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Graphical abstract 

 

 

 

Highlights 

 TNS composed of anatase and titanate synthesized via a facile one-step method 

 Cr(VI) and 4-CP can be simultaneously removed by TNS through photocatalysis 

 Photocatalytic efficiencies of Cr(VI) and 4-CP greatly enhanced when coexisting 

 Synergetic promotion effect occurs due to separation of electron-hole pairs 

 Autosynchronous doping after Cr(III) adsorption leads to narrowed energy gap 

 

Abstract 

Clean-up of wastewaters with coexisting heavy metals and organic contaminants 

is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite 

material (labeled as TNS) synthesized through a one-step hydrothermal reaction was 

demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 

4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a 

nano-composite of anatase and titanate, with anatase acting as the primary 
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photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic 

removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with 

apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 

and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP 

was removed within 120 min through photocatalysis by TNS at pH 7 in the binary 

system. Mechanisms for enhanced photocatalytic efficiency in the binary system are 

identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and 

photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) 

autosynchronous doping because of reduced Cr(III) adsorption onto TNS. 

Furthermore, TNS could be efficiently reused after a simple acid-base treatment.  

 

Keywords: Titanate nanosheet; Synergetic promotion; Autosynchronous doping; 

Photocatalysis; Combined pollution 

 

1. Introduction 

Industrial wastewaters offer substantial threats to the environment and human 

health. Such wastewaters usually contain a complicated mixture of constituents, often 

involving co-existence of multiple contaminants, such as heavy metals and organic 

pollutants [1-3], requiring expensive, difficult technological treatment often targeted 

at the removal of certain pollutants. For example, Cr(VI) and chlorinated phenols 

(CPs) are found to coexist in tannery wastewaters [4, 5]. Cr(VI) is a commonly 

encountered heavy metal with high toxicity, resulting from its carcinogenicity and 

teratogenicity [6].  CPs are emerging contaminants and persistent organic pollutants 
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(POPs) that are widespread in wastewaters originating from certain industrial 

processes, such as tanning, and manufacturing of preservatives, pesticides and 

antifouling agents [7, 8]. Although many techniques, including adsorption, membrane, 

bio-process, direct chemical oxidation, and advanced oxidation processes (AOPs, like 

Fenton reaction), are used to resolve pollution problems involving Cr(VI) or/and CPs 

[9-16], these treatment processes are relatively inefficient, high-cost and complicated 

to operate. Moreover, methods which completely remove Cr(VI) through reduction 

and degradation of CPs are undoubtedly better than those based purely on adsorption 

or phase separation. Therefore, development of highly efficient, inexpensive 

technologies for the treatment of combined polluted wastewaters is urgently required 

in the environmental remediation area.  

Photocatalysis using titanium related nanomaterials (including TiO2 and titanate) 

seems a good choice for solving the very difficult problem of reduction of Cr(VI) and 

complete degradation of CPs in industrial wastewaters [17, 18]. TiO2 is the most 

common photocatalyst used for degradation of organic compounds including CPs 

[19-21]. In recent years, the particularly effective ion-exchange property of titanate 

nanomaterials (especially titanate nanotubes, TNTs) has led to their widespread use as 

metal-cation adsorbents (e.g. Pb(II), Cd(II), Cr(III), radionuclides, etc.) [22-26]. 

However, pure titanate possesses two main defects: (1) low adsorption capacity for 

metal anions (like Cr(VI) and As(V)) and organics [27-29], and (2) weak 

photocatalytic activity because of the immediate recombination of photo-generated 

electron-hole pairs [18, 30-32]. Therefore, combination of TiO2 and titanate would 
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appear to be a sensible method for simultaneous removal of both heavy metals and 

organics through initial photocatalysis and subsequent adsorption. In this way, Cr(VI) 

can be photo-reduced to Cr(III) by TiO2 and then adsorbed by titanate, and organic 

compound (e.g. CPs) can be directly photo-degraded in the meanwhile. Although 

previous studies have paid attention to the photocatalytic reduction of Cr(VI) by TiO2 

or combination of TiO2 and TNTs [17, 18], and to the photocatalytic degradation of 

CPs by single TiO2 [19, 33], there is little information available on the simultaneous 

removal of Cr (including both Cr(VI) and Cr(III)) and CPs through photocatalysis and 

adsorption. An understanding still needs to be built up of the mechanism underlying 

this complex system.   

Given the above context, we propose a facile one-step method to synthesize a 

composite anatase/titanate nanosheet (labeled as TNS), composed of TiO2 and titanate, 

with good adsorptive and photocatalytic properties. The prepared TNS was used to 

remove coexisting Cr(VI) and 4-CP simultaneously. The main objectives of this study 

are: (1) preparation of a titanate-based material for effective simultaneous removal of 

both Cr(VI) and 4-CP; (2) to achieve complete removal of Cr(VI) and Cr(III) using 

the fore-going titanate-based material; (3) to elucidate mechanisms for photocatalytic 

removal of isolated and co-existing Cr(VI) and 4-CP; and (4) to test reusability of the 

synthesized material.  

