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Evolution of drug resistance in bacteria

B. Waclaw

Abstract Resistance to antibiotics is an important and timely problem of
contemporary medicine. Rapid evolution of resistant bacteria calls for new
preventive measures to slow down this process, and a longer-term progress
cannot be achieved without a good understanding of the mechanisms through
which drug resistance is acquired and spreads in microbial populations. Here
we discuss recent experimental and theoretical advances in our knowledge
how the dynamics of microbial population affects the evolution of antibiotic
resistance. We focus on the role of spatial and temporal drug gradients and
show that in certain situations bacteria can evolve de novo resistance within
hours. We identify factors that lead to such rapid onset of resistance and
discuss their relevance for bacterial infections.
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1 Introduction

Since their inception in the beginning of the 20th century, antibiotics have
been an indispensable tool used to treat and prevent bacterial infections and,
together with other health care improvements, have revolutionized medicine.
However, penicillin-resistant bacteria emerged in just a few years after the in-
troduction of penicillin [21], and it is now widely acknowledged that resistance
to antibiotics is becoming a global thread [16]. Different counter-measures
have been proposed [52, 1, 2], including reducing the use of antibiotics, bet-
ter surveillance methods or incentives for the pharmaceutical industry to
develop new antibiotics. However, the battle against antimicrobial resistance
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(AMR) can not be won unless we fully understand the molecular basis of
resistance, how it spreads among microorganisms, and how it is selected for.

This chapter reviews theoretical and experimental progress in our un-
derstanding of the evolution of AMR. We focus on the role of population
dynamics and spatial and temporal heterogeneities - the areas which have
strongly benefited from a physics-like approach. We briefly discuss relevant
experiments and show how their outcomes can be understood using simple
mathematical models. In the last section we also speculate on the significance
of in vitro experiments and theoretical models to bacterial infections in vivo.

We do not discuss molecular mechanisms behind AMR [7, 18] except where
necessary. This gives our discussion a more general flavour. In fact, many
analogies exist between AMR and resistance to cancer chemotherapy [36],
and theoretical models similar to discussed in this chapter have been applied
to cancerous tumours [22, 23] and viral infections [46].

2 Quantifying resistance

Drug resistance refers to the ability of a pathogen to grow in the presence of
a drug. Many different measures have been proposed to quantify resistance.
One of them is the minimal inhibitory concentration (MIC), above which
no growth can be detected in a standardized experimental protocol [4]. Dif-
ferent bacteria and antibiotics have very different MICs [4]. MIC can be as
low as ∼ 10ng/ml (fluoroquinolones, susceptible bacteria) and as high as
∼ 10mg/ml (beta-lactams, beta-lactamase carrying bacteria) depending on
what enzyme the antibiotic targets, the permeability of the cell membrane,
and other factors. Another popular way of quantifying resistance is IC50 -
the concentration of the drug at which the growth rate decreases by 50% in
the exponential phase of growth. A yet more complete characterization of the
response to an antibiotic can be obtained by measuring the growth rate at
different drug concentrations [55, 26]. These “kill curves” are non-universal
and depend on the antibiotic, bacterial strain, and growth conditions [26],
but they often follow a sigmoidal shape (Fig. 1, left).

High levels of resistance are typically mediated by genes that code enzymes
degrading or pumping out the drug [21]. Such genes are often acquired from
other microbial species in the process of gene exchange. However, low-to-
moderate resistance can also evolve de novo, sometimes following only a brief
exposure to the drug. A single-nucleotide changing mutation that alters the
binding site of the antibiotic may be enough to increase the MIC tens of
times or more [13, 42, 29], and a combination of a few such mutations may
be enough to increase it a few thousand times [42]. Such mutations occur
with probabilities 10−9 to 10−7 per nucleotide per replication [25, 60, 37, 51].
In what follows we shall consider only de novo evolution of AMR.
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Fig. 1 Left: A typical kill curve (blue) versus antibiotic concentration c. Net growth =
replication minus death. IC50 and MIC are defined as c at which growth is 50% of the
maximal rate and zero, respectively. The net growth can become negative above MIC if
the drug kills the cells or the cells are removed by another mechanism. The curve for the
resistant strain (red) is shifted to larger c and hence it has higher MIC and IC50. Right:
growth curve g = 1− (c/MIC)2 from Eq. (2) used in mathematical models in this chapter.

