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ABSTRACT 46 

 47 

Amyloid-beta (Aβ) peptide oligomerization plays a central role in the pathogenesis of 48 

Alzheimer’s disease (AD) and Aβ oligomers are collectively considered an appealing 49 

therapeutic target for the treatment of AD. However, the molecular mechanisms leading to 50 

the pathological accumulation of oligomers are unclear and the exact structural composition 51 

of oligomers is being debated. Using targeted and quantitative mass spectrometry, we reveal 52 

site-specific Aβ autocleavage during the early phase of aggregation, producing a typical Aβ 53 

fragment signature and that truncated Aβ peptides can form stable oligomeric complexes with 54 

full-length Aβ peptide. We show that the use of novel anti-Aβ antibodies raised against these 55 

truncated Aβ isoforms allows for monitoring and targeting the accumulation of truncated Aβ 56 

fragments. Antibody-enabled screening of transgenic models of AD, as well as human post-57 

mortem brain tissue and cerebrospinal fluid revealed that, aggregation-associated Aβ 58 

cleavage is a highly relevant clinical feature of AD. 59 

 60 
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1. INTRODUCTION 61 

 62 

Alzheimer disease (AD) is a progressive neurodegenerative disorder that is manifested as 63 

a gradual decline in memory and cognitive function. A number of studies indicate that 64 

soluble oligomers might account for the AD-associated decline in synaptic plasticity [1, 2] 65 

and that inhibition of natural Aβ oligomerization rescues deficits in long-term potentiation 66 

(LTP) [3]. Several types of Aβ assemblies of dimeric and trimeric [4] [1] [2] or dodecameric 67 

(Aβ* 56) [5] nature have been observed in vitro and in vivo in transgenic mouse models, 68 

human cerebrospinal fluid (CSF) [6], and post-mortem AD brain extracts [7] [8], with the 69 

higher molecular weight species being considered the main neurotoxic culprit associated with 70 

cognitive dysfunction. Collectively Aβ oligomers can be considered as an appealing 71 

diagnostic and therapeutic target. However, the general morphological heterogeneity and, to 72 

some extent, metastable structure renders an antibody based targeting and detection of 73 

oligomers difficult. Therefore, the development of specific anti-oligomeric based therapeutics 74 

remains challenging. 75 

Cerebrospinal fluid (CSF) analyses from AD patients indicate that the presence of Aβ 76 

oligomers correlates with a concomitant decrease in Aβ42 levels. CSF levels of total and 77 

phosphorylated Tau protein [9], tissue transglutaminase (tTGase) [10], ubiquitin [11], Aβ 78 

oligomers [12] as well as changes in Aβ1-42 concentration, together with the presence of 79 

particular Aβ truncations [13] have been collectively suggested as useful biomarkers in AD.  80 

Previously, mass spectrometry (MS) based analysis of CSF revealed a specific Aβ peptide 81 

fragment signature in sporadic AD patients [14-16] and it has been reported that truncated Aβ 82 

is known to represent more than 60% of all Aβ species found in non-demented as well as in 83 

AD individuals [17]. These findings may suggest that Aβ oligomers could consist of a 84 

heterogeneous morphological entity of full-length Aβ40 and Aβ42 as well as truncated Aβ 85 
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isoforms, of which the latter may serve as an important molecular seed during peptide 86 

aggregation [18]. Similarly, a recent report showed that the aqueous phase of human AD 87 

brain extracts contained SDS-stable Aβ species of a molecular weight range of 6-7kDa and 88 

that these Aβ species may form part of larger Aβ aggregates [19]. 89 

In this work we sought to identify a “molecular crosstalk” during the lag phase of Aβ 90 

peptide aggregation that typically precedes the pathological accumulation of neurotoxic 91 

oligomers. Here, we have identified site specific autocleavage of Aβ peptide and report a 92 

typical peptide fragment fingerprint, which may be associated with the early nucleation 93 

process of Aβ aggregation. Using targeted and quantitative MS, we reveal a highly 94 

reproducible Aβ fragment signature with a significant abundance of C-terminal peptide 95 

amidation. Moreover, we show that these truncated Aβ peptides have a particularly high 96 

propensity in forming SDS-stable low molecular weight oligomers of dimeric and trimeric 97 

nature. These findings have enabled us to develop novel neo-epitope antibodies that 98 

selectively bind to the gradual accumulation of truncated Aβ isoforms during the early phase 99 

of peptide aggregation. Our targeted analysis of human brain tissue extracts and CSF 100 

revealed that Aβ cleavage within the peptide’s β-turn region is a highly relevant feature 101 

observed in AD.  102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 
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2. METHODS 111 

2.1 Aβ peptide preparation.  112 

Full-length wild type (wt) Aβ peptides Aβ1-40, arctic mutant Aβ1-40 (Arc) and Aβ1-42 113 

Aβ (Dr. James I. Elliott, Yale University, USA) were dissolved in 1,1,1,3,3,3-Hexafluoro-2-114 

propanol (HFIP) at a concentration of 1mg/ml, followed by a 10-min sonication to break any 115 

preformed aggregates. HFIP solution was evaporated under a ventilated fume hood by 116 

applying a light stream of N2 gas. The HFIP film containing the Aβ peptide was either 117 

directly re-suspended in 100% DMSO and further diluted to 1% DMSO in a new buffer or 118 

stored dry at −20 °C until use. Aβ peptide fragments comprising of residues: 1-15, 1-22, 1-23, 119 

1-24-NH2, 1-25, 1-25-NH2, 26-40, 24-40, (purity of ≥ 97%) were purchased from GenicBio 120 

Ltd. (Shanghai, China). Aβ peptide concentrations were determined by UV absorbance using 121 

the peptide’s molar extinction coefficient at 280nm.   122 

2.2 Size Exclusion Chromatography of Aβ42 ADDLs and transgenic mouse brain tissue 123 

extracts.  124 

Size exclusion chromatography (SEC) fractionation was carried out using an ÄKTA 125 

Explorer FPLC (GE Healthcare) placed inside a cold (4 °C) chamber. A Superdex 200 126 

10/300 GL column (GE Healthcare) was used and samples were eluted with either 25 mM 127 

ammonium acetate (pH 8.5) or a Superdex 75 10/300GL with 20mM Tris 20mM NaCl 128 

(pH7,5) (for aggregated Aβ1-25), at a flow rate of 0.5 ml/min. Prior to injection, samples 129 

were centrifuged at 4°C 16,000 × g for 20 min and 0.5ml of sample supernatant was injected 130 

onto the column. Aggregated Aβ1-25 peptide was filtered using 0.22µm filter devices prior to 131 

injection to prevent from injecting any large, fibrillary aggregates. Peptide elution was 132 

detected by absorbance at 280 nm, 275nm and 215nm and 0.5 ml fraction volumes were 133 
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collected. Eluted fractions were either used immediately or aliquoted (50ul) and stored at -134 