2. Experimental 

2.1 Chemicals 



6 

 

All chemicals used in this study were of analytical grade or better, and used 

without further purification. Nano-scale TiO2 (anatase, 99.7%, mean size of 25 nm), 

used as a precursor to synthesize TNS, was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). NaOH (purity > 98.0%) and absolute ethanol (also used to synthesize 

TNS) were obtained from Acros Organics (Fair Lawn, NJ, USA). Analytical K2Cr2O7, 

CrCl3∙6H2O and 4-CP were purchased from Acros Organics (Fair Lawn, NJ, USA). 

Deionized (DI) water (Millipore Co., 18.2 MΩ∙cm) was used to prepare all the 

solutions. 

2.2 Preparation and characterization of TNS 

TNS was synthesized through a short-cut hydrothermal method [34]. Specifically, 

0.8 g of TiO2 powder was added into 80 mL of 8 mol/L NaOH solution and stirred for 

12 h. The mixture was then transferred into a Teflon reactor and heated at 130 °C for 3 

h. Afterwards, the suspension was washed with DI water until the supernatant was 

neutral. Finally, TNS was dispersed with ethanol and obtained after drying at 80 °C 

for 4 h. Pure titanate (TNTs) was also synthesized through the same hydrothermal 

process but heated for 6 h [34].  

Morphology of the TNS was measured using Tecnai F30 FEG transmission 

electron microscopy (TEM, FEI, USA) operating at 300 kV, and energy dispersive 

spectra (EDS) were collected meanwhile. The crystal phase structure of the sample 

was identified by means of a Dmax/2400 X-ray diffractometer (XRD, Rigaku, Japan) 

with Cu Kα radiation source (λ = 1.5418 Å) at a scan rate (2θ) of 4°/min. Specific 

surface area of TNS was determined using an ASAP 2010 adsorption apparatus 
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(Micromeritics, USA) through nitrogen adsorption-desorption isotherms at -196 °C 

according to Brunauer-Emmett-Teller (BET) theory. Elemental composition and 

oxidation state were obtained by an AXIS-Ultra X-ray photoelectron spectroscopy 

(XPS, Kratos, England) using Al Kα X-ray at 15 kV and 15 mA. The standard C 1s 

peak (Binding energy, Eb = 284.80 eV) was used to eliminate the static charge effects. 

During measurement, the nitrogen adsorption volume was set to a relative pressure 

(P/P0) of 0.99. Zeta potentials of the materials under various pH were detected using a 

Nano-ZS90 Zetasizer (Malvern Instruments, UK), in order to determine the point of 

zero charge (pHPZC). UV-vis diffuse reflectance spectra (DRS) of the materials were 

obtained by a UV-2400 spectrophotometer (Shimadzu, Japan) using the 

Kubelka-Munk function.  

2.3 Adsorption of Cr and 4-CP by TNS 

Adsorption of Cr(VI), Cr(III), and 4-CP by TNS was tested at different solution 

pH. With 5 mg/L of Cr or 4-CP mixed with 0.025 g TNS to form a total solution of 50 

mL, the pH of the mixture was adjusted from 2 to 9 using dilute HCl or NaOH 

solution. After the sample was shaken (200 rpm, 25±2 C) for 4 h and filtered through 

0.22 μm polytetrafluoroethylene (PTFE) membrane, the Cr or 4-CP concentration in 

the supernatant was determined. Adsorption of Cr(VI), Cr(III) and 4-CP by anatase 

and pure titanate was also tested at different pH under the same conditions, 

respectively. All the adsorption experiments were conducted in dark.  

Total Cr concentration was measured using an inductively coupled plasma-mass 

(ICP-MS, X Series II, Thermo Fisher Scientific, USA). Cr(VI) concentration was  
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determined through a dinitrodiphenyl carbazide spectrophotometric method at 540 nm 

by a UV-vis spectrophotometer (UV1800, Shimadzu, Japan). Cr(III) concentration 

was calculated as the difference between total Cr and Cr(VI) concentrations. 4-CP 

concentration was measured using high performance liquid chromatography (HPLC, 

Agilent 1200 Series, USA) equipped with a C18 column (SB-AQ, 5 μm, 

4.6 mm × 250 mm) and a diode array detector (DAD). A mixture of methanol (HPLC 

grade, BDH, USA) and ultrapure water (v/v of 60:40) provided the mobile phase. 