3 Evolution of resistance in homogeneous environments

In many laboratory experiments on AMR [28, 53, 33, 41], bacteria grow in
a shaken flask, a microtiter plate, or a chemostat. Shaking or stirring mixes
the content so that all bacteria experience identical conditions, including
the same concentration of the antibiotic. After a few tens of generations
bacteria often evolve resistance in these experiments when exposed to sub-
lethal concentrations of the drug.

To gain insights into what determines the rate of AMR evolution in such
experiments, we shall study a simple mathematical model of a population of
N bacteria of different genotypes m with different resistance levels (different
MICs). Let m = 0 be the most sensitive (least resistant) genotype and let the
MIC increases monotonously with m (Fig. 2, top). Genotype m reproduces
at rate gm which increases with m. Reproduction is assumed to be balanced
by death so that the size remains approximately constant1. Genotype m can
mutate into genotypes m± 1 with probability µ per cell per replication.

We want to calculate the rate u at which a new, more resistant mutant
reproducing at a higher rate gm+1 > gm will emerge and take over the
population. If the population size is much smaller than the inverse of the
mutation rate, the rate-limiting step is the process of generating resistant
mutants. The rate u is then the product of the rate µgmN with which the
mutants are created, times the probability F that a mutant fixes (becomes
the dominant organism) in the population. The fixation probability F can be
obtained using the standard result of population genetics [50] and is approx-
imately equal to the selective advantage of mutant m + 1 over mutant m:
F = (gm+1 − gm)/gm+1

2. The rate u is then µgmNF and the average time
to resistance can be estimated as

1 This can be achieved experimentally by serially diluting the culture when it reaches
saturation, or by continuously diluting it in a chemostat.
2 This is true as long as F ≫ 1/N .
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Tm→m+1 = 1/u =
gm+1

µNgm(gm+1 − gm)
. (1)

Each of the growth rates {gm} is a function of the antibiotic concentration
c. For the sake of simplicity, we shall assume that

gm = gmax

(

1− (c/MICm)2
)

, (2)

so that all gm look the same when plotted against the “normalized” concen-
tration c/MICm (Fig. 1, right). Equation (2) is of course only an approxima-
tion to the real kill curves, but for c < MICm it qualitatively reproduces the
curves for many antibiotics (c.f. Ref. [55]).

3.1 Time-independent drug concentration

Let us now apply Eq. (1) to the case of fixed concentration c and the initial
population consisting of the sensitive strain m = 0. If c > 0, the antibi-
otic imposes a selection pressure on the sensitive strain. If the antibiotic
concentration is below MIC0 and the sensitive strain can grow (g0 > 0), a
faster-growing mutant m = 1 will eventually emerge. After some time T0→1

the population will consist mainly of genotype m = 1, which will then pro-
duce mutant m = 2 etc. Importantly, however, the time T1→2 will typically
be larger than T0→1 because the difference g2 − g1 is smaller than g1 − g0.
To see this more clearly, let us consider a particular, if slightly artificial, ex-
ample of gm given by Eq. (2) with MICm = 2m. The MICs of the genotypes
m = 0, 1, 2, 3, . . . in this example are 1, 2, 4, 8, . . . (arbitrary units) and the
growth rate decreases quadratically with increasing c. This is our “standard
model” that we shall use in this chapter. From (1) we obtain that

Tm→m+1 =
4m

(

4m+1 − c2
)

gmax3µNc2 (4m − c2)
. (3)

Figure 2, left, shows how quickly Tm→m+1 increases with m. This is mainly
caused by the fixation probability F decreasing fast with m. Intuitively, this
is to be expected - each new mutation increases the MIC but does not increase
the growth rate as significantly as the previous mutation if drug concentration
is kept constant. This means that although evolving a moderately resistant
strain requiring only a single mutation (m = 1) does not take very long,
evolving a strain with multiple mutations m ≫ 1 is a very slow process
because the total time T0→1 + T1→2 + . . .+ Tm−1→m increases quickly with
the number m of mutational steps.

