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Highlights 

x Proteomics highlights potential conserved mechanisms of pathogenesis in SMA 

x  GAP43, GAPDH, UBA1 and NCAM are decreased in three separate proteomic 

studies of SMA 

x LMNA, ANXA2 and COL6A3 are increased in three separate proteomic studies of 

SMA 

x Manipulation of these proteins may modulate the severity of disease in SMA  

 

Abstract 

The neuromuscular disease spinal muscular atrophy (SMA) is a leading genetic cause of 

infant mortality, resulting from low levels of full-length survival motor neuron (SMN) 

protein. Despite having a good understanding of the underlying genetics of SMA, the 

molecular pathways downstream of SMN that regulate disease pathogenesis remain unclear. 

The identification of molecular perturbations downstream of SMN is required in order to 

fully understand the fundamental biological role(s) for SMN in cells and tissues of the body, 

as well as to develop a range of therapeutic targets for developing novel treatments for SMA.  

Recent developments in proteomic screening technologies have facilitated proteome-wide 

investigations of a range of SMA models and tissues, generating novel insights into disease 

mechanisms by highlighting conserved changes in a range of molecular pathways. 

Comparative analysis of distinct proteomic datasets reveals conserved changes in pathways 

converging on GAP43, GAPDH, NCAM, UBA1, LMNA, ANXA2 and COL6A3. Proteomic 

studies therefore represent a leading tool with which to dissect the molecular mechanisms of 

disease pathogenesis in SMA, serving to identify potentially attractive targets for the 

development of novel therapies. 
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Introduction 

Spinal Muscular atrophy (SMA) is an autosomal recessive disease, primarily characterised by 

loss of motor neurons from the anterior horn of spinal cord and atrophy of skeletal 

musculature. The disease is considered to represent a “continuum of clinical severity” [1], but 

is broadly subdivided into four sub-types, depending on the developmental milestones that 

are reached: type 1 (severe), type 2 (intermediate), type 3 (mild) and type 4 (adult-onset) [1]. 

Type 1 SMA is the leading genetic cause of infantile death in the western world and infants 

typically die before the age of two due to respiratory failure [2,3].  

 

The cause of SMA for the majority (>95%) of patients is a loss-of-function defect in the 

SMN1 gene, resulting in reduced levels of the ubiquitously-expressed survival of motor 

neuron (SMN) protein [4]. Although most humans possess at least one copy of an additional - 

and almost identical - SMN2 gene, protein translated from SMN2 is much less stable and 

unable to fully compensate for loss of SMN1 [4-6]. The severity of the disease is largely 

dependent upon the number of SMN2 copies that are present. Thus, patients with the most 

severe phenotypes tend to have a lower copy number of SMN2 [7].  

 

At present, there are no disease modifying treatments available for SMA, and palliative 

support is the best that can be offered to patients. However, significant progress has been 

made over the last two decades in terms of both basic research and pre-clinical development, 

leading to the identification of several promising therapeutic approaches entering clinical 

trials. Almost all of this therapeutic work has focused on identifying compounds aimed at 

targeting either SMN2 promoter activation, modulation of splicing, or SMN1 replacement 

gene therapy [8]. In contrast, the ability to identify potential non SMN-focused therapeutic 
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targets has been hampered by a lack of understanding of the core molecular pathways acting 

downstream from SMN to modulate disease pathogenesis in SMA [9]. 

 

SMN is a ubiquitously expressed protein with a role in the assembly of small nuclear 

ribonucleic proteins (snRNPs) in the cytoplasm and subsequent transport into the nucleus for 

RNA splicing [4,10]. To do this, SMN functions as a core complex with at least eight other 

proteins: gemins 2-8 and unrip. In addition to this well-characterised housekeeping role, 

SMN appears to interact with several other proteins required for the transport and correct 

localisation of mRNAs in axons [11-13]. Whilst some of these SMN interactions are 

relatively stable (in the case of the core complex with gemin proteins), there are many other 

interactions that are expected to be more transient [14]. A search of two protein interaction 

databases, Biomolecular Interaction Network Database (BIND) and the Molecular 

INTeraction database (MINT), suggests that in excess of 100 proteins have the potential to 

interact with SMN. Given the potential size of the “SMN interactome” (Figure 1), and the 

fact that each of those interacting proteins may also have their own unique “interactome”, it 

seems highly probable that a reduction of SMN should have significant downstream 

molecular consequences affecting a range of different target proteins and pathways.  