Samples were injected into the HPLC instrument at a flow rate of 1 mL/min and 

analyzed at an UV absorbance wavelength of 280 nm. Adsorption capacity (qe) and 

removal efficiency (R) of Cr or 4-CP are calculated from: 

0( )e
e

C C V
q

m


                                                         (1) 

0

0

( )
100%eC C

R
C


 

                                                   (2) 

where qe (mg/g) is the adsorption capacity of Cr or 4-CP on TNS at equilibrium; C0 

and Ce (mg/L) are the initial and equilibrium concentrations of Cr or 4-CP; V (L) is 

the total volume of the solution, and m (g) is the mass of added TNS. 

2.4 Photocatalysis of Cr(VI) and 4-CP by TNS 

Photocatalytic experiments were carried out in a cuboid quartz reactor (total 

volume of 300 mL, 5×5×12 cm) as shown in Fig. S1. A high-pressure mercury lamp 

(150 W, 365 nm) was used as the UV light source, which was placed beside the 

reactor with cooling air supplied to maintain the reaction temperature of 25±2 C. The 

UV light density in the reactor center was measured as 2.5 mW/cm2. The 

photocatalytic tests were carried out for the following scenarios: (1) photocatalysis of 
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isolated Cr(VI) and 4-CP, the reaction initiated by mixing 5 mg/L of Cr(VI) or 4-CP 

(200 mL in total volume) with 0.5 g/L TNS; and (2) photocatalysis of coexisting 

Cr(VI) and 4-CP, the reaction initiated using a fixed Cr(VI) concentration of 5 mg/L, 

and coexisting 4-CP concentrations of 2.5, 5 and 10 mg/L. All the foregoing 

photocatalytic tests were repeated for pH 5, 7 and 9. Blank photocatalytic tests were 

also carried out without materials under UV light. Photocatalytic experiments of 

Cr(VI) and 4-CP by pure anatase and titanate were also carried out respectively for 

comparison. TNS with Cr(III) (TNS-Cr(III)) after co-removal of Cr(VI) and 4-CP 

were collected for EDS, XPS and UV-vis DRS analysis. 

Langmuir-Hinshelwood (L-H) model is introduced to describe the photocatalysis 

process, whereby the rate of change of time-dependent concentration Ct (mg/L) is 

expressed as [35-37] : 

L

L1

t t

r
t

dC K C
r k

dt K C
  


                                           (3)      

in which r (mg/(L∙min)) is the photocatalytic reaction rate, kr (mg/(L∙min)) is the 

photocatalytic reaction rate constant, KL (L/mg) is the Langmuir constant for 

adsorption, and t is time.  For KLCt << 1, t = 0 and Ct = C0, Equation (3) simplifies to 

the first-order kinetic model: 

0 1ln( / )tC C k t                                                 (4) 

where k1 (min-1) is the first-order apparent rate constant.  

The degradation intermediates of 4-CP were also determined using a gas 

chromatograph-mass spectrometer (GC-MS, Agilent 7890A GC coupled with 5975C 

Series mass spectrometry) and the detailed method is described in Supplementary 
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data. In addition, the amount of hydroxyl radicals (•OH) formed in the photocatalysis 

reaction was detected by a photoluminescence (PL) technique as shown in 

Supplementary data. 

2.5 Material reuse 

After photocatalysis of coexisting Cr(VI) and 4-CP, both at concentration 5 mg/L 

and pH 7, TNS was filtered though a 0.22 PTFE membrane and air-dried for reuse. 

More specifically, 0.2 g of TNS was immersed in 0.5 mol/L HNO3 (500 mL) for 8 h to 

desorb Cr(III), and the resulting TNS material immersed in 0.5 mol/L NaOH (500 mL) 

for 8 h in order for regeneration to occur. The resulting TNS was then reused for 

photocatalysis of coexisting Cr(VI) and 4-CP at pH 5, with the proposed 

photocatalysis-desorption-regeneration process lasting 5 cycles. 

3. Results and discussion 

3.1 Morphology and crystal structure of TNS 

Fig. S2 and Fig. 1 show the morphologies of nano-TiO2 and TNS obtained using 

TEM. The procurer nano-TiO2 particle is a kind of nano-sphere, with mean diameter 

of 25 nm (Fig. S2). After hydrothermal treatment, these TiO2 nanoparticles 

transformed into nanosheets, which are more like ribbons (Fig. 1a). High resolution 

TEM (HRTEM) further indicates that each of the ribbons has uniform interlayer 

distance of 0.70 nm, in accordance with the crystalline plane of titanate (020) (Fig. 1b) 

[38]. Anatase crystalline titanium dioxide (101) also can be observed in TNS (Fig. 1c) 

[39], suggesting the synthesized TNS is a composite material containing both titanate 

and anatase.  
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[Fig. 1] 

Fig. 2 presents the XRD patterns obtained for nano-TiO2 and TNS. For TiO2, the 

peaks all belong to crystalline anatase (JCPDS 21-1272) [40, 41]. After synthesis of 

