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Local Autoencoding for Parameter Estimation in a
Hidden Potts-Markov Random Field

Sanming Song, Bailu Si, J. Michael Herrmann, and Xisheng Feng

Abstract—A local-autoencoding (LAE) method is proposed for
the parameter estimation in a Hidden Potts-Markov random
field (MRF) model. Due to sampling cost, Markov chain Monte
Carlo (MCMC) methods are rarely used in real-time applications.
Like other heuristic methods, LAE is based on a conditional
independence assumption. It adapts, however, the parameters
in a block-by-block style with a simple Hebbian learning rule.
Experiments with given label fields show that LAE is able to
converge in far less time than required for a scan. It is also
possible to derive an estimate for LAE based on a Cramer-Rao
bound that is similar to the classical maximum pseudo-likelihood
(MPL) method. As a general algorithm, LAE can be used to
estimate the parameters in anisotropic label fields. Furthermore,
LAE is not limited to the classical Potts model and can be
applied to other types of Potts models by simple label field
transformations and straightforward learning rule extensions.
Experimental results on image segmentations demonstrate the
efficiency and generality of the LAE algorithm.

Index Terms—Markov random field, Gibbs distribution, pa-
rameters estimation, local autoencoding, Potts model

I. INTRODUCTION

MARKOV random fields (MRFs) are very popular sta-
tistical models [1]–[3] that are used in a wide range

of computer vision problems [4]. By describing the prior
knowledge that neighboring pixels are likely to be of the same
class in a parameterised way, a Potts-MRF is able to include
a local similarity constraint in segmenting images which are
distorted by speckle noise, like underwater sonar images [5],
geodesic hyperspectral images [6], synthetic aperture radar
(SAR) images [7], magnetic resonance (MR) images [8] etc.
In a Potts field, each unit can be in a number of Q states
(classes). Statistically, when the local correlation is assumed
to be Markovian, the configuration space can be modeled
by a Gibbs distribution which is characterised by a vector
of parameters β (also known as interaction parameters [5],
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spatial cohesion strength [9], granularity coefficient [10] or
prior parameters [11]). However, with the notable exception
of the special case of an isotropic Ising-MRF with circular
boundary conditions [12], a direct estimation of the prior
parameters is not possible, because a part of the model, the
partition function, is computationally intractable [10]. This
paper focuses on estimating β parameters from data.

McGrory et al. [13] have proposed a recursive method
for computing the partition function analytically, which is,
however, applicable only to MRFs with a small size and a
weak interaction strength. Instead, two types of approxima-
tion strategies are used to find optimal parameters, namely
sampling methods based on Monte-Carlo sampling, such as the
Markov chain Monte-Carlo (MCMC) algorithm [14], [15], M-
CMC Maximum Likelihood (MCMCML) [16], and likelihood-
free methods [10], [17], and heuristic methods based on the
conditional independence assumption, e.g. pseudo-likelihood
maximization (MPL) [18], [19], coding-based MPL [20],
mean-field approximation [21], [22], least-square (LSQR) al-
gorithm [5], [23].

MCMC methods approximate the posterior probability by
Monte Carlo sampling iteratively until the generation param-
eters converge. They may be more precise, but are computa-
tionally more expensive [10], [16]. In engineering applications,
heuristic methods may appear thus more favorable. However,
even MPL [18], coding-based MPL [20], and mean-field
approximations [21] have to pass through the image many
times. The LSQR algorithm [23] does not only ignore a
large number of blocks that are incompatible with certain
mathematical constraints, but also requires complex matrix
computation. In addition, LSQR appears to be feasible for the
Ising field.

In this paper, we propose a new algorithm to fast estimate
the interaction parameters of a Potts model that is used
to describe the label field. As our algorithm uses a local
autoencoding approach to capture image regularities, we will
refer to it by the abbreviation LAE. Basing on the conditional
independent assumption, it belongs to the class of heuristic
methods related to MPL estimation. The main advantage of our
method is that it is computationally very efficient and therefore
interesting for applications involving limited computing times.
More over, it is of a comparable accuracy to other pseudo-
likelihood approaches. In detail, we will show that the LAE
algorithm is superior to other methods in the following aspects:
1) LAE is very simple, since a simple local backpropagation
(BP) gradient descent learning rule is able to estimate the prior
parameters. 2) LAE converges rapidly, even less than a single
pass. 3) Simulations show that LAE has a comparable mean-
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squared error with the classical MPL method. 4) LAE makes
full use of all the local blocks. 5) LAE can be used to estimate
the prior parameters for arbitrary anisotropic label fields. 6)
LAE can be extended to various variants of the Potts model
by a simple label field transformation.

The rest of the paper is organized as follows. The Potts
hidden-MRF model is simply introduced in Section II. The
existing methods for the prior probability parameter estimation
are briefly reviewed in Section III. The LAE algorithm is
described in Section IV and experiment results are presented in
Section V. We briefly conclude in Section VI. Application of
the LAE algorithm to another typical Potts model, i.e. Kanter’s
model, is given in the Appendix.

II. HIDDEN-MARKOV RANDOM FIELD

In Markovian image segmentation or labelling, we aim at
maximizing the posterior probability PL/X (l/x) for the label
field, where X is the original image and L is the label.
According to Bayes’ rule, we have

PL/X (l/x) =
PL (l)PX/L (x/l)

PX (x)
. (1)

Now that PX (x) is fixed for a given image X , finding the
label field that maximizes (1) is equivalent to finding the labels
L which maximize the following energy function:

E = lnPL (l) + lnPX/L (x/l) . (2)

The choice of the conditional distribution PX/L (x/l) depends
on the application. In many applications related to remote
sensing, i.e. sonar or geodesic imaging, a Gauss or a Weibull
distribution [5], [24] is often assumed. However, for the label
field L, a similar assumption for the prior distribution PL (l)
is hard to justify.