 

Recent advances in proteomic technologies have enabled researchers to take an unbiased, 

global view of the proteome, and to conduct quantitative comparisons and characterisations 

of disease-relevant tissues and model systems relevant to a broad range of conditions 

affecting human health. Such technologies therefore provide un-paralleled opportunities to 

accurately monitor and quantify downstream molecular consequences of SMN depletion in 

vivo and in vitro. It is therefore not surprising that proteomics approaches have been 
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employed by a variety of research groups investigating mechanisms of disease pathogenesis 

in SMA.   

 

Despite the wealth of information that proteomic investigations can generate, two main 

challenges have hampered effective translation of findings from studies using these 

approaches to investigate mechanisms of disease pathogenesis in SMA. The first challenge is 

that different proteomics-based studies of SMA have utilised a variety of model systems and 

tissue sampling techniques. This has the potential to result in unavoidable, model/tissue-

specific identified perturbations into proteomic data that are difficult to isolate from core 

molecular disease pathways. The second challenge is that proteomics studies typically yield 

extensive lists of proteins exhibiting differential expression profiles based on an incomplete 

coverage of the entire proteome, with a select few candidates from each study often given 

special attention for further verification and validation.  The selection of such candidate 

proteins for further study is often subjective and will always result in other potentially 

important proteins and pathways being overlooked. As a result, there are now a number of 

large proteomic datasets from several research groups that contain crucial, but likely 

overlooked, information regarding the core molecular regulators of disease pathogenesis in 

SMA. Despite these challenges, the availability of such a broad range of SMA proteomic 

datasets presents the opportunity to generate significant new insights into mechanisms of 

disease pathogenesis by interrogating raw datasets to identify common molecular changes. 

The identification of conserved alterations downstream of SMN perturbations, independent of 

the experimental model and technical approach used, would therefore serve to highlight 

“core” molecular responses to low levels of SMN. Such “core” responses would likely 

represent attractive SMN-independent targets for the development of novel therapies for 

SMA.  
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SMA studies employing proteomic screens: An overview  

Nine publications to date have used unbiased proteomic comparisons for the identification of 

differentially-expressed proteins in SMA (Table 1). These studies are considered unbiased 

because they did not depend on the use of capture or array technology for enrichment of 

differentially expressed proteins. Instead, the entire proteome was subject to analysis using a 

variety of protein separation and mass spectrometry approaches. As expected, there is a clear 

correlation between the precise methodology used and the number of differentially expressed 

proteins identified in each study; 2D-gel based studies yielded far fewer proteins than more 

recently-developed isobaric (e.g. iTRAQ) or label-free technologies, even when identical 

mass spectrometry instrumentation was used. Despite the relatively small number of studies, 

both in-vivo and in-vitro studies are represented, incorporating experimental assessment of 

both mouse models and SMA patient samples (Table 1). The studies include comparisons 

made of mature cells and tissues [15-21], as well as comparisons of cell types at various 

stages of cellular differentiation, including undifferentiated and differentiated embryonic 

stem cells [22], induced pluripotent stem cell-derived motor neurons [16], and Schwann cells 

[23]. Also noteworthy is that three of the studies [15-17] conducted comparisons using 

material that was not clinically affected by SMA (i.e. plasma and skin fibroblasts), thus 

enabling the possibility of identifying systemic consequences of reduced SMN in the absence 

of overt disease pathology. Taken together, these nine published proteomic studies cover a 

broad range of the most common SMA models, cells and tissues utilised by the research 

community. Comparisons between and across experimental datasets from these studies are 

therefore likely to identify conserved molecular responses to low levels of SMN directly 

relevant to disease pathogenesis. 
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Multi-study proteomic identification of conserved molecular responses to reduced levels 

of SMN in SMA 

Review of the differentially expressed proteins from the studies detailed in Table 1 identified 

29 proteins that showed conserved changes across two or more separate proteomic-based 

studies of SMA (Table 2). Of these 29 proteins, 19 revealed increased expression in response 

to low levels of SMN and 10 revealed decreased expression levels (Table 2). These proteins 

therefore represent a novel potential “molecular fingerprint” of SMA pathogenesis. 

