
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Passerines may be sufficiently plastic to track temperature-
mediated shifts in optimum lay date

Citation for published version:
Phillimore, A, Leech, DI, Pearce-Higgins, JW & Hadfield, J 2016, 'Passerines may be sufficiently plastic to
track temperature-mediated shifts in optimum lay date', Global Change Biology.
https://doi.org/10.1111/gcb.13302

Digital Object Identifier (DOI):
10.1111/gcb.13302

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Global Change Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. May. 2024

https://doi.org/10.1111/gcb.13302
https://doi.org/10.1111/gcb.13302
https://www.research.ed.ac.uk/en/publications/0e3c31f9-4add-410a-8d07-cacbfa3c90da


Passerines may be sufficiently plastic to track
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Abstract

Projecting the fates of populations under climate change is one of global change biology’s foremost challenges. Here,

we seek to identify the contributions that temperature-mediated local adaptation and plasticity make to spatial varia-

tion in nesting phenology, a phenotypic trait showing strong responses to warming. We apply a mixed modeling

framework to a Britain-wide spatiotemporal dataset comprising >100 000 records of first egg dates from four single-

brooded passerine bird species. The average temperature during a specific time period (sliding window) strongly

predicts spatiotemporal variation in lay date. All four species exhibit phenological plasticity, advancing lay date by

2–5 days °C�1. The initiation of this sliding window is delayed further north, which may be a response to a photope-

riod threshold. Using clinal trends in phenology and temperature, we are able to estimate the temperature sensitivity

of selection on lay date (B), but our estimates are highly sensitive to the temporal position of the sliding window. If

the sliding window is of fixed duration with a start date determined by photoperiod, we find B is tracked by pheno-

typic plasticity. If, instead, we allow the start and duration of the sliding window to change with latitude, we find

plasticity does not track B, although in this case, at odds with theoretical expectations, our estimates of B differ across

latitude vs. longitude. We argue that a model combining photoperiod and mean temperature is most consistent with

current understanding of phenological cues in passerines, the results from which suggest that each species could

respond to projected increases in spring temperatures through plasticity alone. However, our estimates of B require

further validation.

Keywords: citizen science, climate, cues, environmental sensitivity of selection, local adaptation, optimum, phenology, plastic-

ity, space for time
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Introduction

Predicting how populations will respond under differ-

ent climate change scenarios is a major challenge for

ecologists and evolutionists. To take into account both

evolutionary and ecological processes, studies typically

focus on traits that covary with both climate and fitness

(Gienapp et al., 2008), such as breeding phenology in

birds. In temperate bird species, lay date often corre-

lates negatively with spring temperatures (Crick &

Sparks, 1999) and the timing of hatching impacts upon

the fitness of parents and offspring (Visser et al., 2004;

Verhulst & Nilsson, 2008).

Chevin et al. (2010) presented a model to predict the

maximum rate of environmental change a population

can cope with. The parameters of the model are maxi-

mum population growth rate, generation time, the

strength of stabilizing selection, narrow sense

heritability, a linear relationship between the

environmental variable and the optimum, termed the

environmental sensitivity of selection (B), and linear

plasticity with respect to the environment (b). A key

component of Chevin et al.’s equation is |B � b|, the

degree to which plasticity tracks the phenotypic opti-

mum across environments. If the absolute difference is

small, a population is projected to be able to withstand

rapid environmental change via plasticity alone,

whereas if the difference is large, the persistence of a

population in the face of environmental change may

depend on evolutionary adaptation. Numerous studies

have estimated plasticity of lay date in birds, but

very few have quantified B, which depends on quanti-

fying the fitness surface in different environments

(Chevin et al., 2015). Recently two studies on wild

populations of great tits at single sites have estimated B

and parameterized Chevin et al.’s model (Gienapp

et al., 2013; Vedder et al., 2013). Both studies project that

under the Chevin et al. model the phenological plastic-

ity of lay date will allow populations to track the opti-

mum phenology even under rapid rates of spring

warming.
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For ecological and evolutionary processes that play

out over timescales that are not conducive to longitudi-

nal study, space is often substituted for time (Pickett,

1989). Biotic responses to geographic variation in tem-

perature may have arisen over many generations, and

therefore be informative about long-term responses to

temperature change (Dunne et al., 2004; Phillimore

et al., 2010). Consider two populations, where one has

experienced average temperatures 1 °C warmer than

the other, giving rise to a phenotypic difference of x (as

a result of plasticity and/or local adaptation). We can

use this difference to predict that a future 1 °C rise in

temperature will require the phenotype to change by x

(via plasticity and/or microevolution) for the popula-

tions to remain as locally adapted as they currently are

(Phillimore et al., 2010).