This is confirmed in a stochastic simulation in Fig. 2, right. We assume that
cells die with rate d and replicate with rates gm = (1 − (c/2m)2)(1−N/K).
Here N is the total population size, and K is the carrying capacity. The term
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Fig. 2 Top: allowed mutations between genotypes m = 0, 1, 2, . . .. Bottom left: plot of the
times Tm→m+1 to the next mutant m + 1, for c = 0.9 and MICm = 2m. Bottom right:
a single simulation run for a stochastic model with carrying capacity K = 108, death
rate d = 0.5, mutation probability µ = 10−9, and c = 0.6. Colours blue, green, red, and
pink (as in the top panel) correspond to m = 0, 1, 2, 3. We can see consecutive fixation
of the green, red and pink mutants which replace the previous genotype, as well as failed
fixation attempts (“spikes” with Nm < 10). This process will continue until there are no
mutations that could further increase the MIC, or the selective advantage F of the new
mutant becomes comparable to 1/K. All further mutations behave as neutral mutations
and their fixation is extremely rare (probability F = 1/K).

1 − N/K decreases the growth rate as the carrying capacity is approached,
limiting the total population size. Fig. 2, right shows that it takes 10x less
time to evolve mutant m = 1 than to evolve the 4x-more-resistant mutant
m = 3. Note that Eq. (3) agrees only quantitatively with this result because
it uses maximal rather than actual growth rates. When the actual rates are
taken into account, the agreement becomes quantitative [27].

3.2 Evolution in time-varying drug concentration

We shall consider two processes in which the concentration c(t) of the antibi-
otic changes in time:

1) c(t) varies according to a fixed protocol, independent of the actual state
of the population. This is the case of a typical antimicrobial therapy in
which a patient takes the medicine at regular intervals, regardless of the
present size or genetic composition of the microbial population. In an
in vitro experiment, this amounts to e.g. adding progressively more and
more antibiotic to a batch bacterial culture, or gradually increasing the
antibiotic influx in a chemostat.



6 B. Waclaw

2) c(t) is continuously adjusted to maximize selection while avoiding killing
the population. The size of the population, monitored e.g. by measuring
the turbidity of the sample, is used in a feedback loop to control the influx
of the drug. An example of a device with such a feedback is the morbidostat
[62].

Process (1) can lead to a rapid evolution of resistance only if c(t) increases
fast enough to be always close to the MIC of the most-resistant genotype in
the population, but not exceeding it – otherwise, the population dies out.
For a low removal rate d, the critical time Tcrit over which the concentration
increases from c ≪MIC to c ≈MIC must be larger than the time to produce
at least one resistant mutant. In the case of subsequent fixation of beneficial
mutants and for small populations (µN ≪ 1), this critical time is

Tcrit ≈ 1/(µgmN), (4)

whereas in a large populations in which new mutants occur frequently, the
rate-limiting step is the growth from one to enough many cells to produce a
mutant and hence

Tcrit ≈ (1/g) ln(1/µ). (5)

The rate at which the drug concentration increases must be such that the
above equations are fulfilled for all mutants; too slow and the evolution of
resistance takes very long, while too fast kills the population. This is hard
to achieve in practice unless we know the growth curves, mutation rates, etc.
parameters very precisely which is almost never the case. This is illustrated
in a computer simulation in Fig. 3, top - a small change in the increase rate
of the concentration over time completely changes the fate of the population
(rapid evolution of resistance versus extinction).

Process (2) does not require any knowledge of the MICs, except that the
initial concentration of the antibiotic must be below the MIC of the sensitive
strain. By systematically increasing c, the time to evolvem+1 from m can be
kept very small (cf. Eq. (3)). Fig. 3 bottom shows a simulated evolution of our
standard model in the case when c is increased by 0.5 every hour if the total
bacterial count is above 30% of the carrying capacty K, and decreased by the
same amount if the bacterial count is below that value. As expected, evolution
proceeds very quickly and soon the most resistant mutant takes over. This
rapid evolution agrees with what has been experimentally observed in Ref.
[62].