We will consider a Potts label field L of size ∥L∥ = H×W
which is defined over the set S = {s}1,...,H×W of image
pixels. In the model, labels Ls are described by one of Q
Potts states. If L is assumed to be a Markov random field, then
PL (l) can be described by a Gibbs distribution according to
the Hammersley-Clifford theorem [25],

PL (l) =
1

Z
eVl , (3)

where Z =
∑
l

eVl is the partition function and Vl is the

potential of a configuration l given by

Vl =
∑
s

∑
t∈Ξs

βstδ (ls, lt). (4)

The Kronecker delta function is defined by δ (a, b) = 1 if
a = b and δ (a, b) = 0 otherwise. The inner sum extends
over the neighborhood Ξs of s and the weights βst are solely
determined by the local site relationships, see Fig. 1 for two
examples of a 2nd neighborhood system.

The solution to the model can be computed by performing
the Bayesian inference using local optimization methods such
as the Iterated Condition Method [5], [23] or global opti-
mization methods such as Simulated Annealing [26]. In the
inference, each unknown parameter of the model is updated

(a) (b)

Fig. 1. Anisotropic interaction between neighboring units in a 2nd-
neighborhood system, and the interaction strength is denoted by βs. (a) is
central asymmetry and (b) is central symmetry.

iteratively, including the conditional probability parameters
and the prior probability parameters. Our method will be
used for updating the prior parameter β with the conditional
parameters fixed.

III. EXISTING METHODS

To simplify the descriptions, except the LSQR method, the
prior parameters are isotropic in the following subsections. In
this case, the blob size in the Potts field increases with β.

A. Maximum Pseudo-Likelihood
ML is a basic strategy for parameter learning, but de-

termining the gradient of the original prior distribution (3)
is forbiddingly hard as it includes calculating the partition
function. To remove this problem, Besag [18] proposed the
MPL method which makes use of a conditional independence
assumption.

Setting Nls =
∑
t∈Ξs

δ (ls, lt), the conditional probability

distribution for the label ls is

P (ls |lΞs ) =
eβNls∑
ls

eβNls
. (5)

With the conditional independence assumption, the conditional
likelihood function, also named pseudo-likelihood function,
can be written as

PL =
∏
s

P (ls |lΞs ). (6)

Taking the derivative of the logarithm of the pseudo-
likelihood function with parameter β, the gradient descent
learning rule for β becomes

∆β = η
∂

∂β
logPL = η

∑
s

Nls −

∑
ls

eβNlsNls∑
ls

eβNls

, (7)

where η is a learning rate.

B. Coding
The coding scheme was proposed also by Besag [25] in

order to better accommodate the conditional independence
assumption. Coding has a similar learning rule as MPL (7),
with the only difference that the lattice is partitioned into
several disjoint sets. A minor problem is how to combine the
results from each set, but usually a simple average is feasible.
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C. Mean field approximation
Mean field approximation can be considered as a gradient-

descent method that has the function of “smoothing”. The
learning rule is

∆β = η
∑
s

∑
zs

P (zs |xs )

Rzs −

Q∑
zs=1

eβRzsRzs

Q∑
zs=1

eβRzs

, (8)

where zs is the vector description for the scalar label ls, and
P (zs |xs ) is the conditional expectation under the mean-field
assumption. Rzs =

∑
t∈Ξs

zs ⟨zt⟩, where ⟨·⟩ is the mean-field

approximation.
The mean-field solution is an heuristic parameter estimation

step in the expectation-maximization (EM) procedure [21],
[22]. Essentially, it uses the gradient descent and resembles
the MPL method, with the exception of replaceing the homo-
geneous clique number with the approximative local interac-
tion energies Rzs , and weighting them with the conditional
probability.

D. MCMC
Besides the heuristic methods that accelerate the estimation

with the cost of accuracy, there is another kind of methods that
pursue the precision at all costs, like Monte Carlo sampling.
There is a 1-to-1 correspondence between β and the expec-
tation of the homogeneous cliques number Nl =

∑
s
Nls [16],

which demonstrates that we can write a learning rule for β
using Nl according to the Monte-Carlo sampling [14], [15],

∆βt = η
(
Êt (Nl)−Nl0

)
, (9)

with the expectation

Êt (Nl) =
1

M

M∑
m=1

Nl

(
Lm,t

)
. (10)

The new set
{
Lm,t+1

}
m=1,...,M

are sampled in the burn-in
period by Gibbs sampling with current parameter βt. Êt (Nl)
is the expectation of samples, and Nl0 is calculated from the
label field to be estimated. To reduce the computation cost,
L0,t+1 = LM,t is used. Even then, the computation cost is
huge because MCMC generates multiple label field samples
by Monte-Carlo sampling.

E. MCMCML
MCMCML has the same learning rule, i.e. Eq. 9, as the

MCMC. However, instead of the average sampling, MCM-
CML uses the importance sampling,

Êt (Nl) =

M∑
m=1

Nl (L
m,t)e(β−ψ)Nl(Lm,t)

M∑
m=1

e(β−ψ)Nl(Lm,t)

(11)

The expectation is a weighted summation of samples, with the
similar samples dominating the gradient. The samples may be
calculated off-line and stored in a dataset [16], but the Gibbs
sampling scale is still large.