Reciprocal transplants remain the primary tool for

detecting local adaptation (Kawecki & Ebert, 2004), but

have rarely been attempted on birds due to their mobil-

ity. As a result, we know very little about the degree to

which geographic variation in lay date represents local

adaptation (but see Blondel et al., 1999, 1990). Philli-

more et al. (2010) presented a statistical approach to

estimate local adaptation to an environmental driver

that may be useful where reciprocal transplants are

unfeasible. This approach relies on the statistical

decomposition of spatiotemporal covariation between

phenology and temperature data into the contributions

of temperature-mediated plasticity and local adaptation

(Phillimore et al., 2010). Assuming all populations of a

species have the same plastic reaction norm b with

respect to a thermal cue, the difference between the

slopes of phenology on temperature estimated among

locations (spatial slope) vs. among years (temporal

slope, assumed to equal b) estimates the contribution

made by local adaptation. This method requires that

microevolution over a short time period (years to dec-

ades) has had little impact on the temporal slope. We

suggest that this assumption is reasonable in birds as

most empirical studies find substantial plasticity and

scant evidence for microevolution (Charmantier &

Gienapp, 2013). By contrast, there may have been many

generations over which selection could generate locally

adapted phenotypes.

When the environment has a deterministic linear

trend, such as with latitude, populations are expected

to be able to track the optimal reaction norm slope (B)

by local adaptation alone (Slatkin, 1978) when popula-

tion density is constant in space. With stochasticity, the

environment may deviate locally from the linear trend

and then dispersal will disrupt the ability of popula-

tions to attain B. The magnitude of the discrepancy

increases as the scale of dispersal becomes long relative

to the scale of spatial autocorrelation in the detrended

environment (Hadfield, in press). However, at migra-

tion/selection balance, the ratio of the slopes of phenol-

ogy and temperature each regressed on a linear spatial

vector can be used as an estimate of B (Hadfield, in

press). Although this method requires more assump-

tions than direct estimation of B from data on the fit-

ness of individuals (e.g., Chevin et al., 2015), it can be

applied to less tractable study systems.

To accurately project population phenological

responses into the future requires that we have cor-

rectly identified the cue or cues. Unfortunately, the pre-

cise cues that birds use to schedule nesting phenology

remain uncertain (Caro et al., 2013). Laboratory experi-

ments reveal that increasing day length cues gonadal

development (Dawson et al., 2001) and can bring for-

ward the first egg date (Lambrechts et al., 1996), sug-

gesting that photoperiod may set a hard limit before

which lay date is unresponsive to other environmental

conditions. However, photoperiod cannot account for

the year-to-year in situ variation in lay date that popula-

tions exhibit. Significant regression slopes for lay date

on average temperatures during sliding windows have

often been used to infer a role for temperature in

explaining among year variation (Crick & Sparks, 1999;

Husby et al., 2010; Ockendon et al., 2013), with model

fit used to identify the time period corresponding to

greatest thermal sensitivity. While a negative correla-

tion between temperature and phenology has been

observed for many species, there remains a question as

to whether temperature has a direct effect as a cue or

constraint or an indirect effect, for example, mediated

via an impact on food availability (Perrins, 1965).

Experiments provide support for both direct and indi-

rect effects, as advances in great tit lay dates can be

induced by supplementary feeding in the wild (Robb

et al., 2008) and experimental warming in aviaries (Vis-

ser et al., 2009), although in each case the induced

advance is less than the amount by which a population

mean lay date can differ between warm and cold years.

Aviary temperature experiments also provide some

evidence that great tits may be sensitive to the rate of

temperature increase rather than mean temperature

(Schaper et al., 2012).

In a spatial context, an additional challenge is that

both the cue(s) and plastic responses may vary among

populations of a single species, such that the results

from one study of a single species may not be transfer-

able to other populations. For instance, studies across

populations of blue tits (Porlier et al., 2012) and great

tits (Slagsvold, 1976; Husby et al., 2010) have found that

the sliding window over which nesting phenology cor-

relates most strongly with temperature differs among

populations. For great tits, there is some suggestion that

the period of thermal sensitivity begins later and is

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13302
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shorter in duration as latitude increases from central to

northern Europe (Slagsvold, 1976). Extensive spa-

tiotemporal nest record datasets collected by national

ornithological societies (e.g., Crick et al., 2003) offer the

potential for an examination of spatial variation in the

cues responsible for nesting phenology, but have been

surprisingly underutilized (but see Gienapp et al.,

2010). Replication of phenological observations across

years permits analysis of the period of thermal sensitiv-

ity, while replication of observations across space per-

mits analysis of whether the sensitive period varies

geographically, potentially as a function of photoperiod

(Phillimore et al., 2013).