80°C. Where indicated, samples volumes were concentrated approximately 10x in a speed 135 

vacuum. 136 

2.3 Matrix assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry 137 

(MALDI TOF/TOF).  138 

Aliquots (2 μl) of samples were used for MALDI-TOF/TOF MS (ABI 4800 model, 139 

Applied Biosystems) measurements. Matrix solution of α-cyano-4-hydroxycinnamic acid (7 140 

mg/ml in ACN/0.1% TFA (1:1, v/v)) was used for sample deposition. The sample (1 μl) was 141 

mixed with 1 μl of matrix solution and then 1 μl of this mixture was deposited in duplicates 142 

on the target plate and allowed to air dry. Samples were analyzed in reflectron positive mode. 143 

 144 

2.4 Digestion of Aβ peptides.  145 

Proteolytic digestion using LysN (2ng/ul) was performed overnight at 37 °C in 50 mM 146 

ammonium bicarbonate, pH 10 (LysN buffer). For in-gel digestions, coomassie stained gel 147 

bands were cut at the migration level of LMW Aβ oligomers (range: 6kDa - 14kDa) as 148 

revealed by their immunoreactive bands in WB. Gel bands were destained and dried in a 149 

speed vacuum prior to resuspension in Lys-N buffer containing 2ng/ul Lys-N protease 150 

followed by overnight digestion at 37°C. Following digestion, the solution was recovered and 151 

pooled with the peptides extracted from gels and concentrated by speed vacuum prior to LC-152 

MS measurements. Immunoprecipitated samples (IP), were reduced and alkylated followed 153 

by in-solution digestion at 37°C using standard LysN buffer (50ul) and approximately 70ng 154 

of LysN. Dried samples were resuspended in 10% DMSO and 5% FA as described below, 155 

followed by LC-MS/MS or LC-SRM analysis. 156 
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2.5 Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS).  157 

For high resolution LC-MS/MS analysis, peptides were resuspended in 2% ACN, 0.1% 158 

FA and separated by reversed-phase chromatography on a Dionex Ultimate 3000 RSLC 159 

nanoUPLC system connected in-line with an Orbitrap Elite (Thermo Fischer Scientific, 160 

Waltham, MA, USA). The instrument was operated in an information-dependent mode where 161 

peptide masses for light and heavy lysine (K) labelled fragments Aβ16-23, Aβ16-24-NH2, 162 

Aβ16-25 and Aβ16-27 (purchased from Sigma Aldrich, Germany) were selected for 163 

collision-induced dissociation (CID) to generate tandem mass spectra using a normalized 164 

collision energy (CE) of 35. Samples were first captured on a homemade capillary pre-165 

column (Magic C18; 3 μm-200Å; 2 cm × 100 μm) prior to analytical separation. A 80-min 166 

biphasic gradient was run starting from 100% A solvent (2% acetonitrile, 0.1% formic acid) 167 

to 90% B solvent (100% acetonitrile, 0.1% formic acid) on capillary column (Nikkyo C18; 3 168 

μm-100 Å; 15 cm × 75μm inner diameter at 250 nl/min).  169 

2.6 Quantitation of Aβ peptide fragments using Selected Reaction Monitoring (SRM) 170 

mass spectrometry.  171 

All samples were analysed on a TSQ-Vantage triple quadrupole mass spectrometer 172 

(Thermo Fisher Scientific). A 0.7-FWHM-resolution window for both Q1 and Q3 was set for 173 

parent- and product-ion isolation. Fragmentation of parent ions was performed in Q2 at 1.5 174 

mTorr, using collision energies calculated with the Pinpoint software (v1.1). Cycle times of 175 

0.5s-1s were used for SRM runs with a minimum dwell time of 20ms.  176 

Parent-ion selection was set for Lys-N digested peptides on the positively-charged parent 177 

ions. CID fragmentation energies and the best transition selection were tested manually by 178 

infusion on the TSQ using the synthetic peptide standards listed below. Mouse or human 179 
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brain and CSF samples were extracted and prepared for digestion as outlined below. 180 

Following overnight digestion at 37°C, samples were dried using a speed vacuum and stored 181 

at −20°C until analyses were performed. For Aβ peptide quantitation studies, a mixture of 182 

accurately quantified (by amino acid analysis) heavy isotope (lysine, K) labelled peptide 183 

standards (Sigma Aldrich, Germany) comprising of residues: Aβ16-23, Aβ16-25, Aβ16-27, 184 

Aβ28-38, Aβ28-40, Aβ28-42 and Aβ28-43, were spiked into each tube after resuspension of 185 

samples in the Lys-N digestion buffer. Aβ peptide fragments were initially resuspended in a 186 

solution containing 20% DMSO & 10% formic acid (FA) and further diluted to 5% DMSO & 187 

2.5% FA prior to injection and analysis by LC-SRM. This solution provided maximum long-188 

term stability of all peptide standards. Nano-LC-SRM parameters: Dried peptide aliquots 189 

were resuspended in 20μl DMSO (10%) with 5% FA. This preparation provided peptide 190 

solubility over two weeks without any significant changes in overall peptide recovery. 191 

Following resuspension, samples were briefly sonicated (3min) and allowed to settle for 1h to 192 

increase overall peptide solubility before analysis. Typically, 5μl of sample was loaded and 193 

captured on a homemade capillary precolumn (C18; 3 μm, 200 Å; 2 cm × 250 μm) before 194 

analytical LC separation (ACQUITY UPLC, Waters). Samples were separated using a 60min 195 

biphasic gradient starting from 100% solvent A (100% acetonitrile, 0.1% formic acid) to 90% 196 

solvent B (100% acetonitrile, 0.1% formic acid) on a Nikkyo (Nikkyo Technology) nano-197 

column (C18; 3 μm, 100 Å; 150mm length and 100μm inner diameter; flow of 0.5μl/min). 198 

The gradient was followed by a wash for 8 min at 90% solvent B and column re-equilibration 199 

for 15 min at 100%. 200 

 201 

 202 

 203 
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2.7 SDS-PAGE and Immunoblotting.  204 

Dried amples were mixed using standard SDS Lämmli sample buffer, Novex SDS sample 205 

buffer and heated at 80°C for 5 min prior to loading onto gels. Three different commercially 206 

available gels were used in order to compare the migration behaviour of Aβ peptide 207 

fragments: Novex 16% Tris-Tricine gels, 1mm (Invitrogen), Biorad 10-20% Tricine gels 208 