F. Likelihood-free methods

Recently, Pereyra et al. [10], [27] proposed a likelihood-free
method based on the approximative Bayesian computation [28]
and the likelihood-free Metropolis-Hastings sampling [17],
[29]. Instead of the gradient descent rules that are derived
from the likelihood or pseudo-likelihood function, it jointly
estimates the label, the prior parameter and other auxiliary
variables by the hybrid Gibbs sampling.

Likelihood-free methods are only exact when perfect sam-
pling [29], [30] is used. Taking the time-criticality into con-
sideration, we will not discuss it in the latter experiments.

G. Least Squares

The LSQR method, proposed by S. Geman and D. Geman
in 1984 [1], is also a heuristic method derived from the
conditional probability.

The ratio of the conditional probabilities (5) is

P (ls = q1 |lΞs )

P (ls = q2 |lΞs )
=

e

∑
t∈Ξs

βtδ(q1,lt)

e

∑
t∈Ξs

βtδ(q2,lt)
= e

∑
t∈Ξs

βt[δ(q1,lt)−δ(q2,lt)]

.

(12)
On other hand, the conditional probability can be approxi-

mated by the histogram statistics,

P (ls = q1 |lΞs )

P (ls = q2 |lΞs )
≈

Nls,lΞs
(q1,Γs)

Nls,lΞs
(q2,Γs)

(13)

where Nls,lΞs
(qi,Γs) is the number of blocks that label

qi is surrounded by Γs which is the neighborhood label
configuration of site s.

From Eqs. 12 and 13, we have∑
t∈Ξs

βt [δ (q1, lt)− δ (q2, lt)] = ln

[
Nls,lΞs

(q1,Γs)

Nls,lΞs
(q2,Γs)

]
(14)

For 8 neighbors, there are 28 configurations Γ implying
28 linear equations which can be solved by a Least Squares
method. However, due to the mathematical constraints, many
equations should be deleted [11]. Therefore, a large number
of image blocks are ignored. Moreover, it is only available for
Ising model because there are Q8C2

Q equations with Q Potts
states. The resulting coefficient matrix not only is extremely
sparse, but also needs huge memory to store.

In summary, the LSQR method appears to be suitable for
Ising fields only. The MCMC methods are more precise than
the heuristic algorithms. However, with iterative Monte-Carlo
sampling, it has a huge computation cost. Even with the
heuristic methods, the whole image needs to be passed several
times. Therefore, it is necessary to design an algorithm that is
available for the time-critical applications.

IV. LOCAL AUTOENCODING

In this section, a local-autoencoding (LAE) scheme will be
proposed to estimate the prior parameters. The LAE algorithm
is intuitively designed for the standard Potts model, its exten-
sion to another Potts model is described in the Appendix.

The LAE method is an attempt to use the block information
in the label field efficiently, thus avoiding the redundancy
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Fig. 2. Local autoencoding. The label of a pixel (shown in red) is predicted
by the labels of its eight neighbors. The solid connections represent the filter
β. The predictive nature of the LAE is visualized as a feedforward network
shown as the dashed lines and circles which do not need to be specifically
represented in the algorithm.

in the LSQR method. It exploits the decomposition of the
potential function Vl (4). Like other heuristic methods [18],
[20]–[23], LAE is also based on the maximization of an
estimate of the pseudo-likelihood (6). We rewrite Eq. 6 as

PL (l) =
∏
s

P (ls |lΞs
). (15)

where the conditional probability is

P (ls |lΞs ) =
eV (ls,lΞs )

Q∑
q=1

eV (q,lΞs )

(16)

=
1

1 +
∑
q ̸=ls

e[V (q,lΞs )−V (ls,lΞs )]
(17)

=
1

1 +
∑
q ̸=ls

e

∑
t∈Ξs

βst[δ(q,lt)−δ(ls,lt)]
. (18)

Eq. 18 was obtained by substituting Eq. 4 into Eq. 17. With

δ (q, lt) + δ (ls, lt)|q ̸=ls =

{
1 if lt = q ∥ lt = ls
0 otherwise

(19)

the conditional probability (18) becomes

P (ls |lΞs )

=

1 +
∑
q ̸=ls

e

∑
lt=q|ls

βst[−2δ(ls,lt)+1]+
∑

lt ̸=q&lt ̸=ls

βst[−2δ(ls,lt)]


−1

t∈Ξs

=

1 +
∑
q ̸=ls

e

∑
lt=q&lt ̸=ls

βst−
∑

lt ̸=q&lt=ls

βst


−1

t∈Ξs

=

1 +
∑
q ̸=ls

e

∑
lt=q

βst−
∑

lt=ls

βst


−1

t∈Ξs

(20)

Algorithm 1 Local autoencoding for Potts model
1: Initialize βi by a small value, βi = 0.01 ∗ U (0, 1);
2: Set the initial learning rate η0 = 0.05;
3: for t = 1; t < T ; t++ do
4: Slowly decreasing the learning rate by η = η0/t;
5: for r = 2; r < H; r ++ do
6: for c = 2; c < W ; c++ do
7: Get the 3*3 block lΞs that centers at s = (r, c);
8: for q = 1; q < Q; q ++ do
9: if q ̸= ls then

10: Transform the label from {1, . . . , Q} to
{−1, 0, 1} by Eq. 28;

11: Calculate the output of pixel s by the
cross-correlation between l′Ξs

and filter β using Eq. 25;
12: Adjust β by Eq. 27;
13: if ∥β∥ = 4 then
14: βi =

βi+β9−i

2 ;
15: end if
16: end if
17: end for
18: end for
19: end for
20: end for
21: Output β̂ by averaging the estimations in the last τ steps;

If βst is coincidentally very large when ls = lt and βst is
very small (or negative) when ls ̸= lt, then P (ls |lΞs ) and
the pseudo-likelihood function Eq. 15 would be very large.
In other words, when maximizing PL (l), βst should increase
when ls = lt and decrease when ls ̸= lt. So, interactions
between the pixels of the same class should be strengthened.
In verse, interactions between different classes should be
shrunken. Such a rule is similar to a Hebbian learning rule
of a binary Hopfield network. The learning rules for the prior
parameter, starting with the Ising model and then the Potts
model, will be developed in the following subsections.

