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Property trends in simple metals: An empirical potential approach
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(Received 25 January 2016; revised manuscript received 8 April 2016; published 2 May 2016)

We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be
calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the
alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal
stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and
liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement
is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also
reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties
are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple
potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating
trends in behavior, we expect that the potentials will be of broad general use.

DOI: 10.1103/PhysRevB.93.184101

I. INTRODUCTION

The thermodynamic properties of group-1A metals vary
systematically down the group. Cohesive energies and elastic
constants decrease from Li-Cs, while lattice parameters
increase. This makes them an ideal test ground for testing
thermodynamic relationships between solid properties and
melting points.

Melting points are impossible to calculate analytically,
and it is well known that different parametrizations of metal
potentials can give very different results for calculated melting
points. Thus to examine trends down a group, we require an
analytic description of interatomic interactions. This means
creating an interatomic potential fully specified by a small
number of materials properties.

We wish to derive a family of interatomic potentials
describing the alkali metals which can be used in classical
molecular dynamics. To ensure comparability, we aim
for a form with a minimal number of parameters, fully
determined by the fitting data. We choose to use the simplest
form which describes many-body metallic interactions, the
second-moment approximation to tight binding [1,2]. The
motivation for this theory comes from the idea of a local density
of states projected onto an atom, but the actual potentials are
similar in form to the embedded atom method [3] (EAM). This
is based on the conceptual idea of embedding an atom into a
preexisting charge density and calculating the energy change.

In either case the energy is written as

U =
∑

i

F (ρi) + 1

2

∑

i,j �=i

Vij (rij ), (1)

with

ρi =
∑

j �=i

φij (rij ). (2)

For elements where binding comes from a single band, the
second-moment approach to second-moment potentials gives
F = √, although for materials where binding comes from
two bands this is more complicated [4,5]. For alloys, another

subtle difference arises. In EAM φij is interpreted as the charge
density due to atom j , such that φij = φj �= φji , while in
the tight-binding picture it represents a hopping integral, and
φij = φji .

The second-moment approximation does not account
for the shape or filling of the band; this is implicit in the
parametrization. Consequently, to examine trends in behavior,
we should consider materials with similar band shapes and
band fillings. It appears that the alkali metals provide an ideal
case where this will work well: they have simple half-filled
s-band binding and minimal s-d and s-p hybridization.

Parameterization of potential models can follow two paths:
maximal or minimum fitting parameters. In the first case, one
tries to achieve the most highly tuned potential by fitting to
as many known properties as possible. This gives the best
possible description of a particular material. In the second,
used here, one uses a minimal set of fitting data. Such potentials
may not reproduce materials’ properties as successfully, but
if they do for a whole group of materials, this successful
reproduction demonstrates transferability due to the physics
and a physical connection between the fitted and unfitted
properties. Furthermore, simple potentials should be treated
as a null hypothesis, and a systematic failure to predict
properties indicates missing physics, even if the properties
can be reproduced by judicious fitting. For example, we see
later that neglect of zero-point effects in lithium increases the
calculated melting point.

Our main aim is to ensure comparability between the
metals, rather than transferability of a particular potential.
Consequently, we consciously eschew approaches such as
modified embedded atom method [6], the two band model [4],
and response embedded atom method [7], which have added
complexity which gives the possibility to fit more closely to
experimental data. We also avoid overconstrained data fitting,
which would allow tuning to a particular element [8]. Without
doubt, additional fitting parameters could be used to “tune”
melting points, phase transitions, or other properties of interest,
but our interest here is the intrinsic transferability of the
potentials.
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II. CALCULATIONS

A. Alkali metals and periodicity

The alkali metals comprise the group-I elements excluding
hydrogen. They are particularly soft metals with low melting
points, and all adopt a bcc crystal structure at standard
temperature and pressure. Their bcc lattice parameters are
notably large, resulting in low densities and high compress-
ibilities. Being group-I elements, they have a [noble gas] +ns1

electronic structure and have been studied extensively as a test
of theories of “simple” metals.