Here, we consider an exceptional spatiotemporal

dataset (Crick et al., 2003), comprising in excess of

100 000 observations of first egg dates across four pre-

dominantly single-brooded species. We extend our ear-

lier framework for separating the contributions of

plasticity and local adaptation (Phillimore et al., 2010,

2012, 2013), to additionally estimate the environmental

sensitivity of selection (equivalent to B in Chevin et al.,

2010) and the contribution of sustained temporal

microevolution during the study period. The aims of

the study are threefold: first, to identify the environ-

mental variables that best explain spatiotemporal varia-

tion in nesting phenology. Second, to estimate

phenological plasticity (b) with respect to thermal cues.

Third, to quantify the environmental sensitivity of

selection (B) and the ability of plasticity to track the

optimum |B � b|.

Materials and methods

Data

We focus on four predominantly single-brooded passerine

species, defined as those that usually fledge a maximum of

one brood per pair per year, for which there are abundant nest

record data. Three of these, blue tit (Cyanistes caeruleus), great

tit (Parus major) and chaffinch (Fringilla coelebs), are resident

and the other, pied flycatcher (Ficedula hypoleuca), is a long-dis-

tance migrant, wintering in West Africa. All but the chaffinch

is hole-nesting. The British Trust for Ornithology (BTO) Nest

Record Scheme (NRS) has collated spatially referenced obser-

vations of first laying since 1939 (Crick et al., 2003), and for the

period up to 2011, this resulted in 38 185 blue tit, 34 455 great

tit, 10 167 chaffinch and 18 376 pied flycatcher records

(Table S1). Recording has been highly heterogeneous in time

and space, with the number of records increasing over time

and toward the south of Britain. The only filtering we applied

to the data was to discard the records with incorrect latitude

and longitude. The data used here are available on request

from http://www.bto.org/research-data-services/data-ser-

vices/data-request-system for the purposes of validating the

results of this study.

In most cases, nests are not visited daily and an earliest and

latest first lay date is calculated by combining information col-

lected over repeated visits before and after laying. This infor-

mation includes the (i) date of any previous visit when no

eggs were found, (ii) number of eggs, (iii) laying rate, (iv)

incubation period, (v) stage of nestling feather development

and (vi) nestling developmental rates (Crick et al., 2003). Our

phenology measure in analyses is the midpoint between the

earliest and latest predicted first egg date.

We used Met Office data on daily mean temperatures for

the period 1960–2011 interpolated over the UK at 5 9 5 km

resolution (Perry & Hollis, 2005; Perry et al., 2009,

www.metoffice.gov.uk/climatechange/science/monitoring/

ukcp09/). For 5 km cell centroids, we calculated daily day-

lengths (in minutes) as the time from sunrise to sunset, based

on the equations in the study of Meeus (1991). 5 9 5 km cells

were assigned to 150 9 150 km grid cells, which we treated as

populations for the purpose of statistical modeling. We chose

150 9 150 km grid cells because these grid cells are reasonably

well replicated (e.g., we have blue tit records from 23 grid cells

– Table S1) but are at a scale large enough that the between

150 9 150 km grid cell regression of phenology on tempera-

ture may approach the asymptotic slope expected as distances

become infinite (Appendix S1). For the pied flycatcher, which

has a dispersal distance an order of magnitude greater than

the other species (Paradis et al., 1998), this condition may not

be met, but insufficient information is available to say so with

confidence. In the future, we intend to extend these analyses

so that we can treat space in a continuous manner. This would

avoid the issue of how to discretize space and would also

allow us to fully incorporate the effects of spatial autocorrela-

tion within and between grid cells.

Analyses

All models included phenology as a response variable and

population (150 km grid cell ID), year, each 25 9 25 km grid

cell by year combination and a residual term as random terms.

The purpose of including all 25 9 25 km grid cell by year

combinations as random effects was to deal with spatiotempo-

ral nonindependence of temperature and phenology observa-

tions, the most extreme case being that phenological

observations from the same 5 km grid cell and year share the

same interpolated average temperatures. First egg date was

also regressed on half the difference between the latest and

the earliest predicted first egg date, with regression slopes

allowed to vary as random effects over records. By doing this,

we assume that the actual unobserved first egg dates are nor-

mally distributed and lie between the reported earliest and lat-

est first egg date with the same probability for all observations

of a species. This probability (i.e., confidence interval) is a

function of the variance in regression slopes and is estimated

from the data (see Appendix S2).