(Biorad, Switzerland) and Novex Nupage 4-12% Bis-Tris gels, 1mm (Invitrogen), of which 209 

the latter type gels were used throughout the study. The following commercially available 210 

running buffers were used: Novex Nupage Mes-SDS buffer (Invitrogen), Novex Tricine-SDS 211 

buffer (Invitrogen) and Biorad Tricine buffer (Biorad, Switzerland). PAGE separated samples 212 

were electroblotted onto nitrocellulose (0.22µm) membranes using standard protocols as 213 

provided by the manufactures. Membranes were blocked for 1h at room temperature under 214 

constant rocking using Odyssey blocking buffer (Li-COR Biosciences, Bad Homburg, 215 

Germany) diluted 1:1 in PBS. Following blocking, membranes were incubated at 4 °C with 216 

constant rocking overnight using the primary rabbit polyconal neo-epitope antibodies N-5ns, 217 

N-5s, N-4, N-3s, D-4s, or D-6ns (0.28-0.5µg /ml), or the commercially available mouse 218 

monoclonal antibodies 6E10 and 4G8 (0.5µg /ml) (Enzo, Life Sciences, Switzerland). 219 

Membranes were washed four times with PBS-Tween (PBS containing 0.01% Tween 20), 220 

followed by incubation with a goat anti-rabbit or anti-mouse secondary IgG antibody (highly 221 

cross-adsorbed) (dilution, 1:5000) conjugated to Alexa Fluor 680 or 800 and scanned in a LI-222 

COR scanner at a wavelength of 700 nm and 800 nm respectively. 223 

 224 

 225 

 226 
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2.8 Dotblotting.  227 

Typically, 1ul samples were spotted onto a nitrocellulose membrane, which corresponded 228 

to a total peptide load of 100ng (Aβ1-40) and 50ng (Aβ1-42) unless otherwise stated in the 229 

figures. Samples were left to dry for 15min followed by blocking of the membrane (30min) 230 

with LICOR buffer. Membrane strips were incubated with primary antibodies either for 2hrs 231 

at room temperature or overnight at 4°C on a shaker. Identical solutions, antibody 232 

concentrations and revelation procedures with secondary antibodies were used as described 233 

for immunoblotting above. 234 

 235 

2.9 Generation of polyclonal antibodies. 236 

  Briefly, a hepta to deca peptide sequence corresponding to the target neo-epitope 237 

sequence of human Aβ peptide was conjugated to a KLH-linker and used for immunization 238 

of rabbits (e.g. Aβ1-25: C+GG-VFFAEDVG-COOH). Antibodies (Table 1) were raised in 239 

rabbits against a peptide identical to C-terminal residues Gly25 (N-5ns & N-5s), Asp23 (N-240 

3s), Val24-NH2 (N-4), or N-terminal residues Val24 (D-4) and Ser26 (D-6) of human Aβ 241 

peptide. All polyclonal antibodies were affinity-purified against the target Aβ neo-epitope 242 

sequence using the carboxy- and amidated C-terminal form of the peptide sequence. 243 

Antibody specificity and affinity was validated using direct ELISA with surface immobilized 244 

(cross-inked to BSA) Aβ peptide sequences of normal and amidated C-termimus. All neo-245 

epitope antibodies were prepared by Eurogentec SA, (Liege, Belgium). 246 

 247 

 248 

 249 

 250 
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2.10 In vitro Aβ peptide aggregation studies.  251 

HFIP (1,1,1,3,3,3-Hexafluoro-2-propanol) (Sigma-Aldrich, Switzerland) dried Aβ peptide 252 

films were solubilized in DMSO and further diluted with PBS (or 30mM Tris, 150mM NaCl)  253 

to a final concentration of 0.1mg/ml for Aβ1-40 and 0.05mg/ml for Aβ1-42. Samples were 254 

incubated at 37°C and left for spontaneous aggregation during either 0-20 hrs (short-term), 1-255 

5 days (intermediate) or 1-10 wk (long-term).  Aggregated sample aliquots were drawn at 256 

different time points and either analysed immediately using MS and/or DB or snap frozen in 257 

liquid nitrogen and stored at -80°C. Typically, one microliter was spotted onto a 258 

nitrocellulose membrane for dotblotting (50ng to100ng / spot) or mixed with alpha-cyano 259 

matrix for MALDI-TOF/TOF analysis. For heavy water (H2
18O, 97.0%, Cambridge Isotope 260 

laboratories Inc., MA, USA) peptide aggregation studies, HFIP dried Aβ peptide films were 261 

resuspended in anhydrous DMSO and diluted with H2
18O (containing Tris-NaCl 262 

10mM/150mM) to a final DMSO concentration of ≤1%. The heavy H2
18O part of the final 263 

reaction solution was estimated at approximately ≥95%.  264 

 265 

2.11 Immunoprecipitation of mouse and human brain tissue.  266 

Mouse and human brain tissue samples were serially extracted using TBS, 2% SDS or 267 

formic acid (70-90%FA) as stated in the text. Briefly, tissue samples were homogenized (20 268 

strokes on ice) in TBS and 5mM EDTA with protease inhibitor complex (Roche, 269 

Switzerland) using a Teflon homogenizer. Samples were then subjected to centrifugation 270 

(150,000g) during 45min and the supernatant was recovered as the TBS soluble fraction. 271 

Protein pellets were subjected to an additional extraction using either SDS (2%) or FA (70%) 272 

followed by centrifugation. Typically, pellets were extracted with FA overnight at 4°C (to 273 

minimize formylation adducts) followed by centrifugation. SDS fractions were diluted to 274 
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≤0.1% SDS final concentration and FA fractions were neutralized to pH 7.5 with 5M sodium 275 

hydroxide (NaOH) solution prior to IP. All samples were initially depleted of endogenous 276 

IgG’s using a mixture of protein A&G agarose beads (Roche AG, Switzerland). Typically, 2-277 

4ug/ml rabbit polyclonal antibody (N-3s, N-4 or N-5ns) or 3-5ug/ml of 6E10 or 4G8 mouse 278 

monoclonal was used for overnight IP under continues rotation (4rpm/min) at 4°C. Samples 279 

were eluted with 40% ACN /H2O & 0.1% TFA and dried in a speed vacuum. IP’ed samples 280 

were either directly analysed by WB or MALDI-TOF/TOF or split and further digested 281 

overnight using LysN proteolysis for LC-MS/MS or SRM analysis as outlined above. Human 282 

CSF samples (500ul) were IP’ed with either N-5ns, or a mixture of the two commercial 283 

antibodies 6E10 and 4G8.  284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 
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3. RESULTS 299 