The solid-liquid phase transition in various metals has
been studied using both classical and quantum-mechanical
methods and with both Monte Carlo and molecular dynamics
approaches. Many-body potentials for one-off alkali metals
have been created before [9–12], but they have problems with
crystal stability and have not yet been applied by other groups.
Typical discrepancies between experimental and simulated
melting points are on the order of hundreds of degrees [13].

The functions φ and V were defined as cubic splines, F is
given by its Finnis-Sinclair [2] form (F = ρ1/2), and

V (r) =
6∑

k=1

ak(rk − r)3H (rk − r), (3)

φ(r) =
2∑

k=1

Ak(Rk − r)3H (Rk − r), (4)

where H (x) is the Heaviside step function: H (x) = 0 for x < 0
and H (x) = 1 for x > 0.

The spline knot points (rk and Rk) are not treated as
adjustable parameters; their values were taken from previous
work [14], scaled by the lattice parameter to give a potential

TABLE I. Fitting data: bcc lattice parameter (Å), elastic constants
(eV/Å3), cohesive energy, unrelaxed vacancy formation energy, and
fcc energy per atom (eV) above the bcc value. For sodium the low-
temperature ground state is actually fcc, and for lithium it is reported
to be a 9R complex close-packed structure; however, bcc is stable at
room temperature, and we fit to the bcc properties.

Element a0 C11 C12 C44 Ecoh Evac Ef cc

Li 3.51 0.092 0.078 0.067 1.648 0.54 − 0.006
Na 4.2906 0.0512 0.0418 0.0345 1.109 0.35 − 0.003
K 5.328 0.0260 0.0213 0.0179 0.923 0.308 +0.001
Rb 5.585 0.0213 0.0179 0.0138 0.840 0.28 +0.012
Cs 6.141 0.0162 0.0135 0.00999 0.788 0.263 +0.016

extending to second neighbors. The seven parameters ak and
Ak were chosen to exactly fit target values for cohesive
energy, the lattice constant, three elastic constants, unrelaxed
vacancy formation energy, and the fcc-bcc energy difference
(Table I). These properties are independent of the final
parameter a6, which controls the short-range repulsion inside
the perfect crystal nearest-neighbor distance. This was set to a
constant value across all potentials, scaled by the cubed lattice
parameter. The rk parameters were set to be the same for all
elements, as a fraction of the lattice parameter (see Table II).

It can be noticed that all energies and elastic moduli
systematically decrease down the period by factors of about
2 and 6, respectively. However, the reduction in the elastic
moduli is almost entirely due to the increased lattice parameter:
the elastic moduli in units of eV per unit cell volume are
remarkably constant.

TABLE II. Tabulated parameters for the alkali-metal potentials. For ease of comparison, values are scaled by the lattice parameter (l.p.),
such that the units are eV per lattice parameter cubed. This enables us to use consistent values for Ri and ri , enhancing comparability of the
potentials.

Li k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

ak − 9.741070 52.683696 − 75.033831 39.542714 − 14.782577 3.079201
Ak 20.537818 − 34.233934
l.p. 3.510000

Na
ak − 4.194182 27.427457 − 44.559331 31.771667 − 15.792378 3.079201
Ak 8.719427 − 13.899855
l.p. 4.290600

K
ak − 1.723040 5.203775 4.914958 − 21.814488 20.037488 3.079201
Ak 5.438419 − 8.619811
l.p. 5.328000

Rb
ak − 2.924102 15.101598 − 19.036044 8.221297 1.000245 3.079201
Ak 4.151321 − 6.163082
l.p. 5.585000

Cs
ak − 2.184268 9.803950 − 8.445145 − 2.009154 8.266863 3.079201
Ak 3.415288 − 4.866591
l.p. 6.141000

rk 1.3 1.22 1.15 1.06 0.95
√

3/4
Rk 1.3 1.2
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FIG. 1. Effective pairwise potentials (Table III) showing trends
down the group.

The square-root dependence appears to make the fitting
nonlinear; however, this nonlinearity can be transferred from
the fitting to the data being fitted. Specifically, the many-body
term’s parameters Ak can be fully determined by a linear fit to
two quantities which are explicitly zero for any pair potential,
i.e., (i) the difference between vacancy formation energy and
cohesive energy (Ecoh − Evac) and (ii) the Cauchy pressure
C12 − C44.