1) Ising model: If the label values in l ∈ {−1, 1}, Eq. 4
can be rewritten as

Vl =
∑
s

∑
t∈Ξs

βst

(
δ (ls, lt)−

1

2
+

1

2

)
(21)

=
1

2

∑
s

∑
t∈Ξs

βstlslt + c, (22)

where c = 1
2

∑
s

∑
t∈Ξs

βst is a constant. The first term turns

out to be the Hamiltonian of a Hopfield network, but with
local spatially invariant connections. Such a transformation
shows again that we can estimate the prior parameters {βst}
by Hebbian learning.

The following filter parameters are assumed

β = {βst} =

 β1 β2 β3

β4 0 β5

β6 β7 β8

 . (23)

The Hamiltonian term in Eq. 21 can be further rewritten as

Hl = −
∑
s

lsHls = −
∑
s

ls(lΞs · β), (24)
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which shows that the local field potential of site s, Hls , is the
cross-correlation of each local block with the same filter β.
Thus, the remaining task is to learn the filter β.

Based on the transformation, we propose an estimation
algorithm for the filter coefficients by local-autoencoding. The
central idea of LAE is to encode the label of each pixel by
the labels of its neighboring pixels, see Fig. 2. It should be
noted that LAE approximates the label field by itself, so the
two layers are identical. In the experiments, we only have to
store one label field. The top layer in Fig. 2 is plotted merely
for visualization.

If the output of pixel s is

ℓs = f (lΞs · β) , (25)

where f is a sigmoid function,

f (x) =
2

1 + e−x
− 1. (26)

Defining the error energy es = 1
2 (ℓs − ls)

2, we derive a
learning rule according to the BP algorithm

∆βi=− η (ℓs − ls)
1

2

(
1− ℓ2s

)
lsi . (27)

where η is the learning rate.
2) Potts model: The Potts state q is a symbol rather than a

real value. Thus, the problem arises how to transform the labels
such that they become suitable for Hebbian learning. Eq. 20
implies that we should employ Q− 1 transformations (except
q = lt). For each vertex t in the neighborhood of the current
vertex s, three cases need to be considered, lt = q, lt = ls
and the remaining ones. When encoding the center vertex s
with the vertexes in the local 2nd-order neighborhood, only
vertexes that have the same label contribute positively to the
center vertex.

Based on these considerations, we designed the following
transformation strategies: (1) The center label is fixed to 1; (2)
All neighboring labels that are the same as the center label
are transformed to 1, while those labels that are equal to the
current transformation index q turn to −1. (3) The neighboring
label that is neither equivalent to the center label nor equivalent
to current q has nothing to do with the maximization process,
we set it to 0 directly. Formally, we transform the block labels
from {1, ..., Q} to {−1, 0, 1} by


l′s = 1

l′t =


1 if lt = ls

−1 if lt = q

0 otherwise

(28)

for all q ̸= ls. Note that the 0-state does not exist in the Ising
field. Simply, each block is transformed to Q−1 binary blocks
with each label being in {−1, 0, 1}.

A transformation example is given in below (Q = 4),

 2 2 1
1 3s 1
4 4 3

 ⟨
q = 1

 0 0 −1
−1 1 −1
0 0 1


q = 2

 −1 −1 0
0 1 0
0 0 1


q ̸= 3s

q = 4

 0 0 −1
−1 1 −1
0 0 1


(29)

Now, the learning rule, Eqs. 25 and 27, for the Ising case is
available also for the Potts model.

The detailed algorithm is shown as Algorithm 1. Other
learning strategies, like conjugate gradient method or New-
tonian descent algorithm [31], may converge more quickly,
but for simplicity, only a primitive BP learning rule is used
here.

It should be noted that the output of the LAE algorithm
is the average of the last τ steps. When T > 1, we set
τ to the size of the image, τ1 = (H − 2)(W − 2). When
T = 1, we choose τ2 = τ1/3. As it will become clear in the
experiments below, a smaller τ would be adequate for practical
applications.

V. EXPERIMENTS ON PARAMETER ESTIMATION

In this section, we use four experiments to test the perfor-
mance of the proposed LAE method. The former three experi-
ments are conducted on the label fields, which are generated by
the Gibbs sampling with known prior parameters (completely
observable data). The convergence speed and the Cramer-Rao
bound for isotropic case are presented in Sections V-A and V-B
respectively. In section V-C, we show that LAE can also be
used to estimate the anisotropic interaction parameters. In the
last experiment (Section V-D), we try to segment the real sonar
image by incorporating LAE into the ICM process.

A. Convergence

In the first experiment, we use different algorithms listed
in Section III to estimate the prior parameters of a known
label field. Fig. 3(a) and (b) show two samples (Q = 2, size
256× 256) generated by the Gibbs Sampling [26].