 300 

3.1 In vitro Aβ peptide aggregation is associated with autocleavage within the peptide’s 301 

β-turn vicinity resulting in the generation of a typical peptide fragment signature.  302 

We examined the aggregation behavior of synthetic Aβ42 peptide using MS and observed 303 

that peptide aggregation is associated with a time dependent appearance of a typical peptide 304 

fragment signature in vitro. To rule out the possibility of artefactual peptide hydrolysis during 305 

sample preparation or MS analysis, we carried out aggregation studies using normal and 306 

heavy oxygen labelled water (H2
18O) to determine whether peptide cleavage is the result of 307 

aggregation-induced peptide hydrolysis.  308 

MS analysis of Aβ42 aggregation in both, normal and heavy (18O) labeled water produced 309 

identical MS spectra (Fig. 1A), revealing a highly reproducible Aβ peptide fragment 310 

signature following short term (t=12h) aggregation. Under heavy water labelled conditions, 311 

the majority of N-terminal fragment masses were shifted by 2 mass units as a result of a 312 

hydrolysis induced 18O atom incorporation at the newly formed C-terminus, as shown with 313 

one of the most abundant N-terminal fragment of residues Aβ1-25 (Fig. 1A-G). Aβ1-25 314 

represents one typical truncated Aβ isoform from a selection of several large N-terminal 315 

fragments (Fig. 1B), where the monoisotopic peak was found to be shifted by 2.0012Da 316 

(0.5003Da for m/z = 734.3513 [M+4H]4+) as compared to the monoisotopic peak of normal 317 

(m/z= 733.8463 [M+4H]4+) (Fig. 1C, left) experimental conditions.  No difference in mass 318 

shift was observed for the complementary C-terminal fragment of residues 26-42 indicating 319 

that hydrolysis-induced peptide cleavage resulted in stable 18O incorporation only at the neo-320 

C-terminal residue Gly25 (Fig. 1C, right).  321 

We also observed substantial C-terminal amidation (CONH2) within the same isotopic 322 

cluster of Aβ1-25, where the mass shift between the unmodified monoisotopic peak (m/z= 323 



N. Rudinskiy et al. (2016) 

 

14 

 

733.8509 [M+4H]4+) and the amidated monoisotopic peak (m/z= 733.6037 [M+4H]4+) 324 

accounted for 0.988 Da (theoretical Δ mass = 0.984 Da) (Fig. 1C, right).  The estimated 325 

relative abundance of C-terminal amidation of fragment Aβ1-25-NH2 has been estimated to 326 

account of approximately 20% of the normal, carboxy C-terminal population (data not 327 

shown).  328 

Interestingly, Aβ1-24 was found to be predominantly amidated (Aβ1-24-NH2) and only 329 

minor levels of the normal carboxy C-terminus were detected (data not shown). Overall, we 330 

observed that the gradual accumulation of the Aβ fragments of residues Aβ1-23, Aβ1-24-331 

NH2,  Aβ1-25 or Aβ1-25-NH2  reflect a typical fragment signature during the early phase of 332 

peptide aggregation because these large N-terminal fragments could be readily detected 333 

following short term aggregation (≤1h) and typically preceded the accumulation of earlier 334 

reported Aβ isoforms such as Aβ1-15 (Supplemental Fig.1). We also observed that some N-335 

terminal fragments have increased aggregation propensities, as seen by the rapid formation of 336 

MS stable entities of dimeric and trimeric nature (Supplemental Fig.1 A&B) and that this in 337 

turn may affect LC-MS analysis. Therefore, to monitor the generation of these Aβ isoforms 338 

in a more reproducible manner, we processed samples using Lys-N proteolysis, which 339 

generates the proteolytic cleavage product of residues Aβ16-25[20]. Lys-N digestion of Aβ 340 

peptides resulted in highly increased solution stabilities and MS detection (100 fold) of the 341 

proteolytic cleavage products as compared to non-digested Aβ1-25 (Supplemental Fig. 1D). 342 

The change in overall charge distribution from multiply charged ions ([M+2H]2+ to 343 

[M+5H]5+ ) for Aβ1-25 to a predominantly double charged  ion ([M+2H]2+) for the Lys-N 344 

fragment Aβ16-25 would generally account for this significantly improved detection. 345 

Quantitative MS analysis, using a spiked-in heavy lysine (K16) labelled surrogate peptide 346 

indicated, that the relative abundance of fragment Aβ1-25 accounts for approximately 5% of 347 

full-length Aβ42 (Fig. 1D). However, the absolute abundance of the here identified truncated 348 
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Aβ isoforms of Aβ1-23, Aβ1-24-NH2 and Aβ1-25 as well as the C-terminal amidated form 349 

would clearly exceed this level.  350 

To further confirm a hydrolysis-induced peptide cleavage during in vitro aggregation, we 351 

applied MS/MS using collision-induced dissociation (CID) to identify the site of stable 18O 352 

incorporation. MS/MS analysis of the Lys-N digested Aβ1-25 (16-25) fragment allowed for 353 

unambiguous identification of the 18O atom incorporation at Gly25 (Fig. 1E & F).  354 

 355 

 356 

3.2 N-terminal Aβ peptide fragments are highly prone to oligomerization.  357 

To determine the biophysical properties of truncated Aβ peptides, we investigated the 358 

aggregation properties of four large N-terminal fragments: Aβ1-23, Aβ1-24-NH2, Aβ1-25 359 

and Aβ1-25-NH2. Following in vitro aggregation of the synthetic Aβ fragments (t=1wk) we 360 

observed significant changes in sodium dodecylsulfate polyacrylamide gel electrophoresis 361 

(SDS-PAGE) migration behavior as seen by the appearance of several low molecular weight 362 

(LMW) species in the range of 6kDa to 14kDa (Fig. 2A). High molecular weight (HMW) 363 

oligomers were observed in the 49kDa to 62kDa range and this oligomeric entity was found 364 

to be particularly characteristic for the amidated fragment Aβ1-25-NH2. Immunoblot analysis 365 

of some Aβ isoforms remains challenging using the conventional antibody 6E10, as seen for 366 

Aβ1-23, which may result from conformation associated epitope masking [21], and therefore 367 

a decreased sensitivity for 6E10 when compared with 4G8. 368 

MS detection of LMW oligomers was mainly achieved at the dimer and trimer level, such 369 

as shown with Aβ1-25, which may highlight the metastable structure found with soluble 370 

oligomers during LC-MS analysis (Supplementary Fig. 1A & B). Moreover, prolonged aging 371 

of the truncated Aβ isoforms Aβ1-25 or Aβ1-25-NH2 resulted in the generation of shorter N-372 

terminal fragments such as the earlier reported fragments of residues Aβ1-14 and Aβ1-15 373 
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(Supplementary Fig. 1C & E). This observation was in agreement with prolonged Aβ42 374 

aggregation experiments (t=7d), showing a time dependent decrease in MS detection of Aβ1-375 