TNS, the peaks at 25.3, 37.9, 53.9 and 54.9 ascribed to anatase still remain, 

notably the A(101) peak. However, new peaks at 9.6, 28.4, 48.1 and 62.7 

attributed to crystal diffraction of titanate are also present [22, 26, 42]. The peak at 

9.6 (020) represents the interlayer distance of titanate, which is 0.70 nm for the TNS 

prepared in this study (Fig. 1b) [22, 26, 38]. Moreover, the resulting titanate nanosheet 

is a kind of sodium tri-titanate with chemical formula given by NaxH2-xTi3O7 (in 

which x = 0−0.75, depending on the remaining sodium content), and composed of 

layered corrugated ribbons formed through edge-sharing of triple [TiO6] octahedrons 

forming a skeletal structure and H+/Na+ located in interlayers [22, 26].  

[Fig. 2]  

The prepared TNS exhibits large specific surface area of 147.9 m2/g and total 

single pore volume of 0.47 cm3/g (Fig. S3). The N2 adsorption-desorption isotherms 

of TNS are consistent with type IV isotherms with H3 hysteresis loops, according to 

BDDT classification (Fig. S3a), indicating the presence of mesopores (2–50 nm) in 

the material [43]. Due to the low point of zero charge (pHPZC = 3.2) (Fig. S4), TNS 

can easily capture metal cations (Cr(III) in this study), followed by ion-exchange with 

the interlayered H+/Na+ (primary Na+) [14, 22]. 

For the formation of TNS, The Ti–O–Ti bonds between the [TiO6] octahedron 

will be broken to planer fragments under NaOH treatment during the hydrothermal 
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process, and then the fragments reassemble and link together, resulting in the 

formation of hydroxyl bridges between two fragments and triple end-sharing [TiO6] 

octahedrons, thus forming tianate nanosheets [34, 38, 44]. By control the 

hydrothermal time (3 h in this study), partial reorganization of anatase crystal lattices 

to tri-tianate results in the formation of anatase-covered titanate composite (TNS). 

3.2 Adsorption of Cr(VI), Cr(III) and 4-CP by TNS 

Fig. 3 displays the adsorption capacities of Cr(VI), Cr(III) and 4-CP by TNS over 

a pH range from 2 to 9. The variations in Cr(VI) and Cr(III) adsorption capacities 

with increasing pH are entirely different. The adsorption capacity of Cr(VI) decreases 

almost monotonically over the pH range considered, falling from 1.9 to 0.8 mg/g as 

pH increases from 2 to 3, and then reaching ~0 mg/g by pH ≥7. In addition, the 

Cr(VI)-adsorption capacity was invariable quite small (<2 mg/g) regardless of pH due 

to the low pHPZC of TNS (3.2). Here, Cr(VI) existed as oxyanions (mainly HCrO4
- and 

CrO4
2-) at pH 2−9 (Fig. S5a), and so the less positively charged (pH ≤3) or negatively 

charged (pH ≥4) TNS can hardly capture these Cr(VI) anions. Conversely, the 

Cr(III)-adsorption capacity increased with increasing pH, saturating at a pH of about 5. 

At pH values of 2 and 3, positively charged TNS adsorbed fewer Cr(III) cations (Cr3+ 

and Cr(OH)2+) (Fig. S5b). However, TNS underwent was a charge transformation for 

TNS from pH 3 to 4 (Fig. S4), leading to a substantial increase in Cr(III) adsorption 

capacity from 2.1 to 7.6 mg/g. For further increase in pH, the more negative charge 

located on TNS resulted in a larger adsorption capacity, reaching 9.7 mg/g at pH 5 in 

conjunction with a high removal efficiency of 97.1%. Precipitation of Cr(III) 
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(Cr(OH)3 formation) occurred for pH ≥ 6, associated with enlarged Cr(III) adsorption 

capacity. The overall adsorption behaviors of Cr(VI) and Cr(III) by TNS as functions 

of pH are similar to results obtained using TNTs [18, 27], due to the similar basic 

composition of sodium tri-titanate. Similar results were found for adsorption of Cr(VI) 

by both pure anatase and titanate (Fig. S6). However, adsorption behaviors of Cr(III) 

differed a lot, as the adsorption capacity of titanate was much larger than that of 

anatase, resulting from the abundant −ONa/H groups locating on the titanate, which 

can efficiently capture Cr(III) cations through ion-exchange [22, 45]. The adsorption 

capacity of Cr(III) was ranked as titanate >TNS >>anatase.  

[Fig . 3] 

The adsorption capacity of 4-CP was relatively low (<0.4 mg/g) regardless of 

change in pH. Considering the inorganic structure of TNS (sodium titanate) and 4-CP 

with a pKa value of 9.41 [46], the material is almost unable to capture molecular 4-CP 

over the pH range (2−9) of the tests. Similarly, the inorganic pure anatase and tianate 

could hardly adsorb 4-CP (Fig. S6). Therefore, adsorption on its own is not viable as a 

treatment process for removal of Cr(VI) and 4-CP; instead, auxiliary photocatalysis is 

necessary.  