The existing methods, including MCMC methods and the
heuristic methods, have to scan the whole field for multiple
times. As it can be seen in Fig. 3(e)–(g), the scan times needed
for MPL, Coding, MCMC, MCMCML are about 40,100,5 and
5 respectively. However, the proposed LAE method quickly
converge to the vicinity of the true value even only ∼ 1000
vertexes (about 1

60 field) have been visited. Note that MCMC
methods have to sample at least a label field in each run.

The estimation results for Fig. 3(a) are MPL (β̂ = 0.7001),
Coding (β̂ = (0.7120 + 0.6950 + 0.6901 + 0.7037) /4 =
0.7002, 4 sets), MCMC (β̂ = 0.7024), MCMCML
(β̂ = 0.6988) and LAE (β̂ = 0.7003). The result-
s for Fig. 3(b) are MPL (β̂ = 1.0147), Coding (β̂ =
(1.0551 + 1.0165 + 1.0001 + 0.9910) /4 = 1.0157, 4 sets),
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Fig. 3. Convergence speed. (a) and (b) are label field samples generated with β = 0.7 and β = 1.0, respectively, by Gibbs sampling; (c)–(g) are the prior
parameter estimation process of MPL, Coding, MCMC, MCMCML and LAE, respectively.

MCMC (β̂ = 0.9957), MCMCML (β̂ = 0.9818) and LAE
(β̂ = 1.0026). Both show that the LAE method has comparable
performance with the existing methods. τ2 is used to obtain
the final output in LAE here. The results demonstrate that the
proposed LAE algorithm is superior in the convergence speed
and, at the same time, produces accurate estimates.

B. Cramer-Rao Bound for isotropic β

In order to assess the performance of the LAE and the other
estimators, it is interesting to compare the mean-squared-error
(MSE) of each estimator with the CRB for β, which provides
a lower bound on the MSE of the ML estimator.

1) CRB vs. iterative methods: The theoretical calculation is
available only for the Ising field (Q = 2) with circular bound-
ary conditions [12], see the solid-black curve in Fig. 4(b).
However, Pereyra et al. proposed that the computationally
intractable CRB for a Potts model can be addressed by a
Monte-Carlo integration [32]. That is,

CRBapprox = − log
(
Var

(
Ñl
))

, (30)

where Ñl is a vector with length 50, 000. ‘Var’ stands for the
variance. In Fig. 4(b), CRBapprox curves are plotted in dotted-
cross. To assess the performance, we calculate the logarithm
of the MSE for each estimator,

logMSEestimator = log

{
E

[(
˜̂
β − βgenerate

)2]}
, (31)

where β̂ is the estimation value.
Results in Fig. 4 compare the logMSEestimators with the

theoretical value and the CRBapprox. For each βgenerate,
50, 000 samples are generated along the Markov chains with
a Gibbs sampler. Similar to [32], the samples are defined on
a toroidal graph of size H ×W = 32× 32. For each sample,
we count its homogeneous clique number Nl, and estimate the
prior parameter β̂ with different methods. For a comparison,
we also show the results when Q = 3 in Fig. 5.

In Fig. 4(b), CRBapprox varies largely around β = 0.9 for
the Ising field, which coincides well with the theoretical phase-
transition temperature βc = log(1+

√
Q) = 0.8814. This also
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Fig. 4. CRB for an Ising model (Q = 2, size=32×32). “Onsager” denotes the
theoretical value provided in [12], ‘CRB’ curve is the CRBapprox calculated
by Eq. 30. Other values are logMSEestimators calculated by Eq. 31.

holds for Fig. 5(b). Five other observations can be drawn from
the results: Firstly, the mean of LAE (red dotted-diamond in
Fig. 5(a)) saturates a little earlier than other methods when η =
0.1. The corresponding logMSEestimator begins to increase
quickly then, i.e. around β = 1.2. Secondly, the LAE method
has comparable performance with other algorithms when β is
not very large, which demonstrates that LAE performs well
in [0, 1] when Q = 2, 3 and size= 32 × 32. Thirdly, a larger
learning rate i.e. η = 0.3 (red cross in Fig. 5(a)), obtains
a larger MSE. According to our experiments, η = 0.1 is
selected in the following simulations. Fourthly, the logMSE
of the LAE method is a little larger than the MPL algorithm
when β > 0.7. However, they have comparable performance
when β ≤ 0.7. After all, they are both originated from the
conditional independence assumption. Lastly, the sampling
methods have better performance when β < 1.2. However,
all methods degenerate with the same tendency since then,
because of the the homogeneous label fields.

2) CRB vs. label field size: The estimation process of
LAE makes full use of all kinds of the block configuration
information in the label field. It means that a larger label field,
which has a larger probability containing all the necessary
blocks with the given β, may lead to a smaller estimation bias.
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Fig. 5. CRB for a 3-state Potts model (size=32× 32).

Consequently, a smaller MSE would be obtained. To test the
hypothesis, we plot the mean and the logMSE of the proposed
LAE estimator for different label field sizes in Fig. 6 (Q = 3).

Indeed, Fig. 6(a) demonstrates that the bias decreases grad-
ually when the label field size grows. The reason is very
simple. When β becomes very large, each sample becomes an
almost homogeneous label field. The difference in β can only
be reflected by some minor specific configurations. However,
these configurations appear by probabilities, which is induced
by Gibbs sampling. A larger label field size means an increase
of the chance of those specific configurations. Therefore, the
estimation approaches the true parameter better.

Consequently, logMSEestimators (markers filled with white
in Fig. 6(b)) decrease gradually when β < 1. However, they
grow almost linearly with the same gradient when β becomes
larger, because Nl no longer grows. For the same reason,
CRBapprox (markers filled with solid black in Fig. 6(b)) grows
gradually.