 

Of the 10 proteins that were decreased in expression in SMA cell and tissue samples, four 

were found to be consistently decreased across three separate studies (Table 2), suggesting 

that they may represent a conserved response to lowered levels of SMN and as a result 

warrant significant further experimental attention. One of these proteins, ubiquitin activating 

enzyme 1 (UBA1), has been strongly linked to neurodegenerative pathways across a range of 

diseases, including SMA [24]. Of particular relevance too is that mutations in the human 

UBE1 gene, that encodes UBA1 protein, are associated with a rare X-linked infantile form of 

SMA [25,26]. Despite differences in experimental platforms, species and tissue / cell type 

utilised in the quantitative proteomic studies, the percentage reduction of UBA1 is strikingly 

comparable across all three studies. Aghamaleky et al. [23] detected a 50% decrease of 

UBA1 in SMA mouse Schwann cells compared to control; Wishart et al. [20] detected a 57% 

decrease in SMA mouse hippocampal synaptosomes; Fuller et al. [16] detected a 52% 

decrease in UBA1 in SMA patient iPSC-derived motor neurons.  

 

Further experimental evidence has verified that UBA1 levels are significantly depleted at 

both the gene and protein level in iPS-derived motor neurons from three individual SMA 

patients [16], and at the tissue and cellular level in mouse models of SMA. The reduction in 
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mouse models of SMA contributes, at least in part, to widespread perturbations in ubiquitin 

homeostasis [20,23,27]. Importantly, experimental suppression of UBA1, using both genetic 

and pharmacological approaches, was sufficient to fully phenocopy the SMA motor neuron 

phenotype in zebrafish [20], and pharmacological suppression of UBA1 in normal Schwann 

cells phenocopied the differentiation/myelination defects observed in SMA Schwann cells 

[23]. Thus, the robust finding of depleted levels of UBA1 across multiple proteomic studies 

of SMA suggests that this protein is likely to be a major contributor to disease pathogenesis 

in SMA. 

 

Also reduced across three separate comparisons was the traditional “housekeeping” 

glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Table 2). The 

reduction seen in SMA mouse Schwann cells (56%; [23]) was slightly greater than that seen 

across the isoforms of GAPDH that were detected in the SMA mouse hippocampus 

comparison (approximately 40% reduction on average [18]). It was not possible to compare 

the average percentage reduction seen in SMA patient plasma samples with the other studies 

because proteins were expressed according to their correlation with the Modified 

Hammersmith Functional Motor Scale, rather than relative fold change [15].  

 

Evidence linking GAPDH directly to SMN can also be found from a previous high-

throughput yeast two-hybrid screen [28], although (as with other protein candidates identified 

from similar high-throughput studies) it would appear that this has association has since been 

overlooked. Notably, the observation of reduced levels of GAPDH in SMA is consistent with 

a role as an SMN-interactor, since many other SMN-binding proteins are also dysregulated 

and/or differentially expressed in SMA models [14,20,29,30]. Although it has been widely 

implicated in cellular metabolic processes, GAPDH has also been linked to a range of 
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pathways with particular relevance to the nervous system and neurodegeneration, including 

apoptosis [31], and vesicle and axonal transport [32]. Documented variation in the mRNA 

and protein levels of GAPDH in other neuropathological events have been reported [33], and 

suggest that it may play a key role in neurodegenerative processes. Further investigations into 

the role of GAPDH in SMA pathogenesis therefore appear warranted.  

 

In addition to implications for SMA pathogenesis, the significance of reduced GAPDH in 

SMA models should be viewed as a cautionary note, in so far that its use (as well as that of 

other house keeping proteins such as actin and tubulin) as an internal loading control for gene 

expression and western blot analysis may be unreliable [34]. As such, it may be necessary to 

revisit candidate proteins and genes from studies that have concluded little or no correlation 

with SMA in instances when levels were normalized to GAPDH (or other “house keeping” 

protein) expression. 