3.3 Photocatalysis of Cr(VI) and 4-CP by TNS in the single system 

Solution pH values of 5, 7 and 9 were selected to represent acidic, neutral and 

alkaline conditions to study their effects on photocatalysis. Fig. 4 shows removal of 

total Cr and Cr(VI), as well as the formation of Cr(III) over time. For Cr(III), the 

non-dimensional concentration Ct/C0 is obtained as the ratio of concentration of Cr(III) 
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formed in the aqueous solution to the initial total Cr concentration. It can be seen that 

the total Cr and Cr(VI) in the aqueous solution gradually decreased as irradiation time 

increased. Almost no Cr(III) accumulated in solution except during the first hour at 

pH 5, leading to nearly overlapping concentration-time curves for total Cr and Cr(VI). 

Therefore, the reduced Cr(III) could be immediately and continuously adsorbed by 

TNS, mainly the titanate phase with high adsorptive property. Moreover, no Cr(III) 

could be detected at 210 min, indicating all the reduced Cr(III) was adsorbed onto 

TNS finally, which is consistent with the adsorption results (Fig. 3). Formation and 

removal of Cr(III) simultaneously occurred within the solution; i.e. Cr(III) formed 

through photocatalytic reduction of Cr(VI) was immediately adsorbed by TNS. 

Precipitation of Cr(III) at higher pH resulted in its more rapid removal, and so no 

Cr(III) could be detected even at 10 min for pH 7 and 9.  

Photocatalytic reduction of Cr(VI) by TNS occurred more quickly at lower pH, 

as reflected in the higher apparent rate constant (k1) (Table 1). When pH increased 

from 5 to 9, the k1 value decreased from 0.0240 to 0.0087 min-1, indicating lower 

photocatalytic activity of TNS for Cr(VI) reduction under alkaline conditions. 

Moreover, no Cr(III) remained in solution at 210 min under any of the conditions 

considered, and so the final Cr (total) and Cr(VI) removal efficiency was identical, 

with values of 99.6%, 97.2% and 84.8% at pH 5, 7 and 9, respectively. Considering 

the high adsorption capacity for Cr(III) (Fig. S6), titanate played the dominant role in 

removal of reduced Cr(III). The present results concerning the effect of pH are 

consistent with those of previous studies, which reported acidic conditions facilitate 
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photo-reduction of Cr(VI) [18, 47, 48]. Here, the H+-included reactions proceed as: 

H2CrO4 + 6H+ + 3e- = Cr3+ + 4H2O                                  (5) 

or 

HCrO4
- + 7H+ + 3e- = Cr3+ + 4H2O                                  (6) 

It appears that existence of abundant H+ should be beneficial to reduction of 

Cr(VI) oxyanions. However, presence of OH- ions would inhibit Cr(VI) reduction 

because: 

CrO4
2- + 4H2O+ 3e- = Cr(OH)3 + 5OH-                               (7) 

[Fig . 4] 

Unlike Cr(VI), selection of higher pH enhanced 4-CP photo-degradation (Fig. 5). 

The k1 value for 4-CP photocatalytic degradation increased from 0.0221 min-1 for pH 

5 to 0.0399 min-1 for pH 9 (Table 1). It is worth noting that although photocatalytic 

activity of TNS for 4-CP photo-degradation varied with pH, the removal rates were 

invariably above 99% by 210 min, indicating the extremely high efficiency of TNS 

for 4-CP removal. OH- anions promote formation of hydroxyl radicals (•OH), which 

are primary reactive oxygen species (ROS) for oxidation of organic compounds [49], 

and the mechanism will be further discussed in detail later in Section 3.5.  

[Fig . 5] 

It is noteworthy that almost no Cr(VI) and 4-CP could be photocatalytically 

removed by pure titanate, as the photocatalytic curves are almost the same to blank 

results (only photolysis without materials) (Fig. S7). Therefore, the photocatalytic 

activity of pure titanate was very weak due to easy recombination of excited 
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electron-hole pairs. However, anatase showed high removal efficiencies for Cr(VI) 

(97.8 %) and 4-CP (99.8 %) even after 180 minsʼ photocatalysis at pH 7 (Fig. S7), and 

high k1 values of 0.0247 min-1 and 0.0354 min-1, respectively. The photocatalytic 

activity of the concerned materials followed the sequence of anatase >TNS >>titanate. 

Given the different adsorption capacities and photocatalytic activities of different 

materials, it is indicated that TNS is an intermediate material from anatase to titanate, 

which has the advantages of the both anatase and titanate. 