4 Evolution of resistance in heterogeneous environments

A uniform distribution of the drug is easy to achieve in the lab but is very
unlikely in real infections, where imperfect tissue permeability, drug degra-
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m=1, MIC=2
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m=3, MIC=8
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antibiotic

Fig. 3 Top: Examples of simulation runs in which antibiotic concentration increases in a
pre-determined way as c(t) = 10(1 − e−αt) for t > 0 (dashed curves). α is the increase
rate of the drug concentration. Such c(t) would be typical for a chemostat experiment
with constant influx of the drug for t > 0. Left: α = 0.001, right: α = 0.0015. Different
coloured curves correspond to different mutants from Fig. 2(top), see also the legend. A 50%
change in the increase rate α causes a switch from fast evolution (left) to no evolution and
extinction (right). Bottom: simulated “morbidostat” in which c(t) is adjusted in response

to population’s growth to exert strong selection pressure at all times. Parameters: K = 109,
the rest as in Sec. 3.1.

dation, binding to proteins etc., cause the concentration to vary in space.
The effect of a non-uniform drug distribution was first studied experimen-
tally in a 2x2cm microfluidic “death galaxy” [67, 11], in which a gradient
of the antibiotic ciprofloxacin was created by pumping two different growth
media (with and without the drug) along the opposite sides of the device.
Diffusion and partial mixing created a stable gradient in the centre of the
device. Surprisingly, bacteria with MIC more than 200x that of the parental
strain emerged in as little as 10h in this experiment, whereas no resistant
bacteria were detected in a well-mixed control experiment. Resistance was
caused by point mutations in four different genes [67].

4.1 Computer model

Two computer models have been proposed [30, 27] 3 to explain these re-
sults. Although slightly different in details, both models assume the same

3 See also earlier work [32] on HIV infections.
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spatial and genetic structure. Bacteria inhabit a series of weakly-connected
compartments containing increasing (from left to right) amounts of the an-
tibiotic (Fig. 4, top). Bacteria migrate between the compartments with rate
m and replicate if the antibiotic concentration is below their MIC. Each bac-
terium can increase or decrease its MIC by mutating along a one-dimensional
mutational pathway as in our standard model from Fig. 2, top.

A kymograph of a typical simulation run for the model from Ref.[27] is
plotted in Fig. 4, bottom. As in the experiments [67], resistance evolves faster
and higher MICs are obtained in the presence of an antibiotic gradient than
if the antibiotic is uniformly distributed. In the gradient case, the population
advances in waves, each corresponding to a new, better adapted mutant.
Although the mathematical theory explaining the difference between the two
cases involves some algebra, a qualitative understanding can be achieved
using a much simpler and intuitive reasoning described below.

well well

ti
m

e

uniform

Fig. 4 Top: spatial structure of the model with non-uniform drug distribution. Antibiotic
concentration c(x) increases from left to right. Left/right: kymographs of two simulation
runs for the uniform c(x) = 0.9 and non-uniform c(x) = exp(3x/24)− 1 drug distribution.
Horizontal axis represents space (wells), vertical axis represents time. Colours represent
different mutants as in Figs. 2, 3. The purple mutant (MIC=32) evolves in the gradient
case at t ≈ 450, whereas only a moderately-resistant red mutant (MIC=4) can be seen
at the same time in the uniform case. In each case, L = 24 wells, K = 105 per well,
mutation probability µ = 10−5, migration rate (rate at which bacteria jump between the
compartments) m = 0.02; other parameters are the same as in Sec. 3.1 and Fig. 3.
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4.2 Intuitive explanation

It turns out that a system with a spatially non-uniform drug distribution
behaves somewhat similar to a homogeneous system in which drug concen-
tration increases in time in a way that maximizes selection pressure (Sec.
3.2). We can understand this using the well-mixed formula (1) applied to the
spatial model near the population’s edge. Albeit the effective population size
N can be quite small as replication is possible only in a narrow region at the
edge, this is offset by a large increase in the selective advantage new mutants
have at the edge. Let us look at what happens to a population with the same
MICs and growth curves as in Sec. 3.1. The population of genotype m will
move forward until the antibiotic concentration c ≈ MICm = 2m becomes
high enough so that the net growth rate (replication minus death) becomes
zero. However, if a mutant m + 1 occurs near the front where gm = ǫ is
non-zero but small, its growth rate will be gm+1 ≈ (1/2)gmax and hence

Tm→m+1 ≈
1

µNǫ
. (6)

This is independent of m and hence the total time to evolve the m-th mutant
increases only linearly with m and not exponentially as in the uniform case
(3). Drug gradients thus provide optimal conditions for the evolution of resis-
tance: strong selection for more resistant mutants, and free resources (space
and nutrients) to explore by successful genotypes.