The pair-potential parameters ai can then be determined
by a linear fit to the difference between the required property
and the contribution from the many-body term. The lattice
parameter is fitted by setting the derivative of the energy to
zero at the required value. The fitting problem is then reduced
to a simple 7 × 7 matrix problem.

We also attempted the fit using a genetic algorithm [15],
which converged immediately for the linearly transformed
problem but failed to find the known solution within required
several weeks of CPU time when fitting the seven pieces of
data directly. The algorithm got “stuck” in many local minima,
all of which are eliminated by transforming the fitting problem
to linear algebra.

For a meaningful comparison, it is useful that the linear fit
for all potentials gives a broadly similar solution: parameters
are given in Table II. The best way to visualize these
potentials is the “effective pair potential,” which incorporates
both attractive and repulsive parts, approximating ρ by its

TABLE III. Tabulated results for the alkali-metal potentials.
Shown are the experimental and simulated melting points, as well
as the specific enthalpy and volume differences between the solid and
liquid phases at the coexistence temperature.

Element T exp
m (K) T sim

m (K) � h (kJ mol−1) � v (mL mol−1)

Li 454 660(2) 44.38(1) 0.0301(2)
Na 370 411(2) 3.51(2) 0.223(3)
K 336 344(2) 2.99(2) 0.211(1)
Rb 312 333(2) 2.70(2) 1.385(1)
Cs 301 305(2) 2.60(2) 1.957(1)

equilibrium value at the minimum bcc energy ρ0.

Veff(r) = V (r) + φ(r)/ρ0. (5)

These functions Veff(r) are shown in Fig. 1. Several trends
are notable here, the most obvious being the range and depth of
the potentials. More subtle is the development of a secondary
minimum in Li, Na, and K. Although the parametrization data
come from only bcc, this feature is ultimately responsible for
the stability of fcc in Li and Na at low temperature and K at high
pressure. The existence of such a minimum is not explicit in the
second-moment approach. If it appeared for a single material,
we might have dismissed it as a fitting anomaly. However,
it is tempting to speculate that it arises from a mismatch
between the optimal electron density and the first minimum in
the screened electrostatic potential. The latter emerges from
the free-electron theory, with the oscillations ultimately being
related to the Fermi wave vector [16].

B. Simulating phase transitions

To calculate the melting point, we employ the coexistence
method [17] in which preformed samples of the two phases
are brought together and allowed to equilibrate. A solid-liquid
interface is present at the start of the simulation, and the particle
velocities are initialized to approximate the anticipated coex-
istence temperature. The total enthalpy of the system is held
constant, in an isoenthalpic–isobaric-zero-momentum ensem-
ble (NPHp), so that if the initial temperature is below (above)
Tm, the phase boundary will move, and some of the sample will
freeze (melt). The “ringing mode” is eliminated in an initial
equilibration phase by setting the first time derivatives of the
Nose and Parrinello-Rahman extended Lagrangian parameters
to zero whenever their sign differs from the second derivative.
This algorithm does not correspond to any Lagrangian but very
efficiently removes energy from ringing modes. After a short
equilibration period, when the energy in the fictitious dynamic
modes approaches kBT , we continue production runs with the
standard NPHp Lagrangian. This process proved necessary
because of the poor coupling between the fictitious degrees of
freedom and the rest of the system. We note that the same ring-
ing behavior is present in the microcanonical ensemble (NVE),
manifesting itself as an oscillation in the internal pressure.

On a time scale much longer than the ringing-mode equili-
bration, the latent heat released during the transition increases
(decreases) the temperature of the sample until it reaches Tm.
We used a supercell with 17 576 atoms (initialized with 8788
atoms arranged in a bcc structure, 13 × 13 × 26, and a 8788
atoms arranged in a liquid structure, as determined in a previ-
ous MD calculation). Convergence was checked by comparing
several runs initializing the temperature above and below
the expected melting point and observing that in each case
the simulation went to the same final temperature. The final
configurations were visualized using VMD [18] to verify that
both crystal and solid phases were still present (Fig. 2, inset).