25 together with the gradual appearance of shorter fragments, such as Aβ1-15 376 

(Supplementary Fig. 2A).  377 

Transmission electron microscopy (TEM) imaging indicated that N-terminal fragments 378 

have a high propensity to form soluble, oligomeric aggregates following long-term 379 

incubation. Aβ1-25 preferentially formed homogenous spherical aggregates, which was less 380 

evident with the shorter N-terminal fragments of residues Aβ1-23 and Aβ1-24-NH2 and only 381 

very few clusters of fibrils were observed with the amidated form Aβ1-25-NH2 (Fig. 2A and 382 

Supplemental Fig. 2F).  We further employed SEC (in Tris-NaCl) of aggregated Aβ1-25 and 383 

show that the LMW structures typically observed with these truncated Aβ isoforms are true 384 

observations and can therefore exclude a SDS-PAGE induced migration artefact (Fig. 2B). 385 

SEC fractionation resulted in a clear separation of two Aβ structures centered at the migration 386 

level of ≤ 6kDa (fraction: 12ml) and  ≤ 3kDa (fraction: 15ml) and MS analysis of fraction 387 

volume 12ml revealed the presence of stable Aβ1-25 dimers and trimers, whereas monomers 388 

were mainly detected in fraction volume 15ml (data not shown). Because Aβ1-25 dimers 389 

(5.8kDa) and trimers (8.7kDa) were highly enriched in SEC fractions corresponding to a MW 390 

standard of ≤14kDa, we speculated that LMW Aβ1-25 structures of may form part of larger 391 

Aβ entities, which dissociate during SDS-PAGE analysis.  392 

 393 

 394 

 395 

 396 

 397 
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3.3 Monitoring Aβ peptide aggregation using neo-epitope antibodies which specifically 398 

target truncated Aβ isoforms. 399 

To create a simple analytical tool for the detection of site specific autocleavage during 400 

aggregation we set out to develop an antibody enabled proof-of-principle tool for monitoring 401 

Aβ cleavage. We therefore developed a panel of rabbit polyclonal antibodies (Table 1) with 402 

high binding specificity for N-terminal fragments of residues Aβ1-23 (N-3s), Aβ1-24-NH2 403 

(N-4) and Aβ1-25 (N-5s & N-5ns) (Fig. 3 & Supplemental Fig 3A), as well as for two 404 

complementary C-terminal fragments: Aβ24-42 (D-4s) and Aβ26-42 (D-6ns) (Supplementary 405 

Fig. 3B). 406 

Epitope binding was tested by dotblot (DB) using a repertoire of synthetic Aβ peptide 407 

standards (1ug/spot) of different sequences or C-terminal endings and binding specificity was 408 

compared with the conventional antibodies 6E10 and 4G8. None of the neo-epitope 409 

antibodies detected full-length Aβ40 peptide, which highlights their unique binding 410 

specificity for cleaved Aβ isoforms.  Overall, 4G8 (17-24) showed higher specificity with 411 

respect to its binding epitope as compared to 6E10 (1-16) because detection of fragment Aβ1-412 

15 was significantly reduced with 6E10, which is an observation reported before [22]. 413 

N-5s showed high specificity for the C-terminal Gly25 residue and N-3s selectively detected 414 

fragments ending with C-terminal residue Asp23. The N-5ns binding epitope was found to 415 

include residues spanning the neo-C-terminal region of residues 23-25, with preferential 416 

binding properties for C-terminal Gly25 (Supplemental Fig. 3A) and binding was 417 

significantly decreased or absent with the shorter fragments of Aβ1-22 and Aβ1-15 418 

respectively.  Similarly, antibody N-4 revealed high binding specificity for the amidated C-419 

teminal form of Val24 (Aβ1-24-NH2) (Fig. 3B). Because of the analytical limitations 420 

observed with DB (native conditions) we further compared the neo-epitope antibody 421 

selectivity to 6E10 using immunoprecipitation (IP) of an Aβ fragment mixture along with 422 
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full-length Aβ40 (Fig. 3C) or in presence of a complex human proteome matrix (brain tissue 423 

extract) (Supplementary Fig. 4C & D). All neo-epitope antibodies showed high selectivity for 424 

their target fragments, whereas IP with 6E10 resulted in a pull-down of all Aβ fragments 425 

together with full-length Aβ40.  426 

The application of neo-epitope antibody N-5ns was further tested using ELISA and WB. At 427 

working concentrations of ≤ 0.3ug/ml, N-5ns showed significantly lower affinity for the C-428 

terminal amidated form Aβ1-25-NH2 (Fig. 3D) and WB revealed high selectivity for the 429 

target fragments (Fig. 3E&F). In summary we can conclude that, by using a combination of 430 

different conventional techniques, we were able to show that the above mentioned neo-431 

epitope antibodies have unique binding properties for truncated Aβ isoforms and may serve as 432 

complementary tools for the analysis of biological samples.  433 

 434 

 435 

3.4 Aβ peptide cleavage is highly associated with changes in peptide secondary 436 

structure. 437 

In order to understand the mechanisms associated with Aβ peptide cleavage during 438 

aggregation we investigated peptide cleavage by stabilizing Aβ secondary structure in 439 

different solutions. In PBS solution (or 40mM Tris: data not shown), Aβ40 showed a 440 

predominantly unordered structure with considerable decrease in signal amplitude over the 441 

time course of incubation, whereas incubation in 20% TFE solution induced a stable α-helical 442 

structure during five days of incubation (Fig. 4A). Significant Aβ cleavage was observed in 443 

PBS or Tris solutions, whereas cleavage was strongly attenuated in TFE (Fig. 4 B & C), 444 

indicating that Aβ cleavage is highly associated with changes of the peptide’s secondary 445 

structure as a result of peptide aggregation. This observation was also true for Aβ42 (data not 446 

shown). 447 
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Having established neo-epitope antibody specificity, we then selected and employed N-448 

5ns to monitor in vitro Aβ42 aggregation using DB and MS. We observed a robust increase 449 

in N-5ns DB signal shortly after peptide incubation indicating a nearly instantaneous 450 

accumulation of diagnostic Aβ fragments and TEM imaging of the peptide morphology 451 

indicated that there was a correlation between the N-5ns signal saturation by DB and the 452 

presence of typical oligomeric and protofibrilar aggregates (Fig. 4D).  453 

We further studied the effects of different experimental conditions in Aβ aggregation. 454 