We considered two null models that included no cues. The

first, null, included only the intercept as a fixed effect and the

second, year_space, included year (as a continuous term), lati-

tude, longitude and the latitude:longitude interaction as fixed

effects. The motivation behind considering these models was

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13302
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as a baseline against which the performance of models that

incorporated cues could be compared. The terms and number

of parameters for each model are reported in Table 1.

Remaining models also included year (as a continuous

term), latitude and longitude as fixed effects, but also included

the action of one or both of photoperiod and temperature as

cues (Fig. 1).

For models in which temperature was a cue, we modeled

phenology and temperature as a bivariate response to decom-

pose their covariance into various spatial and temporal slopes

(see below).

Avtemp_i (Fig. 1a) corresponds to a scenario where phenol-

ogy responds linearly to mean temperature during a sliding

window (Husby et al., 2010; Phillimore et al., 2010). This

model assumes that populations in different locations all

respond to temperature during the same window. We consid-

ered a range of start dates (ordinal dates 1–121, in 2-day incre-

ments) and durations for the window (4–120 days, in 2-day

increments) and included the end date of the sliding window

as an offset in the bivariate model. Here, the phenology inter-

cept can be interpreted as the average lag time between the

end of the sliding window and first egg date.

Table 1 Summary of the syntax and number of parameters for each model

Model Response Model terms* k†

null Univariate Fixed = intercept

Random = grid150, yearF, grid25:year, residual,

measurement uncertainty

6

year_space Univariate Fixed = intercept, yearC, latitude, longitude, latitude:

longitude

Random = grid150, yearF, grid25:year, residual, measurement

uncertainty

10

photo_only Univariate Fixed = intercept

Random = grid150, yearF, grid25:year, residual, measurement

uncertainty

Additional parameter = photoperiod threshold.

7

avtemp_i Bivariate Fixed = intercept, yearC, latitude, longitude

Random = grid150, yearF, grid25:year, residual, measurement

uncertainty

Additional parameters = window start date, window

duration.

15

avtemp_latvar Bivariate Fixed = intercept, yearC, latitude, longitude

Random = grid150, yearF, grid25:year, residual,

measurement uncertainty

Additional parameters = window start date, window

duration, latitudinal slopes in window start and

duration.

16 if latitudinal

slope in window

start date or

duration is

nonzero. 17 if

both terms are

nonzero.

tempshift_i Bivariate Fixed = intercept, yearC, latitude, longitude

Random = grid150, yearF, grid25:year, residual,

measurement uncertainty

Additional parameters = window start date, window

duration.

15

phototemp_i Bivariate Fixed = intercept, yearC, latitude, longitude

Random = grid150, yearF, grid25:year, residual,

measurement uncertainty

Additional parameters = photoperiod threshold,

window duration

15

phototemp_latvar Bivariate Fixed = intercept, yearC, latitude, longitude

Random = grid150, yearF, grid25:year, residual,

measurement uncertainty

Additional parameters = photoperiod threshold,

window duration, latitudinal gradient in window

duration

16

*YearC and YearF denote year as continuous and as a factor, respectively.
†Random terms contribute two parameters to bivariate models, with the exception of the measurement uncertainty term (1

parameter).

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13302
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Avtemp_latvar (Fig. 1b) models depart from the avtemp_i

models in allowing for a latitudinal gradient in the start (slope

varied from �5 to 5 days per °North in intervals of 1) and/or

duration (slope varied from �5 to 5 days per °North in inter-

vals of 1, with a duration range of 20–100 days at 50°N) of the

sliding window over which average temperature affected first

egg date. We focused our iterative search of parameter space

to start dates in the range 51–121 ordinal days. We were moti-

vated to include this phenomenological model, on the basis of

evidence for a shortening and delaying of the sliding window

with increasing latitude (Slagsvold, 1976). However, we have

no cue-based mechanism on which to predict a latitudinal gra-

dient in the sliding window duration or start date (where the

latitudinal gradient in start date departs from the gradient of

constant daylength).

The tempshift_i model differed from the avtemp_i model in

that phenology is assumed to respond linearly to the change in

mean temperature (in units of °C day�1) over a sliding win-

dow, as estimated using a linear model. We included this

model as there has been experimental evidence that lay date

in great tits is sensitive to increasing temperature (Schaper

et al., 2012).

Photo_only (Fig. 1c) included the day of the year on which

a specific daylength was exceeded for each observation as an

offset in the model. We iteratively fit models for daylengths

spanning the range of 486–876 min in 2-min increments. For

this model, the intercept can be interpreted as the average lag

time between the threshold being met and first egg date. This

model was included for completeness, but we know that it

cannot explain interyear variation in phenology.