 

Two other proteins whose levels were consistently reduced across three separate proteomic 

comparisons were growth-associated protein 43 (GAP43 or neuromodulin) and neural cell 

adhesion molecule (NCAM) (Table 2). Interestingly, both GAP43 and NCAM are known 

binding partners of the multi-functional calcium-binding protein calmodulin [35,36] – which 

itself features in Table 2 as a down-regulated protein detected in two separate proteomic 

comparisons.  

 

GAP43 levels were reduced by approximately 65% in iPS-derived SMA motor neurons [16], 

and by 35% and 22% in the SMA mouse hippocampus [18] and hippocampal synaptosomes 

[20] respectively (Table 2). Similarly, reduced levels of GAP43 have been detected in the 

CSF of human patients affected by a wide range of neurological disorders [37], including 
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motor neuron disease, movement disorders (e.g. Parkinson’s disease) and multiple sclerosis. 

Considered to play a key role in axonal pathfinding, GAP43 is required for survival beyond 

early postnatal development in the mouse [38]. Reports have demonstrated increased levels 

of GAP43 during axonal growth in the rat [39] and during axonal regeneration following 

neurological injury of toad retinal ganglion cells [40] and the goldfish retina [41]. Very 

recently, reduced levels of GAP43 mRNA and protein in axons and growth cones of SMA 

mice were reported [42]. SMN appears to be responsible for regulating the localization and 

translation of GAP43 mRNA in these axons and restoration of GAP43 mRNA and protein 

levels by overexpression of the mRNA binding proteins, HuD and IMP1, rescue axonal 

growth defects in the SMA mice [42]. These studies illustrate that GAP43 is implicated in 

axonal growth / repair pathways and as such, represents a promising neuronal target for SMA 

therapy. 

 

NCAM is a cell-surface protein that has been associated with cell–cell adhesion, neurite 

outgrowth and plasticity, and memory formation [43]. Maintenance of NCAM homeostasis is 

also important for neuronal growth and survival since both increased and decreased levels of 

NCAM have been linked to a wide range of neurological disorders (reviewed by Gnanapavan 

and Giovannonib [44]). For example, while levels of NCAM increase following axonal injury 

[45,46] and atrophic fibers in type I and II SMA muscle biopsies appear to express high levels 

of NCAM [47], NCAM deficient mice display hippocampal dysplasia and loss of septal 

cholinergic neurons [48]. Increased life-span and improved behavioural performance was 

seen in a mouse model of the motor neuron disease amyotrophic lateral sclerosis (ALS), 

following transplantation of human umbilical cord blood cells carrying adeno-viral vectors 

expressing a neuro-protective factor and NCAM [49]. It seems highly pertinent therefore, that 

future studies should aim to determine whether modulating the severity of SMA is also 
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possible by manipulation of NCAM levels, which until now, have been overlooked in terms 

of their role in SMA pathogenesis. 

 

Of the 10 proteins that revealed increased expression in SMA cell and tissue samples, three 

were consistently changed across three separate proteomic comparisons (Table 2). Collagen 

VI, alpha 3 chain (COL6A3) was increased in SMA patient plasma [15] and in SMA patient 

fibroblasts and iPS-derived motor neurons [16]. Of particular interest is that when SMA 

fibroblasts were quantitatively compared to control fibroblasts, 18 proteins were differentially 

expressed but only one of these, collagen alpha-3 VI, was also differentially expressed in the 

same direction when genetically matched SMA iPS-derived motor neurons were compared to 

control motor neurons.  

 

Over expression of COL6A3 is also seen in various types of cancer [50-52] and mutations in 

this gene can cause Ullrich congenital muscular dystrophy (CMD) and Bethlem myopathy 

[53]; both of which involve muscle and connective tissue problems. Though collagen VI is a 

well-known extracellular matrix protein, little is known about the particular characteristics of 

the COL6A3 isoform, except that it may play a role in advanced stages of neural crest 

development [54]. The relevance of an increase in the levels of COL6A3 in SMA may reflect 

an attempted protective response, since an increase in collagen VI appears to confer neuronal 

protection under cell stress [55].   