Earlier  findings provided strong evidence that the protein cross-linking activity of tissue 455 

transglutaminase (tTGase) plays an important role in AD pathogenesis [23] [24]. We 456 

therefore sought to investigate if tTGase induced Aβ aggregation mirrors the accumulation of 457 

Aβ fragment fingerprints. Aβ40 aggregation increased significantly in the presence of tTGase 458 

and was accompanied by the formation of low amounts of intra- and intermolecular cross-459 

links (data not shown) as reported previously [25] [18]. This change in aggregation behavior 460 

could be detected by DB (Fig. 4E) and IP-MS analysis confirmed the presence of the N-5ns 461 

target fragments Aβ1-23 and Aβ1-25 in samples subjected to different aggregation conditions 462 

(Fig. 4F). 463 

Since we were able to show that several peptide cleavage sites represent a typical hallmark 464 

of early aggregation, we argued that the sum of several cleavage products would increase 465 

overall DB screening sensitivity and showed, that the combination of several neo-epitope 466 

antibodies indeed increased detection sensitivity during in vitro peptide aggregation 467 

(Supplementary Fig. 4A). We further reasoned that neo-epitope antibody-based monitoring of 468 

Aβ cleavage, prior to the accumulation of β-sheet enriched fibrils, would provide valuable 469 

information for future screening natural inhibitory compounds (Supplementary Fig. 4B) [26] 470 

[27] [28] [29]. This novel screening concept would be complementary to the typically 471 

employed Thioflavin-T fluorescence measurements, since N-5ns would allow identification 472 
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of aggregation inhibitory compounds targeting an oligomerization fate [21] [30] rather than 473 

advanced fibrillation. 474 

 475 

 476 

3.5 Aβ fragments form stable complexes with soluble oligomers.  477 

To better understand the biophysical properties of truncated Aβ in peptide 478 

oligomerization, we investigated the aggregation kinetics of amyloid-derived diffusible 479 

ligands (ADDL’s) using a combination of SEC, DB, WB and MS. Following 20hrs of Aβ42 480 

oligomerization, we observed a substantial increase in N-5ns signal using DB (Fig. 5A) and 481 

this positive signal was associated with the presence of a typical oligomeric morphology 482 

(data not shown). Following in vitro aggregation, the ADDL preparation was centrifuged in 483 

order to precipitate large insoluble aggregates (pellet) and the supernatant containing soluble 484 

Aβ species was subjected to SEC fractionation. To identify SEC fractions containing 485 

truncated Aβ isoforms, 50ul fractions were dried by speed vacuum and re-suspended in 5ul of 486 

PBS of which 1ul was spotted in duplicates onto a nitrocellulose membrane and probed by 487 

DB using N-5ns and 6E10 respectively. SEC fraction probing with N-5ns allowed 488 

identification of a substantial amount of truncated Aβ within the oligomeric fractions (8ml - 489 

12ml) (Fig.5A). DB probing with 6E10 and N-5ns of the monomeric fraction (18ml) 490 

indicated that this fraction contained a mixture of both, Aβ42 monomers as well as truncated 491 

Aβ isoforms and WB analysis of these SEC fractions was in line with the findings from DB 492 

(Fig. 5B). Moreover, WB also revealed the presence of HMW oligomers centered at the 493 

49kDa to 62kDa range. The presence of low amounts of this HMW entity observed in the 494 

monomeric fraction may indicate that truncated Aβ fragments may favor the formation of 495 

these HMW structures as a result of sample concentration by speed-vacuum.  496 
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To further validate the N-5ns positive signals found by DB and WB, we analyzed 497 

oligomeric fractions using IP-MS. MS analysis of the “crude” fraction volume 8ml revealed 498 

that this fraction contained fragments Aβ1-23, Aβ1-24-NH2, Aβ1-25 and Aβ1-25-NH2 along 499 

with some shorter fragments of Aβ1-17 to Aβ1-22 as well as full-length Aβ42 (Fig. 5C; top). 500 

Similarly, MS analysis of LMW Aβ species extracted from SDS-PAGE gel bands (≤14kDa) 501 

confirmed the presence of different truncated Aβ isoforms as well as their complementary C-502 

terminal fragments (Supplementary Fig.5).  503 

IP with N-4 resulted in a specific pull-down of fragment Aβ1-24-NH2 (Fig. 5C; center) 504 

along with Aβ42 and N-5ns allowed a specific recovery of fragments Aβ1-25 but not Aβ1-505 

25-NH2, as well as trace amounts of Aβ1-23 together with Aβ42 (Fig. 5C; bottom).  506 

To further elucidate the importance of Aβ1-25 in oligomers, we analyzed two oligomeric 507 

(11.5ml and 14ml) and a monomeric fraction (18ml) using IP-MS (N-5ns) (Fig. 5D) and 508 

could identify Aβ1-25 in both, oligomeric and monomeric fractions. The relative abundance 509 

of this particular fragment varied considerably, which was in line with our DB and WB 510 

analysis. IP with N-5ns also resulted in a pull-down of Aβ42 indicating that oligomeric, as 511 

well as monomeric fractions contained metastable complexes of fragment Aβ1-25 and Aβ42, 512 

which may dissociate to a generally monomeric level during SDS-PAGE analysis. This data 513 

collectively confirms the above reported observation that truncated Aβ can form stable 514 

entities with soluble oligomers.  515 

To provide quantitative values for Aβ1-25 and Aβ42 we used IP combined with LC-SRM 516 

analysis. SEC fractions were split and one part was denatured with 70% FA over-night at 4°C 517 

to allow gradual dissociation of large oligomeric species. We reasoned that this approach 518 

would reduce the overall recovery (pull-down) of full-length Aβ42 stably bound to the 519 

surface of large oligomers and therefore allow more accurate quantitation of the Aβ1-25 520 

target fragment per se. SRM quantitation confirmed the significantly lower levels of Aβ1-25 521 
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(2-3pg/ul) (Fig. 5E) found in fraction volume 11.5ml as compared to the monomeric (18ml) 522 

fraction (21-23pg/ul), which is also in line with our WB analysis. Moreover, we found that 523 

FA dissociation of oligomers significantly reduced (40x) the amount of full-length Aβ42 524 

stably bound to fragment Aβ1-25. IP-MS of the monomeric fraction, using a combination of 525 

three different neo-epitope antibodies, revealed the presence of three truncated isoforms: 526 

