfair state. Instead,
XRC flows share the bottleneck capacity equally as flows join

and leave; XRC converges to its fair share immediately while
controlling the RLC’s HoL delay within the budget of 10ms

at 99% of the time (due to space we did not show this result).
Finally, we make a similar observation across all the schemes
by repeating this experiment with flows with the same RTT.

B. Efficiency and Co-existence

A XRC flow should share resources fairly with non-XRC
flows sharing a wireless bottleneck. To that end, we conduct
several experiments where XRC competes with other TCP
variants carrying either homogeneous or heterogeneous traffic
to XRC. In the following, we first define our flow types (e.g.,
capacity-seeking, low-latency, and video-streaming) and then
walk through our experiments.

Capacity-seeking flow. It is represented by a long-lived TCP
flow (e.g., file download) that uses the bottleneck link for the
duration of the simulation.

Video-streaming flow. Video traffic typically requires high
capacity, but due to the widely used DASH protocol, exhibits
an ON/OFF traffic pattern over TCP. This way, the flow has a
periodic cycle of 10-secs wherein the first 2-secs burst packets
with a constant bit rate of 17Mbps (i.e., representing a high-
quality video chunk), then stops sending. In the next 8-secs, it
sends only if all the sent packets during the 2-secs ON period
are delivered successfully. This 10-secs cycle is repeated for
the period of the simulation.
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Figure 6. With different traffic types (red curves represent file download traffic, and green curves represent video-streaming traffic) XRC shows immediate
response and successfully slows the rate of the file download flow to enable a fair share of resources.
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Figure 7. (a) Comparing the flow completion time (FCT) of low-latency short
flows, and (b) the HoL delay at the RLC buffer. NR represents NewReno.

Latency-sensitive flow. It is represented as a short-lived TCP
flow with random sizes ranging from 10KB to 2MB. During
the period of simulation, we generated 50 non-overlapping
short flows.

Capacity-seeking vs. Capacity-seeking flows In this setup,
an XRC flow carrying capacity-seeking traffic initially arrives
at the UE at 0.5 secs and then after 5 secs another non-
XRC flow carrying a similar traffic pattern arrives, after which
the two flows compete for the remainder of the simulation.
We repeat the experiment with the first flow using CUBIC.
Figure 5 shows the results. As illustrated in Figure 5(a)-5(d),
XRC perfectly co-exists with all other TCP variants without
damaging their performance, while CUBIC failed to co-exist
in all the scenarios (Fig. 5(e)-5(g)) particularly with Illinois,
which is a delay-based congestion control. Figure 5(h) shows
the RLC HoL delay in each experiment. Almost 70% of the
time in all experiments XRC controls the queue occupancy to
be within a small queuing budget of 10ms. In addition, at the
50th and 90th percentiles XRC reduced the RLC HoL delay
by more than 50% across all experiments compared with using
CUBIC. Thanks to XRC’s unfairness mechanism that actively
controls the HoL delays within a small threshold by slowing
down competing flows as they try to bloat the buffer.

Capacity-seeking vs. video-streaming flows. In this simu-
lation, a TCP flow carries file download traffic which competes
with a CUBIC flow carrying video content. Figure 6 shows
the results. XRC shows immediate response and successfully
slows down the rate of the file download traffic as the video-
streaming traffic bursts its packets into the network. When
the video traffic enters its OFF period, XRC immediately
increases its sending rate, fully utilizing the available capacity.
On the other hand, other schemes fail to slow down and
consequently the video traffic causes severe packet losses
across all competing flows. As a result, the video chunk
takes longer than 2 secs to be delivered with non-XRC flows,
degrading the quality of experience for users watching the

video content. Figure 6(e) illustrates that XRC consistently
maintains (at 99% of the time) the end-to-end queuing delay
below its budget of 10ms, almost 4x lower than other schemes.