 

Published interactors of SMN, annexin A2 (ANXA2) and the intermediate filament protein 

lamin A/C (LMNA) [56], were increased in expression in Schwann cells and muscle from 

SMA mice and in iPS-derived motor neurons from an SMA patient (Table 2). Mutations in 

LMNA cause a range of disorders, including muscular dystrophies such as Charcot-Marie-
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Tooth disease and Emery-Dreifuss muscular dystrophy [57]. Given that mutations in the 

LMNA gene can cause an SMA phenotype [58,59], it is surprising that further studies to 

explore the relationship between LMNA and SMA have not been pursued.   

 

Depletion of SMN in the NSC-34 mouse motor neuron cell line resulted in a 50% increase in 

the levels of ANXA2 mRNA [60] which correlates well with the 57% increase of ANXA2 

protein seen in iPS-derived motor neurons from an SMA patient [16] (Table 2). Over-

expression of ANXA2 by transient transfection induces the disassembly of Cajal bodies and 

relocalization of coilin [61], the “bridge” protein that mediates recruitment of SMN to the 

Cajal body [62]. This is particularly interesting in the current context, and may offer insight 

into the likely downstream consequences of increased ANXA2 in SMA cells, given that 

depletion of SMN also disrupts Cajal body formation and localization of coilin [63,64]. 

 

Refinement of single quantitative proteomics datasets 

In addition to highlighting conserved changes present across several studies, review of multi-

study proteomic comparisons are likely to be useful for refining single proteomics datasets by 

highlighting potential “false positives”. Differentially expressed proteins that one might 

consider as “false positives” could arise due to unavoidable imprecisions in tissue sampling 

techniques, the impact of genetic diversity between the individual samples, the heterogeneous 

nature of some cell cultures, the developmental status of the samples, or differences in 

disease severity and progression. An example of the impact of the latter comes from our own 

previous work where we quantitatively compared the proteome of primary skin fibroblasts 

from an SMA patient with an unaffected SMA carrier. Myogenic cells present in the SMA 

fibroblast cell line but undetectable in the other resulted in an apparent increase in the 

myoblast-specific protein, desmin in the SMA cells [65]. 
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Based on a combined review of raw data concerning differentially expressed proteins from 

the studies detailed in Table 1, 37 proteins were identified that appeared to have altered 

expression in one particular SMA cell type or tissue but with opposing detection in another. 

These contradictions are summarised in Table 3. If we were to speculate about these 

contradictions in the context of SMA, it would be parsimonious to suggest that some likely 

reflect a unique response of that particular system / cell type to reduced SMN, and could be 

useful for explaining the known disparity between vulnerabilities of distinct cell and tissue 

types in SMA [3]. However, “… nature seems unaware of our intellectual need for 

convenience and unity, and very often takes delight in complication and diversity” [66], and 

in reality, the complex diversity of changes observed between proteomic data sets may 

simply represent the highly complex biological systems being examined. Such systems are 

not ‘static’ and will represent cells, tissues and organs at different stages of differentiation, 

development, and disease time-course. Thus, the ability to compare data across multiple 

proteomic datasets generated from a range of tissue samples offers the possibility of refining 

the output of a single dataset in order to minimize the influence of such variables. The wealth 

of proteomic data now available in the public domain makes it possible for future studies of 

SMA to undertake such comparative assessments. 

 

Conclusions  

Proteomics techniques offer a powerful tool for obtaining disease-relevant mechanistic 

insights into SMA. By reviewing multiple proteomic datasets, it is possible to identify 

conserved molecular changes downstream of SMN occurring across a range of model 

systems. These changes likely represent “core” regulators of disease pathogenesis and, as 

such, may represent novel therapeutic targets. It will now be important to verify these 

Page 14 of 32



15 
 

changes biochemically in a range of cells and tissues throughout disease progression and to 

determine whether their expression levels correlate with clinical severity. Therapeutic 

strategies for pharmacological or genetic manipulation of these molecules - or manipulation 

of upstream regulators of groups of molecules – offers the potential to complement strategies 

directed solely at SMN.  
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Figure 1: The SMN interactome 