Aβ1-23, Aβ1-24-NH2 and Aβ1-25 together with Aβ42 (Fig. 5F).  527 

Because our initial mock IP’s of freshly prepared Aβ fragment mixtures did not pull-down 528 

full-length Aβ40 or Aβ42, we sought to provide direct evidence that detection of Aβ42 within 529 

the monomeric fraction is the result of a collective pull-down due to stable interaction of 530 

truncated Aβ and Aβ42. For this purpose, we denatured the first IP sample over-night using 531 

90% FA, followed by a second IP using the same antibody cocktail. MS analysis of the 532 

sequential IP (2nd) confirmed our assumption, because Aβ42 was no longer detected 533 

following FA treatment (Fig. 5G). 534 

MS analysis of the insoluble, pellet fraction (from ADDL prep.) indicated that large 535 

insoluble aggregates also consist of heterogenic entities rich in N-terminal as well as C-536 

terminal truncated Aβ isoforms together with full-length Aβ42 (data not shown). This 537 

observation was further corroborated by the finding that IP with antibody N-5s or N-5ns of 538 

7M guanidine hydrochloride (GHCl) denatured Aβ42 fibrils, resulted in a specific recovery 539 

of Aβ1-25 together with trace amounts of Aβ42 (Supplementary Fig. 6A & B).  540 

 541 

 542 

 543 

 544 

 545 
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3.6 N-terminal Aβ peptide fragments are present in the amyloid deposits in the human 546 

AD brain. 547 

Immunohistochemical staining (both chromogenic and fluorescent) of the frontal cortical 548 

tissue of human sporadic AD subjects (N = 6 AD cases and 3 age-matched non-demented 549 

controls) using N-5ns resulted in robust labeling of thioflavin-S-positive amyloid plaques and 550 

cerebral amyloid angiopathy (CAA) (Fig. 6A & B). Thioflavin-S-positive intraneuronal tau 551 

tangles were not labelled with N-5ns (Fig. 6B) and no non-specific labeling was detected in 552 

the control non-AD brains (Fig. 6C). Because one of the early and important effects of 553 

oligomeric Aβ in AD is the binding of Aβ to synapses and the resultant synaptic dysfunction 554 

and loss [31], we examined the presence of Aβ neo-epitopes in synapses. Tissue from human 555 

subjects was prepared for high-resolution array tomography [32], allowing accurate detection 556 

of individual synapses. As seen with the immunostaining of paraffin sections, N-5ns labeled 557 

amyloid deposits that were positive for thioflavin-S and 6E10 (Fig. 6D). Both dense-core and 558 

diffuse plaques were immuno-positive for N-5ns. We also observed staining of N-5ns at 559 

individual pre- and postsynaptic puncta in the region of plaques, indicating that this Aβ 560 

fragment may be important in synapse degeneration (Fig. 6E). 561 

 562 

 563 

3.7 Analysis of human AD brain  and transgenic mice brain tissue highlights the 564 

significant abundance of Aβ cleavage in AD. 565 

In order to further corroborate our in vitro observation on Aβ cleavage, we analyzed 566 

human post-mortem brain tissue samples from human controls and AD subjects.  567 

We employed IP-MS and WB analysis of TBS and FA tissue extractions to investigate 568 

presence of Aβ truncation using the two conventional antibodies 6E10 and 4G8 and compared 569 

Aβ peptide recovery with neo-epitope antibodies. IP with 6E10&4G8 resulted in the detection 570 
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of a band centered at the typical migration level of Aβ monomers (>3kDa) (Fig. 7A, top blot: 571 

AD#1 lane: 1, AD#2 lane: 4), whereas IP with neo-epitope antibodies revealed a band 572 

centered at the migration level of  ≤6kDa for one AD subject (Fig. 7A top blot, lane: 5).  573 

Interestingly, re-probing the membrane with a neo-epitope antibody cocktail revealed a band 574 

centered at the migration level of ≥3kDa (Fig. 7A bottom blot: AD#1 lane: 2, AD#2 lane: 5), 575 

indicating that both AD samples contained truncated Aβ isoforms, whereas 4G8 failed to 576 

show similar specificity at this migration level, which is an observation also made with the 577 

synthetic Aβ fragments (Fig. 3).  578 

We further analyzed the same brain samples by MALDI-TOF/TOF MS. IP-MS (6E10&4G8) 579 

analysis  of the AD#2 brain tissue extract (FA) resulted in a pull-down of large Aβ fragments 580 

Aβ36, Aβ37, Aβ38 and Aβ40 together with several N-terminal fragments Aβ1-13-NH2, Aβ1-581 

13, Aβ1-20, Aβ1-22, Aβ1-23, Aβ2-24-NH2 Aβ1-24-NH2 and Aβ1-25 (Fig. 7B). IP-MS 582 

analysis of the same AD brain, using a combination of three neo-epitope antibodies resulted 583 

in a specific pull-down of the target fragments (Fig. 7C). The same samples were also 584 

subjected to LC-MS/MS (Orbitrap) analysis for high resolution peptide mass confirmation 585 

(Fig. 7D & E).  586 

Moreover show that, IP with N-5ns enables a specific recovery of fragment Aβ1-25 from 587 

Tg2576, APP/PS1 (Supplementary Fig. 6C & D) and 5xFAD (data not shown) transgenic 588 

mice brains. The use of SDS (Supplemental Fig. 7), TBS or FA (Supplementary Fig. 8A & B) 589 

extraction protocols all resulted in similar truncated Aβ recovery, however, the levels of Aβ1-590 

25 were found to be significantly increased in FA extracts as compared to TBS soluble 591 

fractions (Supplementary Fig. 8B). LC-SRM analysis of TBS and FA brain extracts from 592 

human controls indicated that the levels of cleaved Aβ isoforms are significantly reduced or 593 

below the limit of detection (data not shown). 594 

 595 
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3.8 Human CSF analysis reflects the accumulation of N-terminal fragments in AD 596 

brain.  597 

We first measured levels of Aβ42 and total Tau (T-Tau) in AD patients and non-demented 598 

(ND) controls using ELISA and observed significantly (p<0.001) decreased levels of Aβ42 as 599 

well as increased T-Tau levels (p<0.001) (Supplementary Fig. 8C & D) in AD patients as 600 

compared to ND controls, which is in line with earlier reported measurements of human CSF 601 

samples [11, 33]. We were further interested in identifying Aβ cleave by applying 602 

quantitative IP-SRM (N-5ns) to measure Aβ1-25 levels in CSF and could clearly confirm the 603 

presence of Aβ1-25 in both; AD patients and age matched controls subjects (Supplementary 604 

Fig. 8E). A large inter-subject variability of Aβ1-25 levels was generally observed in AD 605 

patients (n=16) but the measured levels failed to show a statistical significant difference 606 