The phototemp_i (Fig. 1d) model included a photoperiod

threshold (from 486 to 876 min in 2-min intervals) to initiate

phenological sensitivity to average temperature over a win-

dow of specified duration (2–120 days in 2 day intervals). As

with the avtemp models, the end of the sliding window was

included as an offset on first egg date.

The phototemp_latvar (Fig. 1e) model departed from the

phototemp_i model only in that the duration of the sliding

window was permitted to vary latitudinally (slope varied

from �5 to 5 days per °North in intervals of 1). As with the

avtemp_latvar model, we have no mechanistic basis for pre-

dicting a latitudinal gradient in the sliding window duration.

We have shown elsewhere that it is possible to separate the

contributions of temperature-mediated local adaptation and
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plasticity from spatiotemporal data (Phillimore et al., 2010).

The premise of this approach is laid out below. In a bivariate

mixed model, the slope of phenology (P) on temperature (T)

can be estimated separately for each random effect (R), that is,

grid cell, year and residual, as

rPR;TR
r2TR

In Phillimore et al. (2010), we assumed that the temporal

(among year) slope of first egg date on the temperature vari-

able was the result of phenotypic plasticity alone. To justify

this assumption, we noted that evolutionary change in year t

is the result of selection occurring in year t � 1 and so the

temperatures in years t � 1 and t must be correlated if any of

the covariation between temperature and phenology in gener-

ation t is due to microevolution (Michel et al. 2014). Generally,

autocorrelation in annual temperatures is weak (for Central

England (Parker et al., 1992), annual March–May average tem-

peratures q = 0.45, reducing to 0.23 after the temporal trend is

removed) and so the association between breeding value and

temperature across years within populations is expected to be

relatively small.

In contrast, the spatial (among grid cell) slope is expected

to be the result of plasticity plus local adaptation (Phillimore

et al., 2010) because the evolutionary responses at a location

may have arisen over many generations. Assuming that all

populations share the same plastic response, the difference

between the temporal and spatial slopes provides an esti-

mate of the contribution of temperature-mediated local

adaptation.

Here, we extend this approach to show that by including

latitude, longitude and year (as a continuous variable) as fixed

effects in our bivariate model, we are able to estimate (i) the

temperature sensitivity of selection on phenology (B) over lati-

tude and longitude (Hadfield, in press) and (ii) the sustained

phenological response (plasticity plus microevolution) to ris-

ing spring temperatures. Estimating these properties is possi-

ble due to directional trends in temperature across latitude,

longitudes and over time, which facilitates the buildup of an

association between temperature and breeding values. We

assume that we have identified the sole cue that is causative

for phenology (Chevin & Lande, 2015), populations are in

migration/selection balance and population density is con-

stant over a species’ range. By dividing the coefficient for first

egg date on latitude (or longitude) by the coefficient for tem-

perature on latitude (or longitude), we can estimate B, the

temperature sensitivity of selection (Hadfield, in press). In the

absence of confounding variables, the temperature sensitivity

of selection is expected to be the same whether estimated

across latitudes (Blat) or longitudes (Blon). The difference

between this gradient and the temporal slope of phenology on

temperature (estimating plasticity, b) provides an estimate of

the contribution made by clinal local adaptation. |B � b| can
be used to estimate the degree to which microevolution will

be required in response to rising temperatures. By including

latitude and longitude as fixed effects, this means that the

slope of phenology on temperature estimated over

150 9 150 km grid cells corresponds to detrended variation in

phenology regressed on detrended variation in the cue. We

anticipate that if local adaptation is imperfect, this slope will

be intermediate between B and b.

We can estimate the sustained phenological response to ris-

ing temperature using the same approach but replacing lati-

tude with year. We predict that the slope of the sustained

phenological response should be intermediate between B and

b and that a departure from b may reveal the contribution of

adaptive microevolution during the focal time period. Inclu-

sion of year as a fixed continuous term means that the

detrended temporal slope (estimating b) will correspond to

the phenological response to stochastic, rather than direc-

tional, change in temperature (Anderson et al., 2012).

For models where the position and duration of the sliding

window varies latitudinally, we assume that any translocated

individual would plastically adopt the local sliding window.

However, geographic variation in the sliding window might

conceivably arise via local adaptation. With the exception of

photoperiod-threshold models (Phillimore et al., 2012, 2013),

this is the first time that models with latitudinal variation in

sliding window start date and duration have been tested in

this framework. As we lack a mechanism to explain any latitu-

dinal gradient in the start or duration of the window that is

not related to photoperiod (Fig. 1b, e), we also present the

results of the best-fitting model where the window is under-

pinned by a hypothetical mechanism (Fig. 1a, c, d).