3.4 Photocatalysis of Cr(VI) and 4-CP by TNS in the binary systems 

The single system tests in Section 3.3 have shown that increasing pH promoted 

photo-reduction of Cr(VI) but inhibited photo-degradation of 4-CP. Consequently, the 

solution pH was set to 7 to achieve both high removal efficiencies of Cr(VI) and 4-CP 

in binary systems. Fig. 6a plots the removal of coexisting Cr(VI) and 4-CP at same 

initial concentration (5 mg/L) in the photocatalytic process, and the corresponding 

results for single systems are also plotted for comparison. Removal of Cr(VI) was 

greatly promoted by coexistence of 4-CP, with the associated k1 value (0.0502 min-1) 

being about 3.1 times that for Cr(VI) photo-reduction without 4-CP (0.0164 min-1). 

The total Cr and Cr(VI) removal efficiencies attained values as high as 99.7 % at 120 

min, almost the same as obtained at 210 min in the single system. Moreover, no Cr(III) 

was found to accumulate in solution in the binary system owing to the high adsorption 

capacity of TNS. Photocatalytic degradation of 4-CP was also enhanced in the binary 

system, with k1 (0.0737 min-1) about 2.6 times that for 4-CP photo-degradation in 

single system (0.0289 min-1), and 98.1 % removal of 4-CP achieved by 60 min. 
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Therefore, synergetic promotion of the photocatalytic removal of Cr(VI) and 4-CP by 

TNS was found to occur when both coexisted in solution; this synergetic effect was 

closely related to the photocatalytic mechanism involved in the reactions.  

[Fig . 6] 

The first-order kinetic model simulation of photocatalysis in binary system is 

nonlinear and close to exponential (R2 ≥0.997, Ln(C0/Ct) = tn and n >1) (Fig. 6b), 

indicating that the photocatalytic reaction has accelerated with time for both Cr(VI) 

and 4-CP. Gradual photo-reduction of Cr(VI) resulted in formation of Cr(III), which 

was subsequently adsorbed by TNS. It should be noted that TNS with Cr(III) 

incorporated, and then substituted, acted like a autosynchronous doping process, thus 

enhancing the photocatalytic activity of TNS. Moreover, the amount of Cr(III) 

entering into TNS increased as time progressed, leading to gradually enhanced 

photocatalytic activity. 

To further confirm this synergetic promotion effect, photocatalytic reduction of 

Cr(VI) in the presence of varying 4-CP concentrations was tested (Fig. S8), and Table 

S1 lists the corresponding first-order kinetic model parameters. The results indicate 

more 4-CP added leaded to higher Cr(VI) photocatalytic reduction rate. Even at 2.5 

mg/L of 4-CP, the k1 value was 0.0428 min-1, about 2.6 times of that for Cr(VI) 

reduction without 4-CP. The k1 value increased to 0.0735 min-1 when the coexisting 

4-CP increased to 10 mg/L, indicating the progressive enhancement of the promotion 

effect by increasing the 4-CP concentration. 

3.5 Synergetic promotion mechanism for photocatalysis of Cr(VI) and 4-CP 



18 

 

During photocatalysis, TNS can generate a conduction band (electron, e-) and a 

valence band (hole, h+) under UV irradiation (Eqn. 8). Then Cr(VI) is reduced to 

Cr(III) by the electrons (Eqn. 9). Meanwhile, the holes oxidize H2O molecules into 

ROS (∙OH, ·O2
-, H2O2, etc.) (Eqns. 10−15), and 4-CP is degraded through oxidation 

by these species [17, 18, 46, 50] (Eqn. 16).  

TNS (titanate/TiO2) + hv = TNS* (e-−h+)                             (8) 

HCrO4
- + 7H+ + 3e- = Cr3+ + 4H2O                                 (9) 

2H2O + 4h+ = O2 + 4H+                                                              (10) 

H2O + h+ → •OH + H+                          (11) 

OH- + h+  →•OH                                               (12) 

O2 + e- = •O2
-                                                                          (13) 

•O2
- + e- +2H+ = H2O2

                                           (14) 

H2O2 +•O2
- = HO• + OH- + O2                                       (15) 

4-CP + •OH (or •O2
-, H2O2) → intermediates → products + CO2         (16) 

Acidic conditions promote reduction of Cr(VI) according to Eqn. 9, whereas 

alkaline solution with abundant OH- facilitates formation of •OH according to Eqns. 

11 and 12. Hence, the removal efficiency of Cr(VI) was higher for photocatalysis at 

lower pH (Fig. 4), unlike less efficient at lower pH for 4-CP (Fig. 5). 