All calculations reported here were carried out using the
MOLDY molecular dynamics package [19]. The potentials were
also converted to LAMMPS format [20] and are available in the
NIST potential database [21]. These versions have adjustments
at very short range to fit to the Biersack-Ziegler [22] functions

184101-3
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FIG. 2. Temperature evolution of coexisting crystalline and liquid
K in the NPHp ensemble. Simulations had temperatures initialized
above or below. After relaxation all systems equilibrated to a single
coexistence temperature. The inset is a snapshot of the simulation,
with the periodic boundary conditions removed in the graphics to
show the two distinct phases. Similar behavior was observed for
other elements

which are popular in radiation damage studies but give
identical results for the problems considered here.

Figure 2 shows the changes in temperature for three
constant-energy simulations of a potassium supercell. Con-
vergence times depend primarily on the atomic mass and on
the system size and were typically on the order of hundreds
of picoseconds. The thermal expansion of the materials
was also calculated by constant-pressure heating simulations
(Fig. 3). Thermal expansion depends on third derivatives of
the potentials, which are not fitted; nevertheless, both the
values and trends across the group are in good agreement with
experiment. There is a weak temperature dependence, and in
the absence of quantization of the phonons, calculated thermal
expansions remain finite to 0 K. The heating calculations also
showed melting transitions in all elements and a martensitic
transformation to a faulted close-packed structure at low T in
Li and Na, also in accord with experiment. We observe that
although this is an excellent test of phase stability, “heat until
it transforms” is not a reliable way to determine transition
temperatures.

C. Phase coexistence lines at pressure

In order to generate coexistence lines on the PT phase
diagram of the alkali metals the Clausius-Clapeyron equation
was integrated using a fourth-order predictor-corrector algo-
rithm. The coexistence conditions (P , T ) were extrapolated
over a range of several hundred degrees in intervals of 0.01 K.
Figure 4 shows the results for sodium, with other results being
similar.

At high pressure, the alkali metals are known to exhibit a
maximum in the melting curve. It is striking that none of the
potentials presented here exhibit this feature: this tells us that
physics beyond that sampled in the ambient pressure state,
where the fitting was done, will be required. Another high-
pressure phenomenon, transformation to fcc, was observed in

FIG. 3. Volume against temperature for steady heating in NPT

molecular dynamics. Volumes are scaled to their low-T bcc value
to show trends in thermal expansion across the group, from lowest
to highest, Li (red), Na (green), K (blue), Rb (black), and Cs
(brown). The heating rate was 1 K per 4000 time steps, with the
time step varying with the atomic mass from 0.1 fs for Li to 1
fs for Cs. Ringing-mode volume oscillations come from the Nose
thermostat and Parrinello-Rahman barostat and persist for hundreds
of picoseconds. Sharp rises in volume around 400 K for Cs, Rb,
and K indicate melting, although hysteresis means this is not the
thermodynamic melting point. The large oscillations for Li show the
immediate transformation to close packing at low T . The two changes
in slope for Na come from the (metastable) bcc-fcc transition at about
100 K and the subsequent fcc-bcc retransformation around 200 K.

all the potentials, as a consequence of the lower bulk modulus
and higher packing density under pressure. In Na and Li, there
is a martensitic transition to a complex close-packed structure
at low temperatures [23,24].

FIG. 4. Coexistence line for Na integrated from a single simula-
tion at P = 0.0 using the Clausius-Clapeyron equation. Solid line:
Best estimate based on the specific enthalpy and volume differences
between the solid and liquid at the zero-pressure melting point of
405 K. Dashed lines: 67% confidence intervals based on the relative
errors in the initial slope.
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FIG. 5. Phonon spectra calculated using lattice dynamics in lithium in bcc (left, fitted) and fcc (right).

D. Phonons

Phonon spectra can be calculated by lattice dynamics
using the analytic second derivatives of the potential. For
bcc, the symmetry constraints and fit to elastic constants
mean that agreement with experiment is exact for the slope
at the � point, so the general similarity with neutron data is
unsurprising, and trends across the group can be readily seen.
It is notable that Li and Na, which are unstable with respect
to fcc at low temperature, have stable bcc phonon spectra,
unlike other elements such as Ti and Zr, which are calculated
to have negative bcc shear moduli at 0 K [13,25,26] and
transform to bcc at high temperatures due to soft T1N modes.
Figures 5 and 6 show phonon spectra for Li and Cs, with
other elements being similar (Supplemental Figure 3 [27]).
The stable phases have real phonons throughout, but notably,
fcc Cs is mechanically unstable with imaginary phonon
modes along �-L. At higher pressures when Cs becomes
thermodynamically stable, all phonons are stable.