Ingenuity Pathway Analysis (IPA) software-based identification of all known interacting 

partners of SMN protein reported in the published literature. Candidate interactors are 

organised based on their predominantly reported subcellular localisation and does not mean 

that they are exclusively restricted to these positions. These interactions are direct (solid 

lines) or indirect (dotted lines), and may have been reported following identification at the 

genomic, transcriptomic or proteomic (DNA,RNA and/or protein) level. As a result, the 

schematic presented here represents the known “interactome” for SMN as identified by IPA. 

 

Table 1: Overview of SMA studies employing proteomic screens 

The nine publications that have used unbiased proteomic comparisons to date for the 

identification of differentially-expressed proteins in SMA.  

*This data resulted from re-analysis of a previously published raw dataset [66].  
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Species Sample type Differentially 
expressed 
proteins 

 

Analysis 
platform 

Protein 
database 

Reference 

Human, SMA I, 
II & III 

Plasma 84* 
iTRAQ; MALDI-
TOF/TOF (AB 
Sciex 4800) 

Unknown [15] 

Human, SMA I 
iPSC-motor 

neurons 
98 

iTRAQ; ESI-
QTOF (AB Sciex 

5600) 

Swiss-Prot [16] 

Skin fibroblasts 18   

Human, SMA I Skin fibroblasts 6 
2D-gels; ESI-

QTOF 
(unknown) 

Unknown [17] 

Mouse, 
Taiwanese  

Schwann cells 195 

Label-free; LTQ 
Orbitrap Velos 
Pro (Thermo 

Scientific) 

IPI-mouse [23] 

Mouse (normal) 
NSC34 SMN-
knockdown 

7 
2D-gels; MALDI 

QTOF 
(unknown) 

Unknown [19] 

Mouse, severe 
SMA  

Hippocampus 39 
iTRAQ; ESI-

QTOF (Agilent 
6520) 

IPI-mouse [18] 

Mouse, severe 
SMA  

Hippocampal 
synaptosomes 

52 
iTRAQ; ESI-

QTOF (Agilent 
6520) 

IPI-mouse [20] 

Mouse, severe 
SMA at P5 

(symptomatic)  
Muscle 23 

Label-free; LTQ 
Orbitrap XL 

(Thermo 
Scientific) 

Swiss-Prot [21] 

Mouse, severe 
SMA  

Undifferentiated 
embryonic stem 

cells 
4 

2D-gels; MALDI-
TOF/TOF (AB 
Sciex 4800) 

NCBInr [22] 

Differentiated 
embryonic stem 

cells 
11   
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Table 2: The conserved molecular responses to reduced levels of SMN in SMA 

Individual proteins that were differentially expressed across two or more separate comparisons are shown, along with the number of studies they 

were identified in (“repeat hits”), the corresponding SMA model and any additional evidence for a role in the pathophysiology of SMA. 

Proteins with increased expression in SMA models  

 
Protein name 

Number of 
repeat hits 

 
SMA model 

Additional evidence in the pathophysiology 
of SMA 

Annexin A2 3 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 
P5 mouse muscle [21] 

x Published interactor of SMN [56]. 
x Depletion of SMN in the NSC-34 mouse 

motor neuron cell line resulted in 
increased levels of ANXA2 mRNA [60]. 

Lamin A/C 3 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 
P5 mouse muscle [21] 

x Published interactor of SMN [56]. 
x Mutations in the LMNA gene can cause 

an SMA phenotype [58, 59]. 