Cr(III) has similar atomic size to Ti and so is widely used as a doping metal to 

modify TiO2 and thereby enhance its photocatalytic performance [51-53]. EDS shows 

that Cr(III) successfully entered into TNS after reaction (Fig. S9). Cr 2p peak is also 

observed for TNS-Cr(III) in the XPS survey spectra (Fig. S10a). Moreover, high 

resolution of Cr 2p spectra indicates that all the incorporated Cr are in the form of 
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Cr(III) (Eb  577 eV) (Fig. S10b) [29], suggesting complete photo-reduction of Cr(VI) 

by TNS. EDS and XPS analysis of TNS-Cr(III) confirmed autosynchronous doping of 

Cr(III) during the reaction. Fig. 7 presents the UV-vis DRS spectra of TNS before and 

after Cr(III) entered, and the energy band gaps (Eg) of the materials are calculated by 

Kubelka-Munk theory [54]. The light adsorption edge of the pure TNS was 399 nm 

with Eg = 3.1 eV, close to that of TiO2 type P25 and titanate nanotubes [31, 55]. After 

Cr(III) doping of TNS (TNS-Cr(III)), the adsorption edge shifted to the visible light 

range of 448 nm, and the Eg value decreased to 2.8 eV. In addition, band gap of 

titanate in the composite material is more likely to be narrowed due to efficient 

capture of Cr(III). Here, the narrowed energy band gap implies that a much wider 

light range was utilized in the photocatalytic reaction.  

[Fig. 7] 

After incorporation into TNS, the Cr3+ trapped holes photo-generated by titanate 

or in Cr4+ by TiO2 that further reacted with OH- to produce hydroxyl radicals (Eqns. 

17 and 18) [53]. Hence, recombination of hole-electron pairs became inhibited due to 

the presence of the hole media, Cr3+. Besides, Cr(III) can also act as a donor level to 

produce electrons under UV light, followed by production of •O2
- (Eqns. 19 and 20) 

[18, 53], which is a strong ROS that can further degrade 4-CP.  

Cr3+ + h+ → Cr4+                                                (17) 

Cr4+ + OH- → Cr3+ + •OH                                         (18) 

Cr3+ + hν → Cr4+ + e-                                                                  (19) 

e- + O2 → •O2
-                                                                          (20)  
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Fig. S11 further confirms the increased •OH production by TNS after Cr(III) 

doping, and the higher Cr doping dosage resulting in larger numbers of •OH radicals. 

In short, Cr autosynchronous doping helps to facilitate the photocatalytic degradation 

of 4-CP due to the increased abundance of ROS produced. Fig. S12 shows the 

photocatalytic degradation pathway of 4-CP in the binary system based on GC spectra 

(Fig. S13) and MS confirmation (Table S2), which is discussed in detail in 

Supplementary data. It is also found that the proposed 4-CP degradation pathway is 

similar to that for photocatalysis by TiO2 or other oxidation processes reported 

previously [19, 56-58]. 

Fig. 8 depicts the synergetic promotion effect and autosynchronous doping 

process for simultaneous removal of Cr(VI) and 4-CP. TNS is a composite material 

with combined crystalline phases of anatase and titanate. Under light irradiation, TNS 

(mainly the anatase phase) generates a conduction band (e-) and a valance band (h+). 

Cr(VI) reduces to Cr(III) after acceptance of e- (Reaction 1), while oxidative 

degradation of 4-CP by ROS also occurs (Reaction 2) with the help of h+. Continuous 

consumption of electrons and holes for photocatalytic reduction and oxidation in the 

same system leads to efficient separation of the h+−e- pairs and thus a synergetic 

promotion effect occurs with coexistent Cr(VI) and 4-CP. Moreover, the 

photo-reduced Cr(III) can be immediately adsorbed and incorporated into titanate 

(Reaction 3), which is a autosynchronous promoted process that can enhance the 

photocatalytic activity of TNS through narrowing the band of the energy gap (from 

3.1 to 2.8 eV). An important finding is that both photo-reduction of Cr(VI) and 
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photo-degradation of 4-CP are greatly promoted in binary systems, due to the dual 

mechanisms of synergic promotion and autosynchronous doping.  

[Fig. 8] 

3.6 Reuse of TNS 

After photocatalysis, we carried out a two-step procedure to regenerate TNS, 

following our previous studies [18, 59]. Adsorbed Cr(III) was desorbed from TNS 

through 0.5 M HNO3 treatment, while adsorption sites (−ONa groups) were restored 

through further 0.5 M NaOH treatment. The regenerated material was reused for 

photocatalytic removal of coexisting Cr(VI) and 4-CP over 5 cycles in total, and 

results are shown in Fig. 9. TNS demonstrated good reusability potential, with the 

removal efficiency of total Cr and Cr(VI) could still reaching 97.8% by 210 min 

photocatalysis after the beginning of each reuse cycle, even at the 5th cycle, and no 

Cr(III) was detected in the solution. Similarly, the removal efficiency of 4-CP was as 

high as 99.3% in the 5th cycle. It should also be noted that titanate nanomaterials can 

be easily separated from solution due to their heterogeneous structure/composition 

compared to nano-TiO2 [60]. The simple regeneration procedure and good reusability 

of TNS make it a promising material for environmental remediation, especially in the 

treatment of complex contaminants involving the co-existence of heavy metals and 

organic pollutants.  