We used ASReml-R to obtain restricted maximum likeli-

hood (REML) estimates of model parameters. Rather than

relying on the temporal pseudo R2, as in earlier work (Philli-

more et al., 2012), we derived an information criterion. We

cannot compare models on the basis of their bivariate likeli-

hood because the temperature data changes from one model

to the next. Instead, we calculated the likelihood of phenology

(y1), conditional on temperature (y2) and REML parameters

from a bivariate model (ĥ):

Lðy1jy2; ĥÞ ¼ Lðy1; y2jĥÞ=Lðy2jĥÞ
where the numerator is the likelihood of the bivariate model,

and the denominator is the likelihood of a univariate tempera-

ture model conditional on the parameters estimated in the

bivariate model. Because models differed in their fixed effects,

restricted likelihoods are not comparable, and so standard

likelihoods were used. It should be noted that the estimates

(ĥ) are those that maximize the restricted likelihood and are

therefore not the maximum likelihood estimates, although the

differences should be small. For each model, we calculated the

Akaike information criteria (AIC) and used AIC weights

(Burnham & Anderson, 2004) to compare the relative support

received by our eight classes of model. In calculating the num-

ber of parameters (k) for each model, we included the parame-

ters that we used to define the photoperiod threshold and

sliding window. For bivariate models, each random term

requires estimation of three covariance parameters, but for the

conditional model we consider each random term as con-

tributing only two (the regression of phenology on tempera-

ture bPT ¼ rPR;TR=r2TR and the unexplained variation in

phenology r2PRð1� b2PTÞ). The extent to which the multiple

testing inherent in sliding window analyses influences the

interpretation of their results has not been studied and may

introduce a bias toward selecting more complex models

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13302
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(Michael Morrissey pers. comm). However, the very high

autocorrelation between temperatures on consecutive days

will serve to reduce the bias.

Bayesian parameter estimation

For each species, we selected two focal models that included

temperature as a cue: (i) the lowest AIC avtemp_latvar model,

which is our most complex phenomenological model and (ii)

the lowest AIC model phototemp_i model, which is our most

complex model for which we have a mechanism for the timing

of the start of the sliding window. We refitted each focal

model in a Bayesian mixed model environment using

MCMCglmm (Hadfield, 2010), which allowed us to calculate

the 95% credible intervals on derived slopes and the differ-

ences between them. Priors for the (co)variance components

followed the inverse Wishart distribution with V = I and

m = 0.002.

All analyses were conducted in the R environment (R Devel-

opment Core Team, 2011).

Results

Spatiotemporal patterns

Each nest record comes with a predicted earliest and

latest first egg date. Assuming that measurement uncer-

tainty follows a normal distribution, we estimate that

this range represents approximately the 81% confidence

interval for pied flycatcher and chaffinch and the 94%

confidence interval for blue and great tits. For all spe-

cies, the largest variance component is the residual

term, that is, the variance within a 25 9 25 km grid

square in a single year (Fig 2a). For 25 9 25 km grid

cells and years with at least one observation, the med-

ian number of records is two for blue tit, great tit and

chaffinch and four for pied flycatcher. The estimated

residual variances imply that 95% of first lay dates

within a single site and year will lie within a 26-, 32-

and 28-day periods for blue tits, great tits and pied fly-

catchers, while for chaffinch this period is 52 days. The

greater variance in chaffinch first lay date may be due

to the presence of second breeding attempts caused by

higher levels of nest-predation in open nesters (Bennett

& Owens, 2002). For blue tit, great tit and pied fly-

catcher, the variance in first egg dates among years and

among 150 9 150 km grid cells is broadly comparable,

with considerably less variance distributed among

25 9 25 km:year. Chaffinches depart from this pattern

in that the 25 9 25 km:year variance component

exceeds the variance among 150 9 150 km grid cells.

First egg dates have advanced significantly over the

past 50 years for all species (Fig 2b), with great tits

exhibiting the most rapid advance in first egg date of

0.36 � 0.05 days per year (Table S2). The first egg dates

of all four species show significant geographic trends
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(Fig 3), with first egg date delayed as latitude increases.

For blue and great tits, first egg dates are earliest in the

southeast and there is a significant interaction between

latitude and longitude, such that the latitudinal gradi-

ent in first egg date is steeper in the east than the west

of Britain.