It is also noticeable that the phonon frequencies are higher
in fcc than in bcc. This has the effect of stabilizing the bcc
phase at higher temperatures. It is notable that this feature
is present in all cases, despite the properties of fcc elements
being excluded from the fitting process.

Coexistence lines for the remaining alkali metals are shown
in the Supplemental Material.

E. Parameter sensitivity

Our fitting process is fully defined; however, there are
uncertainties in the quantities being fitted. We tested the
melting points against variation of the fitting parameters for
lithium, and it proved to be remarkably robust except with
respect to the short-range part of the repulsion (parameter
a6), which is uncorrelated with the fitting data and chosen to
match smoothly to the Biersack-Ziegler [22] functions. Stiffer
short-range repulsion correlates to a higher melting point (and
thermal expansion). We speculate that this is because the steep
repulsion reduces the available phase space for the liquid state
by more than the solid state, reducing its relative entropic
advantage. It is possible to lower the melting point by up to
100 K before other unreasonable behavior appears, notably
that the liquid density becomes lower than the solid density
and the thermal expansivity becomes negative.

The very good agreement elsewhere suggests that for
lithium our model is missing some physics. A reasonable
candidate is the nuclear quantum effects, which are espe-
cially important for low-mass effects. The classical molecular
dynamics does not include the zero-point energy (ZPE) of
lithium, which we calculated in our lattice dynamics and
by using the CASTEP density functional package [28] to be
around 39 meV/atom, corresponding to a Debye temperature
of around 450 K, somewhat higher than the value in a previous
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FIG. 6. Phonon spectra calculated using lattice dynamics in Cs bcc (left, as fitted) and fcc (right, unstable phase).
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study [29]. ZPE dominates the vibrational contribution to the
free energy below the Debye temperature, which in lithium is
close to the melting point. The effect on the melting point is
that the quantum vibrational entropy is about half the classical
value and must therefore be assumed to be significant. The
solid-lithium ZPE is also significantly larger than the latent
heat of melting (13 meV/atom), which indicates that the liquid
ZPE is also significant.

An accurate assessment of nuclear quantum effects on the
melting point would require evaluating the ZPE for the liquid,
for which there is no suitable theory. Qualitatively, we can
expect that the zero-point energy of the solid will be greater
than that of the liquid since the liquid has no resistance to
shear. Consequently, nuclear quantum effects will destabilize
the solid compared to the liquid, lowering the melting point.
This is consistent with our observation that our calculated
classical melting point is too high.

III. DISCUSSION AND CONCLUSIONS

We have derived a series of analytic many-body interatomic
potentials which describe the simple metals. Although the
potentials are fitted only to crystal properties, they give a good
description of the melting point with the notable exception of
lithium, which we ascribe to nuclear quantum effects ignored
in our molecular dynamics.

The potentials are fitted to fcc and bcc energy at 0 K
and to properties of bcc at ambient conditions. Consequently,
the transition into a higher-temperature bcc state in Li and
Rb is a successful prediction. It is due to the lower phonon
frequencies in bcc: the only contributory factor which was
fitted is the bcc elasticity tensor. Heuristically, the fcc stability
can be attributed to the appearance of a secondary minimum
in the effective potential, which is more pronounced in the
lower-Z elements. This minimum is not an input to the theory;
it emerges from the fitting process, implying that its existence
manifests in some feature of the fitted bcc elasticity.

Overall, this work shows that a number of trends can be
deduced from minimal fitted data. Essentially, the input is that
energies and elastic moduli are lower for higher-Z elements,
while lattice parameters are larger. From this we deduce that
the thermal expansion and volume change on melting increases
down the group, while the melting point is reduced.

Open data analysis code and Coordinates for the figures are
available at Ref. [30].
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