Collagen alpha 3 (VI) 3 
Type I patient skin fibroblasts [16] 
Type I patient motor neurons [16] 
Type I, II and III patient plasma [15] 

- 

Gelsolin 2 
Mouse Schwann cells [23] 
Type I, II and III patient plasma [15] 

- 

Calreticulin 2 
Type I patient motor neurons [16] 
P5 mouse muscle [21] 

x Increased expression verified by 
western blotting in SMA mouse and 
patient muscles [21] 

Tropomyosin 3 2 
Mouse hippocampus [18] 
Mouse embryonic stem cells (differentiated) [22] 

- 

ATP synthase subunits 2 
Mouse hippocampus synaptosomes [20] 
Mouse Schwann cells [23] 

- 

Actin-related protein 2/3 
complex 

2 
Mouse hippocampus synaptosomes [20] 
Type I patient motor neurons [16] 

- 
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Collagen alpha 1 (VI) 2 
Type I patient skin fibroblasts [16] 
Type I, II and III patient plasma [15] 

- 

Tubulin alpha 2 
Mouse hippocampus synaptosomes [20] 
Mouse embryonic stem cells (differentiated) [22] 

- 

Plectin 2 
Mouse Schwann cells [23] 
P5 mouse muscle [21] 

- 

SOD1 2 
Mouse Schwann cells [23] 
Mouse hippocampus [18] 

x SMN overexpression improves 
neuromuscular function and motor 
neuron survival in SOD1 mice [68] 

Serpin H1 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 

Annexin A5 2 
Mouse embryonic stem cells (differentiated) [22] 
Mouse Schwann cells [23] 

- 

Filamin 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 

Collagen alpha 1 (I) 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 

Collagen alpha 2 (I) 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 

Hypoxia up-regulated protein 1 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 

Glucose-6-phosphate isomerase 2 
Mouse Schwann cells [23] 
P5 mouse muscle [21] 

- 

 

Proteins with decreased expression in SMA models 
  

 

 
Protein name 

Number of 
repeat hits  

 
SMA model 

Additional evidence in the pathophysiology 
of SMA 

UBA1 3 
Mouse hippocampus synaptosomes [20] 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

x Mutations in the UBE1 gene are 
associated with a rare X-linked infantile 
form of SMA [25,26]. 
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x Experimental suppression of UBA1 
phenocopied the SMA motor neuron 
phenotype in zebrafish [20], and 
phenocopied the Schwann cells defects 
observed in SMA [23]. 

NCAM 3 
Mouse hippocampus [18] 
Type I, II and III patient plasma [15] 
Type I patient motor neurons [16] 

x Atrophic fibers in type I and II SMA 
muscle biopsies express high levels of 
NCAM 

GAP43 (neuromodulin) 3 

Mouse hippocampus [18] 
Mouse hippocampus synaptosomes [20] 
Type I patient  motor neurons [16] 

x Reduced levels of GAP43 mRNA and 
protein in axons and growth cones of 
SMA mice [42].  

x Restoration of GAP43 mRNA and 
protein levels rescued axonal growth 
defects in the SMA mice [42]. 

GAPDH 3 
Mouse Schwann cells [23] 
Mouse hippocampus [18] 
Type I, II and III patient plasma [15] 

x Published interactor of SMN (from 
yeast two-hybrid screen) [28] 

Heat shock protein 90B 2 
Mouse embryonic stem cells (differentiated) [22] 
P5 mouse muscle [21] 

- 

Calmodulin 2 
Mouse hippocampus [18] 
Type I patient skin fibroblasts [16] 

- 

Catalase 2 
Type I, II and III patient plasma [15] 
Type I patient motor neurons [16] 

- 

Peroxiredoxin 2 2 
Mouse Schwann cells [23] 
Type I, II and III patient plasma [15] 

- 

Aldehyde dehydrogenase 2 
Mouse embryonic stem cells (differentiated) [22] 
Mouse Schwann cells [23] 

- 

Alcohol dehydrogenase class 3 2 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

- 
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Table 3: Proteins with contradictory expression levels in SMA models 

A number of proteins appear to be increased or decreased in expression in a particular SMA cell type or tissue but showed the opposite trend in 

another. (d) = differentiated.  