Whether the absolute time for any given m will be larger or smaller in
the gradient than in the uniform case depends on the population size N at
the front from which new mutants emerge. In the case of steep gradients, N
can be very small and gradients may actually slow down evolution compared
to the uniform distribution of the drug. In addition, our reasoning breaks
down if a mutation m → m + 1 lowers the resistance instead of increasing
it. In this case the genotype m+ 1 almost never fix – the probability of such
event is exponentially small in N [50]. The only way for the population to
move forward is to produce a double (or higher) mutant m → m + 2 which
has a positive fitness advantage over genotype m. The rate at which this
happens is proportional to µ2N and, as µ2 is very small, the adaptation time
is determined mainly by this process and reads 1/(µ2N). Since the effective
population size N is smaller in the non-uniform case, drug gradients are likely
to slow down evolution if a fitness valley is present in the mutational pathway.

5 Real infections

We shall now discuss how theoretical considerations presented above apply to
de novo evolution of resistance in real infections. We shall consider two generic
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scenarios: (i) a single mutation substantially increases resistance, (ii) multiple
mutations are necessary to increase the MIC above the drug concentration
achieved during a typical therapy. In (i), resistance will evolve as long as the
population is large enough at the onset of treatment. In a large population,
resistant mutants are always created even in the absence of the drug but
they do not have any selective advantage over the sensitive strain and can
grow to high abundance only after treatment has begun. We shall see that
this may be the case for chronic infections in cystic fibrosis (Sec. 5.1), but
this scenario may actually be quite common since bacterial densities often
reach 108/ml in soft-tissue infections [35]. Such high densities diminish drug
activity, sometimes by 100x, which lowers the required level of resistance and
makes AMR easier to evolve [43].

Case (ii) requires a sufficiently slow increase of drug concentration at the
site of infection so that multiple mutations have enough time to fix (Secs.
3.2 and 4). The critical time Tcrit to evolve a more resistant mutant must be
much smaller than the time TMIC it takes the antibiotic to reach the MIC of
the parent strain. This amounts to the following condition:

Tcrit ≪ TMIC, (7)

where Tcrit is given by Eqs. (4,5). If the short-time evolution of the drug
concentration is affected mostly by diffusion from a source such as a small
blood vessel (Fig. 5), this can be rewritten as

Tcrit ≪
x2

D ln(c0/MIC)
, (8)

where x is the distance to the infection site, D is the diffusion constant and
c0 is the source (blood) concentration of the antibiotic. According to this
estimate, in vivo evolution of drug resistance mediated by more than a single
mutation is likely if: (i) the distance x is large, (ii) the drug diffuses slowly
into the tissue (small D), (iii) bacteria replicate fast (large g), (iv) mutation
rate µ is large. The last two conditions enter Eq. (8) via Eqs. (4,5).

Are these requirements fulfilled in a normal tissue? In a healthy and well
vascularized tissue, the inter-capillary distance is about 100 − 200µm [14],
and so the infection site cannot be further than x ≈ 100µm from the nearest
capillary (drug source). The estimates on the diffusion constants of antibiotics
in tissues vary [44, 45], but the lower limit is D = 10−7cm2/s= 10µm2/s
4. The mutation probability µ ranges from 10−9 to 10−7, depending on the
antibiotic and bacterial strain [37, 51]. Fastest-reproducing bacteria have g ∼
10−3s−1 [57]. Using Eq. (5) (relevant for sequential fixation) and inserting all
these estimates into Eq. (8) we obtain that the condition is not fulfilled by
a large margin. It is thus very unlikely to evolve drug resistance through

4 Note that this value is much less than D measured in water or agar-based gels often used
to study the diffusion of biomolecules [45].
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Fig. 5 A cartoon view of an infected tissue. The antibiotic diffuses with diffusion constant
D from the blood where its concentration is c0.

the above mechanism in normal tissues. However, not all sites of microbial
infections are well vascularised and we shall see an example of that in Sec.
5.2.