Capacity-seeking vs. low-latency flows A capacity-seeking
flow competes with 50 non-overlapping low-latency flows
using NewReno. Each low-latency flow starts a transfer to the
UE with a gap of 5 secs. Figure 7(a) and 7(b) show the results
for the FCT of low-latency flows and the HoL delay at the RLC
buffer dedicated to the UE. When the capacity-seeking flow is
XRC, the FCT of short flows (NewReno) is reduced by 50% at
both the 50th and 90th percentiles compared to other schemes.
With XRC the maximum FCT of low-latency flows is 3x and
1.4x lower than CUBIC and Illinois, respectively. Overall,
Illinois performs slightly better than CUBIC, NewReno and
Veno due to its delay-based control. This can also be seen
in Figure 7(b), where Illinois bloats the bottleneck buffer less
than other schemes, except XRC, which controls the buffer
within its queuing budget of 10ms. This figure also shows
the results of a setup where both flows of latency-sensitive
and capacity-seeking are XRC. This demonstrates that XRC
allows different applications with distinct requirements from
the network to co-exist gracefully.

V. DISCUSSIONS AND FUTURE PLAN

Multipath congestion control. A transport layer protocol that
exploits multiple paths between source and destination has
been an active area of research [18], [19], [20], [21], [22], [23],
[24], [25]. MPTCP [20] divides a TCP flow into multiple sub-
flows. Since those subflows may take different paths, MPTCP
shifts traffic between its subflows to avoid congested paths.
This can ensure high performance and improved resilience to
network failure, primarily when a mobile device uses multiple
access technologies simultaneously (e.g., 4G/5G, WiFi, and
Satellite). We plan to expand XRC in the context of MPTCP.
Access Traffic Steering, Switching, and Splitting (ATSSS).
The 3GPP has defined in Release 16 [26] a new 5G function-
ality called ATSSS that manages WiFi and 5G convergence.
ATSSS supports MPTCP as an underlying transport protocol to
deliver diverse traffic (e.g., UDP, TCP, and Ethernet) between
UE and UPF (User Plane Function). UPF is located in the
5GC (5G core) network. From UPF, a single path TCP may
be utilized to deliver the UE traffic to its destination. ATSSS
operates over MA-PDU (Multi-Access PDU) session, which
allows a single PDU session to be established between UE
and 5GC (i.e., UPF), carrying UE’s traffic across both 3GPP
and non-3GPP access. For the latter case, a gateway is utilized



(either TNGF or N3IWF, depending on whether the access is
trusted or not [26]). In such cases, XRC Agent could reside
in gNB, N3WIF/TNGF, and/or UPF. We plan to study XRC
in the context of the 3GPP’s ATSSS framework.
Real prototype and its challenges. In this paper, we have
prototype XRC within the NS-3 simulator and examined its
performance against several other TCP congestion control
algorithms available in NS-3. We are currently working on
a real prototype with srsRAN and Linux Kernel supporting
several state-of-the-art congestion controls. We will report on
these in the near future.

A crucial aspect in real deployment of XRC is related to
delivering explicit feedback from the XRC Agent to XRC
Sender. There are several ways to deliver such a signal. One
common approach is to use the IP or TCP option to piggyback
the explicit feedback on ACK packets [27]. However, in
today’s Internet, there are middle-boxes with the tendency
of removing the TCP option from the TCP stream [28].
That said, it is common practice to host applications and
services in the network edge close to users (e.g., via CDN
servers) to minimize latency. This limits the exposure of
XRC to non-cooperatives routers and middle-boxes. Another
approach would be sending the explicit feedback on a separate
connection between the XRC Agent and the XRC Sender. We
plan to examine these deployment options and their practical
implications over our real prototype.

The XRC Agent at PDCP collects statistics and measure-
ments from the RLC and MAC layers. When NG-RAN utilizes
the functional split with option 6 (see Fig. 2), the PDCP,
RLC, and MAC layers are not distant from one another, so the
communication latency between them is negligible. However,
when the DU and CU are split via Option 2 (a preferred
option by 3GPP), the PDCP layer is only located at CU, and
it communicates with other layers down the radio protocol
stack at DU over the F1 interface. In the latter case, there
would be a communication latency, and it merely depends on
the link technology used between DU and CU. This may not
be crucial for the XRC because the XRC Agent calculates
the available capacity and reports to the XRC Sender over a
specific time window. That said, we plan to study the latency
involved between DU and CU and its potential impacts on the
XRC operations in real scenarios.

VI. CONCLUSION

In this paper, we proposed XRC, an adaptive congestion
control algorithm that exploits explicit base station’s feedback.
XRC achieves fair co-existence between flows with heteroge-
neous traffic requirements while sharing the bottleneck with
various congestion control algorithms. Our NS-3 simulation
results show the superior performance of XRC compared to the
state-of-the-art schemes (both delay-based and loss-based).
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