3) CRB vs. Potts number: In the last test (see Sec-
tion V-B2), we found that the performance of the proposed
LAE estimator is dominated by the minor “specific” con-
figurations and the number of homogeneous cliques when β
becomes very large. Both of them grow with the Potts number
Q, it is expected that the mean of the LAE estimator will
increase with Q, while the CRBapprox will decrease with Q.
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Fig. 6. The relationship between the CRB and the sample scales (Q = 3).
In (b), all markers filled with solid black are the approximative CRB, others
are the logMSE of each estimator.

The dependence relationship between the mean, the CRB,
the MSE and the Potts number are plotted in Fig. 7. It can be
seen from Fig. 7(a) that the mean indeed approaches the true
generation parameter when Q increases. The reason is that
the label field becomes more and more rugged. Therefore, the
same graph is more likely to have more “specific” information.
However, the limited size, 32 × 32 is insufficient to provide
all the “specific” configurations, leading to an estimate with
relatively larger bias. Therefore, logMSEestimator decreases
with Q, and grows linearly when β is very large.

C. Prior parameter estimation when β is anisotropic

We use the LAE method to estimate the anisotropic prior
parameters. The performance can be measured by the differ-
ence between the estimated parameters β̂ and the generation
parameters β. To maintain consistency with the literature [23],
[24], [33], we first apply the method to estimate the sample
generated by anisotropic parameters with central symmetry. To
highlight the robustness, accuracy and generality, we design
another experiment in which the central-symmetry condition
is dropped and the samples are generated by the Gibbs
sampler [26].
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Fig. 7. The relationship between the CRB and the number of Potts states
(size=32× 32).

TABLE I
ESTIMATION RESULT OF ANISOTROPIC PRIOR PARAMETERS WITH

CENTRAL SYMMETRY

Estimation β1 β2 β3 β4Fig. 8 True β -1 1 1 2
β̂(LAE1) -0.9215 0.8709 1.1140 2.0021

(a)
β̂(LAE10) -1.1204 1.0423 1.0320 2.1079
β̂(LAE1) -0.9655 0.9830 0.9931 1.9400

(c)
β̂(LAE10) -1.0514 1.0395 0.9973 1.9780
β̂(LAE1) -1.0155 0.9731 1.0610 1.9758

(e)
β̂(LAE10) -1.0317 1.0134 1.0029 2.0096
β̂(LAE1) -0.8926 0.9412 1.0214 1.9152

(g)
β̂(LAE10) -0.9376 0.9691 1.0034 1.9280

1) When β is anisotropic but central-symmetric: When β
is anisotropic but central-symmetric, there are four interaction
parameters to be considered. The four samples shown in
Fig. 8(a), (c), (e), (g) are generated with the same prior
parameters, but with a number of Potts states increasing from
Q = 2 to Q = 5. The corresponding parameter estimation
processes are plotted for T = 10 in Fig. 8(b), (d), (f), (h).

In addition, we also analyze the effects of the number of
iterations by changing the parameter T in the LAE algorithm.
LAE with only one pass (T = 1) is termed LAE1, while
LAE10 implies 10 passes. The results for LAE1 and LAE10
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Fig. 8. Estimates of the anisotropic prior parameters with central symmetry by local autoencoding. The Potts states of the samples shown in (a), (c), (e), (g)
are Q = 2, 3, 4, 5 respectively. They are generated by the same 4 interaction parameters, and the parameters are shown in Table I; (b), (d), (f), (h) shows the
estimation process of the prior parameters (T = 10). (\), (|), (/) and (−) shows the direction of each interaction strength.

are listed in Table I.
Table I shows that there is no obvious difference between

the results of LAE1 and LAE10. We define a measure that is
similar to the logMSE in Eq.31 to evaluate the performance
of the algorithms,

Λ = log

[
1

∥β∥
∑
i

(
β̂i − βi

)2]
, (32)

where ∥β∥ is the length of filter β. The value for LAE1 and
LAE10 is respectively, ΛLAE1 = −6.8344 and ΛLAE10 =
−7.2605. It demonstrates again that, only within one pass, the
proposed LAE method is able to obtain an accurate estimation.
We conclude that LAE1 is available for the practical applica-
tions, though multiple passes will improve the precision.

2) Fully anisotropic interactions: The LAE algorithm does
not require central symmetry, which suggests that LAE may
also be used to estimate the samples that are generated by
fully anisotropic interaction parameters.

In the experiment, we first use LAE1 and LAE10 with
eight parameters to estimate the central-symmetric samples in
Fig. 8. This does not only help to evaluate the performance of
the proposed method, but also allows us to examine whether
the interaction parameters of these samples are indeed strictly
central-symmetric. Results are given in Table II. Then, we
change the generation parameters (show red in Table III), and
use the new anisotropic parameters without central symmetry
to generate new samples. Fig. 9 shows the fully anisotropic
samples, and Table III lists the estimation results.

Two observations can be drawn from the estimation results:
Firstly, even with central-symmetric label fields, like Fig. 8,
there exists bias between parameters in the central-symmetric
positions, i.e. ζi = |βi − β9−i| ̸= 0, which demonstrates that
samples generated by central-symmetric interaction parameters

are not strictly regular across the whole image. The larger of
ζi, the more irregular of the direction of i. Therefore, the bias
can be used to measure the regularity in each direction.