5.1 Quasi-uniform drug distribution - P. aeruginosa

infection in cystic fibrosis patients

Cystic fibrosis (CF) is a genetic disease characterized by thicker-than-normal
secretions such as digestive fluids or mucus. CF affects mostly (but not ex-
clusively) the lungs. The clinical picture is characterised by the presence of
thick mucus plugging small and medium-size (0.3-5mm) bronchioles in the
lungs - the tubes that carry air into pulmonary alveoli where gas exchange
takes place. CF patients ofter suffer from lung infections caused by many
pathogens, of which P. aeruginosa is the most significant one, accounting
for 80% of chronic infections in adult CF patients [24]. Bacteria live in the
mucus, where they form microcolonies and biofilms [58], with doubling times
100-200min [65] and densities up to 107 − 108 bacteria per ml of mucus [6].

There is some evidence that a prolonged course of antibiotics can lead to
de novo AMR evolution in chronic infections in CF patients [24]. In fact, the
most common mechanism of resistance to aminoglycosides such as tobramycin
(a popular drug used to treat P. aeruginosa infections) is decreased membrane
permeability or increased activity of efflux pumps [54], both of which can be
caused by point mutations [63, 64].

To estimate the likelihood of de novo evolution in a CF patient, we carried
out computer simulations of a typical treatment against P. aeruginosa using
the same model as in Sec. 3.1. We modelled a chronic infection with bacteria
replicating with max. rate 0.34h−1 before treatment and being removed with
rate d = 0.27. Treatment begun at t = 0 and consisted of 2 inhalations of
300mg tobramycin per inhalation per day [24]. We assumed that immediately
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after application, the concentration of tobramycin was 20ug/ml 5 and its
decay followed a 1st-order kinetics with half-life time 2h [6]. We also took the
mutation probability to be µ = 10−9, the rate of point mutations in the PAO1
strain of P. aeruginosa. Following the experimental evidence from Ref. [63]
we assumed that only one such mutation was required to increase the MIC
from ∼ 1µg/ml to ∼ 10µg/ml.

The population was first allowed to grow to size N starting from a single
cell and at the onset of treatment it consisted almost exclusively of sensitive
cells (Fig. 6). A small sub-population of resistant cells was typically present at
t = 0 but as these cells did not have any selective advantage, their number was
low. However, during therapy (t > 0) in which sensitive cells had been killed,
resistant cells were able proliferate and re-establish the infection after some
time (Fig. 6, top). Fig. 6, bottom, shows that the regrowth probability was
very small if the initial size N < 108, but it approached 100% for N > 1010

cells – a number expected in about 100ml of mucus.
In reality, the situation may be worse (for the patient) than in our simula-

tions. First, higher mutation rates (100x the basal rate) have been reported
in P. aeruginosa isolates from CF patients [51]. Second, part of the popula-
tion may be screened from the drug by forming a biofilm [61, 24, 54]. Third,
bacteria can develop adaptive, non-genetic resistance to antibiotics [6]. This
type of resistance caused by a temporal reduction in drug uptake [54] is un-
stable and bacteria revert to the sensitive phenotype when the antibiotic is
withdrawn, but it can enable them to evolve genetic resistance by providing
a temporary “safe niche” [38].

Finally, there may be spatial inhomogeneities in the distribution of the
drug in the lung. Although difficult to model computationally in a realistic
way, such heterogeneities will certainly play a role if a biofilm is formed,
or when drugs with low diffusion rates are used. This may be particularly
relevant to new drug classes such as antimicrobial peptides [66] which are
bigger than many antibiotics and hence diffuse slower.

5.2 Drug gradients - infections of avascular tissues

We shall now consider a situation in which the distance x from the infected
site to the source of antibiotic is much larger than 100µm. As explained
above, the distance between capillaries which deliver blood (and drug) to the
tissue is ≈ 100µm and hence long-lasting antibiotic gradients do not occur in
well-perfused, normal tissues. However, if blood circulation is impaired, large,