Environmental predictors

Models that included average temperature as a predic-

tor receive strong AIC support (Fig. 4, Table S2). Slid-

ing windows identify a period of temperature

sensitivity spanning 1–3 months in the period March–
May and overlapping with the distribution of first egg

dates. For each species, the avtemp_latvar model

(Fig. 1b) returns the lowest AIC, identifying a trend for

the start of the sliding window to be delayed further

north, with the latitudinal gradient steepest in great tit

and pied flycatcher (Fig. 5, Table S2). For great tit and

pied flycatcher, we also find that the sliding window

becomes shorter in duration further north (DAIC vs.
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best model with no latitudinal gradient in sliding win-

dow duration is 6.2 in great tit and 2.7 in pied fly-

catcher).

While models combining a photoperiod threshold

and sliding window approach (1d and 1e) are not

the best performing as measured by AIC, for each

species they are within ~8DAIC of the best model

(Table S2, Fig. 4). The best photoperiod thresholds

correspond to times immediately prior to the equinox

for blue tit, great tit and chaffinch and immediately

after for pied flycatcher (Table S3). This means that

this model generates a very shallow latitudinal gradi-

ent in the sliding window start date. For great tit

and chaffinch, the DAIC between the best model

(avtemp_latvar) and the best photo-temp model

exceeds 6, and the difference between models

appears to support a greater delay in the initiation of

temperature sensitivity with increasing latitude than

expected if initiation was due to a single photoperiod

threshold (Table S2). We find no evidence that popu-

lations are responding to a shift in temperature dur-

ing a sliding window (DAIC > 69, Table S2).

Plasticity, microevolution and the temperature sensitivity
of selection

Detrended temporal slopes, estimated as the slope of

interannual variation in phenological lag regressed on

average temperature, and which we assume are attribu-

table to plasticity (b), are significantly negative for all

species (Fig. 6a, b, Table S3). This response varies from

an advance of approximately 2.3 days per °C in pied

flycatcher up to 4.8 days days per °C in great tits. These

slopes are relatively insensitive to the model used to

define the sliding window (Table S2). Under the pho-

totemp_i model that best captures the effects of known

cues, we find that when we estimate the temporal

slopes separately for each 150 9 150 km grid cell, the

slopes are similar, remarkably so, when we consider

that each slope is estimated with error (Fig. S1). This

implies that our model assumption of constant plastic-

ity is not violated.

Our estimates of the temperature sensitivity of selec-

tion (Blat) are highly sensitive to the latitudinal gradient

in the end date of the sliding window that defines
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thermal sensitivity (Table S2). This is because any lati-

tudinal gradient in the end of the sliding window will

affect both the latitudinal gradient in phenological lag

time and the average temperature calculated over the

time window. Under the lowest AIC models, these

slopes are significantly negative in great tit and pied

flycatcher, and positive in chaffinch (Table S3a) and b is

unable to track the optimum for all species (Fig. 6e).

However, if we consider the lowest AIC phototemp_i

model, Blat is estimated to be statistically indistinguish-

able in magnitude from our estimate of b for all four

species (Fig. 6f).

Estimates of the longitudinal temperature sensitivity

of selection (Blon) generally have wider credible inter-

vals than the estimates of Blat, which can be attributed

to phenology and temperature varying less over longi-

tude than latitude. Blon estimates are inconsistent across

species but largely consistent between models

(Table S3). Blon is significantly negative for blue and

great tit and positive for pied flycatcher, and the gradi-

ent departs significantly from our estimate of plasticity

for blue tit and pied flycatcher (Fig. 6g, h). Estimates of

Blon differ substantially from estimates of Blat across all

species for the avtemp_latvar model and across blue tit
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and pied flycatcher for the phototemp_i model

(Table S3), which is hard to reconcile with theory.

Under the best avtemp_latvar and phototemp_i mod-

els, the relationship between first egg date and the

detrended spatial variation in average temperatures is

negative for all species, but only significantly so for

blue tit and chaffinch (Table S3). The detrended spatial

slope is shallower than b for all four species, although

in no case is the slope difference significant (Fig. 6i, j),

which is consistent with the null expectation of no local

adaptation to temperatures that vary nonclinally in

space.

The change in phenology in response to directional

change in temperature over the past half century is sig-

nificantly negative for all species (Table S3) and steeper

than our estimates of plasticity (Fig. 6c, d). For pied fly-

catcher, the slope difference is significant and, in agree-

ment with our theory-derived expectations, the slope

difference is similar in sign and magnitude to the dif-

ference between B and b, consistent with microevolu-

tion compensating for imperfect plasticity (Table S3).