Secondly, it is important that for samples generated by
fully anisotropic parameters (Fig. 9), the estimates provided
by LAE1 and LAE10 are approximately central-symmetric,
which shows that central-symmetry is a feasible assumption
for most label fields. This also demonstrates that samples
generated by central-asymmetric parameters are unsuitable to
be described by the original generation parameters. In other
words, each sample can be generated by more than one set of
prior parameters, which is expected to be due to the mixing
effects of central-asymmetric forces.

D. Segmentation of incompletely observable data

In the end, we apply the LAE method to incomplete-
ly observable data, i.e. sonar images by integrating it into
the ICM method. ICM is selected for its low computation
cost [34]. Being a local optimization method, it may converge
to a local extreme. Better optimization can be expected when
global methods are applied, such as Graph Cuts, Simulated
Annealing, Genetic algorithms [26]. The ICM method starts
from an initialized label field, then loops between parameter
estimation and label updating until a balanced Markov chain is
obtained. In each iteration, LAE and ML are used to estimate
the prior parameters and conditional parameters respectively,
and the Gibbs sampling moves the label field towards the
balance state.

An important task in sonar image segmentation is the
extraction of the shadow areas. The first column of Fig. 10
shows three pictures that are taken by a forward-looking sonar
(Fig. 10(a)), a side-scan sonar (Fig. 10(b)) and a multi-beam
high-resolution sonar (Fig. 10(c)). The remaining columns of
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TABLE II
ESTIMATE CENTRIC-SYMMETRIC LABEL FIELD SAMPLES IN FIG. 8 WITH 8 PARAMETERS WITH LAE10

Estimation β1 β2 β3 β4 β5 β6 β7 β8

True β -1 1 1 2 2 1 1 -1
β̂(a) -1.1354 1.0729 1.0373 2.1266 2.1774 1.0491 1.0695 -1.1768
β̂(c) -1.0943 1.0318 1.0085 2.0262 1.9652 1.0058 1.0656 -1.0306
β̂(e) -1.0386 1.0303 1.0066 2.0108 2.0333 1.0176 1.0099 -1.0400
β̂(g) -0.9544 0.9509 1.0144 1.9552 1.9281 1.0130 0.9986 -0.9321
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Fig. 9. Fully anisotropic prior parameters estimation by local autoencoding. The Potts states of the samples shown in (a), (c), (e), (g) are Q = 2, 3, 4, 5
respectively. They are generated by the same 8 interaction parameters, and the parameters are shown in Table III; (b), (d), (f), (h) shows the estimation process
of the prior parameters (T = 10).

TABLE III
ESTIMATION RESULTS FOR FULLY ANISOTROPIC PRIOR PARAMETERS (THE RED TRACE HIGHLIGHTS THE CHANGES COMPARED TO THE

CENTRIC-SYMMETRIC CASE.)

Estimation β1 β2 β3 β4 β5 β6 β7 β8Fig. 9 True β -1 1 1 2 2 1 -1 1
β̂(LAE1) -1.0181 1.7366 0.5269 1.9241 1.8344 0.6372 1.5091 -0.6504

(a)
β̂(LAE10) -0.9501 1.7049 0.4741 1.7872 1.6881 0.4854 1.5840 -0.7290
β̂(LAE1) -1.1792 1.7024 0.6341 2.2634 2.3668 0.7214 1.7127 -1.2571

(c)
β̂(LAE10) -1.0002 1.6082 0.4533 1.9899 1.9858 0.4634 1.6087 -1.0085
β̂(LAE1) -0.9458 1.8845 0.4816 1.9552 2.0906 0.5390 1.7335 -0.8670

(e)
β̂(LAE10) -0.7944 1.5394 0.4001 1.8273 1.8288 0.3736 1.5590 -0.7948
β̂(LAE1) -1.0013 1.5831 0.6120 2.0285 2.1246 0.6439 1.6932 -1.1361

(g)
β̂(LAE10) -0.9006 1.4897 0.4979 1.9358 1.8995 0.4724 1.5413 -0.8857

Fig. 10 show the segmentation results by different methods.
The raw images are first segmented by the ICM procedure
with different prior parameter estimation methods. In the
post-processing stage, morphological operators, such as image
erosion and dilation, are adopted sequentially to get rid of
the pepper-and-salt noise. In the results, candidate areas larger
than 100 pixels are displayed with different colors.

We compare the results with the frequently used LSQR
method [5], [23], [24], [33], [35]. In Fig. 10, “LAE10 8”
discriminates background speckles from foreground objects
more precisely, while “LSQR 8” is unsuitable for real image
segmentation. Further, “LAE1 4”, “LAE1 8”, “LAE10 4”

provide very similar segmentation results, which not only
proves that the LAE algorithm with T = 1 and four prior
parameters is already sufficient for image segmentation, but
also highlights the computation superiority of LAE. The most
important is that, LAE can be used to estimate arbitrary
anisotropic samples.

The segmentation results of the EM procedure with mean-
field approximation (EMMF for short, Section III-C) [22]
(also for Q = 2) are shown in the last column of Fig. 10.
With the forward-looking and the side-scan sonar images, the
shadow areas mix with the the background areas. This implies
that “smoothing” is undesirable for the segmentation of sonar
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Fig. 10. Candidate shadow areas from sonar image extracted by the ICM method. Columns correspond to variants of the the LSQR algorithm and the LAE
method used for estimate parameters, and the EMMF method which uses the mean field approximation algorithm. The variants are defined by the number of
neighborhood parameters and the number of loops, e.g. “LAE1 4” indicates T = 1 and ∥β∥ = 4 for the LAE algorithm.

images.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, a novel prior parameters estimation method,
named local autoencoding (LAE), for MRF model is devel-
oped. LAE makes full use of the local block information in
the image and learns the interaction parameters block by block
with simple BP learning rules.