(p>0.05) when compared to control subjects (n=14) (Supplementary Table II). 607 

 608 

 609 

 610 

4. DISCUSSION 611 

The presence of particular Aβ peptide fragments in vitro [34, 35] and in vivo [36, 37] has 612 

been reported before and the accumulation of some Aβ isoforms is thought to be associated 613 

with a putative enzymatic activity [38-40]. Generally, it seems unlikely that either proteinases 614 

or exopeptidases are responsible for the generation of truncated Aβ isoforms because in vitro 615 

peptide cleavage still occurs in the presence of a metalloprotease inhibitor [35] or 616 

bacteriostatic agents (data not shown). Overall, the exact mechanism associated with the 617 

putative concerted enzymatic cleavage of Aβ still remains unclear. Regardless of proteinase 618 

activity, earlier reports show that in vitro Aβ40 aggregation resulted in peptide cleavage at 619 

residue Asp23 [41] and that the increased aggregation observed for Aβ40 in the presence of 620 
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tTGase was accompanied with significant cleavage at residues Glu22 and Gly25 respectively 621 

[18]. Moreover, it has been suggested that Aβ25-35 as well as full-length Aβ40 mediated 622 

toxicity may result from a peptide cleavage induced radicalisation of cell membranes, and 623 

that prolonged incubation resulted in significant Aβ cleavage at the Gly25-Ser26 bond [42]. 624 

The here reported occurrence of cleavage at residue Gly25 is of particular interest, because 625 

Aβ1-25 was earlier identified as a sphingolipid binding domain motif, which can be rapidly 626 

internalized by neuronal cells [43]. 627 

We report here new, additional Aβ fragments and were able to demonstrate that the 628 

gradual appearance of fragments Aβ1-23, Aβ1-24-NH2 Aβ1-25 and its amidated form Aβ1-629 

25NH2 can be associated with the early events of Aβ aggregation, because MS detection of 630 

the aforementioned N-terminal fragments precedes the accumulation of shorter Aβ isoforms 631 

(i.e Aβ1-15).  632 

To our knowledge, the presence of substantial C-terminal amidation in vitro and in vivo 633 

has not been reported before, suggesting that Aβ cleavage is the result of at least two distinct 634 

molecular mechanisms. More importantly, we show that Aβ cleavage is strongly attenuated 635 

when stabilizing the peptide in an α-helical structure. This suggests that the transition from an 636 

unstructured, random-coil conformation to a β-sheet ordered structure triggers the cleavage 637 

cascade typically observed during peptide aggregation. Moreover, the time-dependent 638 

increase in Aβ1-15 abundance may indicate that shorter N-terminal fragments represent 639 

cleavage products associated with a more advanced phase of aggregation, which is 640 

corroborated by the observation that long-term incubation of the here described fragment of 641 

Aβ1-25, or its more amyloidogenic form Aβ1-25-NH2, give rise to shorter Aβ isoforms. 642 

Generally, the detection of a particular Aβ fragment signature in different AD transgenic 643 

models as well as human AD brains; collectively highlight the need for further understanding 644 



N. Rudinskiy et al. (2016) 

 

27 

 

the presence of Aβ fragment signatures in AD. Therefore, the exact molecular mechanism 645 

leading to site specific hydrolysis of Aβ remains to be elucidated in future studies.  646 

Soluble Aβ oligomers play a central role in AD pathogenesis, with dimers [44] and 647 

dodecamers (Aβ* 56) having attracted most of the scientific attention in the past. We report 648 

here that IP of soluble Aβ40 or Aβ42 oligomers resulted in a specific recovery of Aβ 649 

assemblies with a gel migration range of ≥6kDa, and that similar Aβ assemblies could be 650 

detected in TBS and FA lysates from human AD brains. Given by our findings, it is 651 

conceivable that Aβ assemblies of putative dimeric or trimeric nature consist of a mixture of 652 

truncated and full-length Aβ, which may form metastable complexes with HMW structures, 653 

which is partly in agreement with earlier reports [19]. 654 

The detection of Aβ1-25 in CSF samples from human controls may suggest a significant 655 

abundance of Aβ oligomers present in control subjects, which is in line with earlier reports 656 

[45]. Interestingly, Holtta et al. (2013) showed that CSF oligomers were significantly 657 

increased in patients with mild and moderate dementia when compared to controls, whereas 658 

no significant difference was found in patients with severe dementia [12]. The here observed 659 

lack of statistical significance in Aβ1-25 levels in AD patients may result from the relatively 660 

small sample size and hence statistical power. It is also conceivable that CSF sample freeze-661 

thaw cycles together with other, earlier reported cofounding factors[46, 47] may have 662 

collectively contributed to a rapid ex vivo Aβ aggregation in these samples.  663 

In conclusion, we argue that neo-epitope antibodies would serve as appealing capture 664 

antibodies for future ELISA developments because we were able to show that the here 665 

described Aβ fragments can self-propagate to dimers and trimers or form stable entities with 666 

large oligomers. However, measuring changes in levels of truncated Aβ isoforms merits 667 

additional, future analytical improvements. We believe that monitoring pathological changes 668 

in Aβ levels in human CSF [39] or plasma [48] requires the use of multiplexed approaches, 669 
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where truncated Aβ isoforms together with several earlier reported Aβ fragments [49] as well 670 

as pathologically relevant post-translational modifications, such as pyroglutamate modified 671 

Aβ [16], should be monitored simultaneously and longitudinally in human biofluids.  672 

 673 

 674 

RESEARCH IN CONTEXT 675 

Systematic Review: Aβ dimers, trimers and dodecamers have received the most scientific 676 

attention in the past, because these entities have been suggested to form the building blocks of 677 

larger neurotoxic assemblies. However, the key molecular triggers associated with early Aβ 678 

oligomerization are poorly understood and to date, the exact molecular structure of LMW 679 

oligomers still remains a conundrum.  680 

Interpretation: We have identified here new truncated Aβ isoforms with high aggregation 681 

propensities, which may serve as seeding units during early peptide aggregation. We provide 682 

analytical evidence that these truncated Aβ isoforms are highly abundant in Aβ oligomers. 683 

Future directions: We plan to further study the generation of truncated Aβ isoforms as 684 

well as their significance to the pre-symptomatic accumulation of neurotoxic oligomers. The 685 

use typical Aβ peptide fragment fingerprints for a pre-symptomatic diagnosis of subjects 686 

suffering from MCI or other forms of dementia will be of particular interest. Furthermore, we 687 

are interested in studying the structural properties and aggregation fate of the here described 688 

truncated Aβ isoforms. This will help to identify and understand the structure homology 689 

found in Aβ oligomers which in turn may improve the future development of oligomer 690 

specific antibodies. 691 

 692 

 693 

 694 
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