[Fig. 9] 

4. Conclusions 

An anatase/titanate nanosheet composite material was synthesized through a 
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facile one-step hydrothermal treatment and used to simultaneously remove Cr(VI) and 

4-CP from waters, and the main conclusions are summarized as: 

(1) The prepared TNS is a composite material involving anatase attached onto 

titanate, of which titanate is the main adsorption site while anatase acts as primary the 

photocatalytic center. 

(2) TNS exhibited high capacity for the adsorption of cationic Cr(III), but was 

ineffective at capturing anionic Cr(VI) and molecular 4-CP. While upon 

photocatalysis, Cr(VI) was reduced by 97.2% at pH 7, and the formed Cr(III) was 

simultaneously adsorbed onto TNS. Moreover, >99% of 4-CP was photo-degraded by 

TNS at pH 5−9.  

(3) In a binary photocatalysis system with co-existent of Cr(III) and 4-CP, the 

removal efficiencies of both contaminants were enhanced compared to those achieved 

in single systems under the same conditions, with the apparent rate constant (k1) for 

photocatalysis removal of Cr(VI) and 4-CP increasing by factors of about 3.1 and 2.6, 

respectively.  

(4) Mechanisms for enhanced removal efficiency with co-existent Cr(III) and 

4-CP are attributed to synergetic photocatalysis and autosynchronous doping. The 

combination of photo-reduction of Cr(VI) by electrons and photo-degradation of 4-CP 

by holes causes efficient separation of electron-hole pairs. Moreover, adsorption of 

Cr(III) by TNS leads to narrowed energy band gap and enhanced photocatalytic 

activity of the materials.  

(5) TNS could be efficiently reused for photocatalytic removal of Cr(VI) and 
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4-CP, as 97.8% and 99.3% removal efficiencies of the two pollutants were achieved 

even after 5 cycles, respectively.  
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Figures 

 

 

Fig. 1. TEM images of (a) TNS and HRTEM of (b) titanate and (c) anatase in TNS. 
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Fig. 2. XRD patterns of nano-TiO2 and TNS. 
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Fig. 3. Adsorption capacity at equilibrium of Cr(VI), Cr(III) and 4-CP by TNS as pH 

varies from 2 to 9. (Experimental conditions: initial Cr and 4-chorophenol = 5 mg/L, 

TNS dosage = 0.5 g/L, temperature = 25±2 C). 
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Fig. 4. Variation of Cr(total), Cr(VI) and Cr(III) with irradiation time during the 

photocatalysis process at pH = 5, 7 and 9. (Experimental conditions: initial Cr(VI) = 5 

mg/L, TNS dosage = 0.5 g/L, temperature = 25±2 C). 
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Fig. 5. Variation of 4-CP with irradiation time during the photocatalysis process at pH 

= 5, 7 and 9. (Experimental conditions: initial 4-CP = 5 mg/L, TNS dosage = 0.5 g/L, 

temperature = 25±2 C). 
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Fig. 6. Variation of Cr(total), Cr(VI), Cr(III) and 4-CP in binary systems with 

irradiation time: (a) photocatalysis of by TNS; and (b) first-order kinetic model fits to 

time-dependent photocatalysis of Cr(VI) and 4-CP. (Experimental conditions: initial 

Cr(VI) and 4-CP = 5 mg/L, TNS dosage = 0.5 g/L, solution pH = 7, temperature 

=25±2 C).   
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Fig. 7. Absorbance UV-vis diffuse reflectance spectra (DRS) of TNS before and after 

Cr(III) is introduced. 
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Fig. 8. Schematic diagram for synergetic promotion and autosynchronous doping in 

photocatalysis. 
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Fig. 9. Reuse of TNS for photocatalytic removal of Cr(VI) and 4-CP in the binary 

system over 5 cycles. (Experimental conditions: initial Cr(VI) and 4-CP = 5 mg/L, 

TNS dosage = 0.5 g/L, solution pH =7, temperature =25±2 C). 
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Table legend 

Table 1. Parameters of first-order kinetic model for photocatalytic removal of Cr(VI) 

and 4-CP for various pH values. 

System pH 
First-order model 

k1 (min-1) R2 

Single Cr(VI) 5 0.0240 0.9944 

 
7 0.0164 0.9903 

 
9 0.0087 0.9941 

Single 4-CP 5 0.0221 0.9917 

 
7 0.0289 0.9970 

 
9 0.0399 0.9975 

Binary Cr(VI) 7 0.0502 0.9756 

Binary 4-CP 7 0.0737 0.9854 

 