The experimental results illustrate that it converges rapidly
to the true parameter, while provides an accurate estimate at
the same time, which are favorable for time-critical practices.
Besides, LAE has low computation and memory costs. In
addition, LAE is attractive in several other aspects:

Firstly, LAE is a local-learning algorithm, which means that
it is capable of estimating the local interaction parameters
in any given specified area. In other words, LAE is a local
self-adaptive algorithm, and it can be used to measure the
differences of interaction parameters across the whole image.

Secondly, LAE is an incremental-learning algorithm. The
estimated values from the current iteration can be used as the
initial values for the parameters in the next iteration. In the
ICM iteration, only those pixels that have label switchings in
Gibbs sampling process should be chosen to improve the filter
by incremental learning.

Thirdly, LAE is not limited to the specific neighborhood
system that we have used here. Higher-order neighborhoods
help to preserve finer structures [36], [37]. In that case, we
only need change the size of the filter, and LAE algorithm is
readily applicable then.

Lastly, a major advantage of the LAE algorithm is that it
presents a general framework for prior parameter estimation.
It can be used to estimate the interaction parameters for
other Potts models. For example, the prior parameters of
the above Potts model are only determined by the relative
site relationships, while Kanter’s model [38] parameters in
Appendix A are also determined by the labels between neigh-
boring pixels. Descombes’ Potts model [16] is an exceptional
example, where interaction parameters, βs, are no longer local

spatial-invariant (e.g. homogeneous), they are determined by
a set of variables (e.g. inhomogeneous) [16]. In this case, we
may use the same transformation rule in Eq.(28), and then
take the derivative of the error energy with respect to each
variable. Result shows that the LAE algorithm is feasible
for Descombes’ Potts model (data is not shown). There are
also other kinds of Potts models, like [39], [40], their prior
parameters are homogeneous and can be estimated by similar
extensions. Although these models deserve a more detailed
consideration and a comparative evaluation, the full treatment
is beyond the scope of this paper.

APPENDIX A
EXTENSION TO KANTER’S POTTS MODEL

In Kanter’s model [38], each Potts unit can be in a number
Q of distinct active states with equal probability 1/Q. The
Hamiltonian with only local interactions can be written as

H = −1

2

∑
s

∑
t∈Ξs

Q∑
v,p=1

βvpst ulsvultp (33)

where ulsv = δlsv − 1
Q is the interaction operator between

states ls and v. There are 8Q2 interaction parameters to be
estimated. To further reduce the computation and ease the
consideration, we take two simplified strategies:

1) βvpst is isotropic, βvpst ≡ βvp;
2) Omit the constant − 1

Q in the interaction operator.

Similary, when maximizing the conditional probability

P (ls |lΞs ) =

1 +
∑
q ̸=ls

e

∑
lt=p&q=v

βvp−
∑

lt=p&ls=v

βvp


−1

t∈Ξs

,

(34)
βvp should increase when ls = v and lt = p, and decrease
otherwise. Note that the first term in the exponent has nothing
to do with βvp. It is also similar to the Hebbian learning and
the LAE algorithm is applicable now. Then, the transformation
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Fig. 11. Prior parameter estimation for Kanter’s Potts model (Q = 3). (a)
and (b) are samples, (c) and (d) are the corresponding parameter estimation
process using the LAE algorithm (T = 10).

rule from Potts states to {−1, 1} is

for s
ls == p?l′s = 1 : l′s = −1;

for t ∈ Ξs
lt == q?l′t = 1 : l′t = −1;

(Optional)
if l′s +

∑
t∈Ξs

l′t = −9

discard the block;
end

.

A transformation example (Q = 3) is shown below,

 1 1 1
1 2 1
1 3 3

 ↗
↘

β23

 −1 − 1 − 1
−1 1 − 1
−1 1 1

√

β32

 −1 − 1 − 1
−1 −1 − 1
−1 − 1 − 1

⃝

(35)

The same block is necessary in estimating β23, but is optional
in estimating β32.

Similar to Eq.24, the output of pixel s when we estimate
βpq is

ℓvps = f

(∑
t∈Ξs

βvpst l
′
sl

′
t

)
(36)

The error energy evps = 1
2 (ℓ

vp
s − lvps )

2. The gradient descent
rule for βvpi is

∆βvpi = −η (ℓvps − lvps )
1

2
(1− lvps )

2
∑
t∈Ξs

l′sl
′
t (37)

Metropolis sampler is adopted for the label field generation
with the single-site energy being Es =

∑
t∈Ξs

∑
v,p

βvpst ulsvultp.

Two samples generated by the simplified Kanter’s Potts model
and their prior parameter estimation process is shown in
Fig.11. The detailed generation parameters and estimation

TABLE IV
ESTIMATION RESULTS OF THE KANTER’S POTTS MODEL IN FIG.11

Fig.11 βvp β̂vp

(a)

[
0.90 − 0.30 − 0.30

−0.60 0.70 − 0.60
−0.30 − 0.30 0.90

] [
0.84 − 0.36 − 0.36

−0.37 0.85 − 0.36
−0.37 − 0.36 0.84

]

(b)

[
−0.10 0.50 − 0.35
0.10 − 0.05 − 0.40

−0.20 − 0.15 0.50

] [
−0.11 0.38 − 0.31
0.34 − 0.10 − 0.31

−0.19 − 0.18 0.55

]

value are listed in Table IV. The results show that the LAE
algorithm can be used to estimate Kanter’s Potts model by
simple label transformations.
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