Proteins with contradictory expression levels in SMA models  

 
Protein name 

Increased in SMA Decreased in SMA 

Aspartate aminotransferase P5 mouse muscle [21] Type I patient motor neurons [16] 

Caldesmon 
Mouse Schwann cells [23] 
Type I patient motor neurons [16] 

Type I patient skin fibroblasts [16] 

Catenin alpha Mouse Schwann cells [23] Type I patient motor neurons [16] 

Catenin beta Mouse hippocampus synaptosomes [20] Type I patient motor neurons [16] 

Endoplasmin Type I patient motor neurons [16] Mouse Schwann cells [23] 

Fructose bisphosphate aldolase 
Mouse Schwann cells [23] 
Mouse hippocampus synaptosomes [20] 

Mouse hippocampus [18] 

Galectin Type I patient motor neurons [16] Mouse (NSC34) cells [19] 

Glyoxylase 1 Mouse embryonic stem cells (d) [22] Type I, II and III patient plasma [15] 

hnRNP K Mouse Schwann cells [23] Mouse (NSC34) cells [19] 

Hspa9/GRP75/Stress-70 protein 
Mouse Schwann cells [23] 
Mouse hippocampus synaptosomes [20] 
P5 mouse muscle [21] 

Mouse embryonic stem cells (d) [22] 

HSP90a 
Mouse hippocampus [18] 
Type I patient motor neurons [16] 

Mouse hippocampus synaptosomes [20] 

Hspd1 Mouse Schwann cells [23] 
Mouse hippocampus [18] 
Mouse hippocampus synaptosomes [20] 

Inorganic pyrophosphatase Mouse hippocampus synaptosomes [20] Type I patient motor neurons [16] 

Comment [A1]: Author: there are two different 
table captions were provided, and this has been 
retained. Please check and confirm it is correct. 
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Macrophage migration inhibitory factor Mouse hippocampus synaptosomes [20] Type I, II and III patient plasma [15] 

MARCKS Mouse hippocampus synaptosomes [20] Mouse hippocampus [18] 

Myosin 3 Type I patient motor neurons [16] Type I patient skin fibroblasts [16] 

Park7 Mouse hippocampus synaptosomes [20] Type I, II and III patient plasma [15] 

Periostin Type I patient motor neurons [16] P5 mouse muscle [21] 

Phosphoglycerate kinase 1 Mouse hippocampus synaptosomes [20] Mouse Schwann cells [23] 

Phosphoglycerate mutase Mouse hippocampus [18] 
Mouse hippocampus synaptosomes [20] 
Mouse Schwann cells [23] 

Profilin 1 Mouse Schwann cells [23] Type I, II and III patient plasma [15] 

Prolyl 4-hydroxylase alpha 2 and alpha 1 Type I patient motor neurons [16] Mouse Schwann cells [23] 

Reticulon Mouse Schwann cells [23] P5 mouse muscle [21] 

Ribosome-binding protein 1 Type I patient motor neurons [16] P5 mouse muscle [21] 

SOD1 
Mouse Schwann cells [23] 
Mouse hippocampus [18] 

Type I, II and III patient plasma [15] 

Sulfated glycoprotein 1 Mouse hippocampus synaptosomes [20] Mouse Schwann cells [23] 

Synaptopodin-2 Type I patient motor neurons [16] Type I patient skin fibroblasts [16] 

S100 A4 Mouse Schwann cells [23] Type I, II and III patient plasma [15] 

T-complex protein 1 
Mouse hippocampus synaptosomes [20] 
Mouse Schwann cells [23] 

P5 mouse muscle [21] 
Mouse hippocampus [18] 

UCHL1 

Mouse embryonic stem cells (d) [22] 
Mouse Schwann cells [23] 
Type I patient skin fibroblasts [17] 
Mouse hippocampus synaptosomes [20] 
Type I patient skin fibroblasts [16] 

 
 
Type I patient motor neurons [16] 

VDAC1 Type I patient skin fibroblasts [16] Mouse Schwann cells [23] 

Vimentin P5 mouse muscle [21] Type I patient motor neurons [16] 

Zyxin Type I patient motor neurons [16] Type I patient skin fibroblasts [16] 

14-3-3 gamma 
Mouse Schwann cells [23] 
Mouse hippocampus synaptosomes [20] 

Mouse embryonic stem cells (d) [22] 
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40S S3 Type I patient motor neurons [16] Mouse Schwann cells [23] 

2',3'-cyclic-nucleotide 3'-phosphodiesterase Type I patient skin fibroblasts [16] Type I patient motor neurons [16] 
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