5 We assumed that the concentration was 5x higher than the experimentally determined
3 − 5µg/ml, following a single dose of 80mg [6]. The actual concentration may be lower
– drug binding to serum proteins lowers the effective concentration of the drug, see e.g.
[56, 8]. Ref. [48] claims 8µg/ml in the plasma, and sputum concentrations can be even
lower [31]. All this can promote the evolution of resistance.
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Fig. 6 Size and composition of a simulated microbial population following a course of
tobramycin. Left: population size N = 109 at the onset of treatment. Right N = 1010.
Bottom: regrowth probability, equal to the fixation probability of the resistant mutant, for
different N .

cm-size avascular necrotic areas can develop in which dead cells decay and
become a rich source of nutrients fuelling microbial growth. This is common
in chronic wounds, especially in the elderly who often develop pressure sores
or ulcers due to poor mobility or underlying conditions such as diabetes
[47, 49]. Bacterial infections of such wounds are common and are treated
with both topical (antibiotic applied directly to the wound) and systemic
therapy (antibiotic taken orally/intravenously) [40].

Although de novo AMR evolution is thought to be rare [49], the following
numerical simulation demonstrates that it could easily occur in areas with
deep necrosis or scarring. We model a 1cm3 of ill-perfused tissue inhabited by
105 bacteria per mm3 [47] at the onset of treatment. We use the same model
as in the previous section6 but we subdivide the tissue into ∼ 200µm-size
regions, each treated as a well-mixed system but with restricted migration
between the regions (migration rate per bacterium = 1h−1). This leads to
a saturated colonization in about 5 days. We take E. coli as the pathogen
and ciprofloxacin as the drug - though neither of them is the most com-
mon pathogen/therapeutic drug in wound treatment, ciprofloxacin has been
used to treat soft tissue and wound infections [59, 20] and E. coli can be

6 We take the maximal growth rate g = 0.34h−1 and a lower removal rate d = 0.1 than
before because the tissue is not perfused and bacteria are less likely to be removed by the
immune system.
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isolated from wounds [12]. Our choice is motivated by data availability: the
nature of mutations and their effect on resistance have been well characterised
for this particular combination [42, 29]. We assume the sensitive strain has
MIC=30ng/ml, and two subsequent mutations increase the MIC to 300 and
3000 ng/ml, respectively.

Treatment begins when the total bacterial count is about 108. Ciprofloxacin
diffuses into the system from the top side where its concentration is 1µg/ml -
a typical concentration found in tissues and necrotic areas during treatment
[17, 3]. Figure 7 shows that resistance evolves if the antibiotic cannot pene-
trate the tissue very well (diffusion constant D = 10−7 cm2/s) but not if the
tissue is well vascularized and the antibiotic quickly reaches a uniform and
high concentration.

Fig. 7 Snapshots of a simulated infected tissue. Time is in hours, N is the total bacterial
count. The concentration of the antibiotic/bacterial density is shown as different shades of
blue/orange, respectively. Top: the tissue is well perfused and the antibiotic diffuses quickly.
Bacteria are eradicated after approx. 70h. Bottom: avascular tissue, diffusion constant
D = 10−7 cm2/s. After an initial decline, the bacterial population grows back due to the
evolution of resistant mutants (green and red).

6 Summary

We have reviewed here the theory and recent experiments on the evolu-
tion of AMR. We have focused on the population dynamics and the role
of spatial heterogeneities in drug distribution. Many models of bacterial in-
fections and treatment were proposed in the past (see e.g. [5, 39, 10]) but
they usually treated all resistant genotypes as a single species. Here we have
studied the role of the spectrum of mutants on AMR evolution. We have
shown that if a sequence of mutations progressively increases the resistance,
a highly-resistant strain will often evolve faster if the drug is non-uniformly
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distributed. We hypothesize that this may be the case in some soft tissue
infections.

Although we have not explored this avenue here, it is also likely that
de novo evolution takes place in biofilms [19], where drug gradients can be
stronger than in tissues due to decreased permeability and active degrada-
tion of the drug. Although resistance in biofilms often relies on non-genetic
alterations [61] such as decreased permeability or switching to a different phe-
notype, these alterations may actually promote genetic evolution through the
“save niche” mechanism mentioned in Sec. 5.1.

Further theoretical and experimental research may address AMR evolution
in the presence of interactions between different drugs [15, 9], and the role
of social interactions between the microbes such as reported in a recent work
[34] on de novo evolution of vancomycin-intermediate resistant S. aureus.
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