Discussion

Blue tit, great tit, chaffinch and pied flycatcher lay dates

are sensitive to spring temperature variation across

time and space, with warmer temperatures eliciting

earlier phenology. We find no compelling evidence that

temperature-mediated local adaptation contributes to

among population differences in their phenology. Tak-

ing the parameter estimates from the best performing

phototemp_i model (the most complex model for which

we can justify the parameterization of the sliding win-

dow solely on the basis of known cues), we find that

phenological plasticity tracks temperature-mediated

variation in the optimum across latitudes. Substituting

space for time, this implies that all four species possess

adaptive plasticity (b) that should allow them to cope

with even rapid changes in temperature, as |B � b| is
small (Chevin et al., 2010). This result is also consistent

with longitudinal studies that find lay date plasticity

partially or completely tracks year-to-year variation in

the optimum (Charmantier et al., 2008; Both et al., 2009)

and may continue to do so into the future (Gienapp

et al., 2013; Vedder et al., 2013). However, we caution

that our inferences regarding Blat are highly sensitive to

latitudinal trends in the end date of the sliding window

and that estimates of Blat 6¼ Blon in some cases.

Our finding of no temperature-mediated local adap-

tation of passerine lay dates across Britain is on the face

of it surprising, given estimates of heritability and

selection on lay date and reports that great tit body

mass and clutch size show local adaptation on a much

finer spatial scale (Postma & Van Noordwijk, 2005).

However, if plasticity is not costly and enables popula-

tions to track temperature-mediated variation in opti-

mum phenology over space, as appears to be the case

with lay date, then selection for local adaptation may

be weak or absent (Via & Lande, 1985). In addition,

populations are also likely to be connected by high

levels of gene flow (Van Bers et al., 2012), which will

reduce the efficiency of local adaptation (Lenormand,

2002) to track any local deviations from the latitudinal/

longitudinal trend in temperature. While we find no

significant evidence for local adaptation in chaffinch,

we note that for this species the spatial slopes are con-

sistent with countergradient variation, being shallower

than the plastic response (Conover & Schulz, 1995).

Countergradient variation may be an adaptation to a

shortening of the growing season with increasing lati-

tude (Conover & Schulz, 1995) and has been reported

for the spring phenology of several UK plant (C.J. Tan-

sey, J.D. Hadfield, A.B. Phillimore, unpublished data)

and butterfly (Roy et al., 2015) species.

One promising avenue that this work presents is the

estimation of B from existing observational data. For

great tit, our estimates of B under the phototemp_i

model (Blat = �4.41, Blon = �3.45) are comparable to

estimates for the Wytham Woods (=�5.30, Vedder

et al., 2013) and Hoge Veluwe populations (=�5.01,

Chevin et al., 2015). Given the importance of this

parameter in climate change projections (Chevin et al.,

2010), here we briefly consider statistical issues and the-

oretical limitations. First, this approach is correlational

and we may not have correctly identified the environ-

mental variable(s) that the populations are adapting to

and/or the environmental variable(s) that the popula-

tions are responding plastically to (Chevin & Lande,

2015). In both cases, the results will not be robust if the

spatial correlation structure between our putative cue

and the true driving environmental variables differs

from their temporal correlation structure. However, if

the spatial and temporal correlation structures are simi-

lar, then all terms (e.g., B, b) will be multiplied by the

regression of the putative cue on the true environmen-

tal variables and their relative magnitudes should

remain comparable (Michel et al. 2014, Hadfield, in

press). In the case where the putative cue is actually the

environmental variable, the populations are adapting

to, but this differs from the environmental variable that

determines the plastic response, then b is best inter-

preted as the degree to which plasticity tracks the envi-

ronment of selection. Under these circumstances, b is

expected to be shallower than B (Tufto 2015) even when

plasticity is cost-free. The fact that we do not observe

this gives us some hope that the environment of selec-

tion and the environment that determines plasticity are

strongly correlated.
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Our estimates of Blon, which in some cases depart

substantially from the plasticity and Blat slopes, may

reflect the action of additional cue(s) not included in

our analysis (Chevin & Lande, 2015). Recent work on a

great tit population demonstrates how the optimum lay

date correlates with interannual variation in the timing

of peak caterpillar availability (Chevin et al., 2015). If

forest types vary geographically, this could affect the

mean and variance of prey availability in different

areas (Burger et al., 2012), which may lead to the rela-

tionship between temperature and the food-peak, and

thereby B, to vary spatially. We suggest that this may

not present a major problem for our analyses, as decid-

uous woodland is distributed across Britain. However,

over larger spatial scales, where there are major habitat

transitions, our approach for estimating B may not be

appropriate.

Even in the absence of third variables, it is possible

that rather than plasticity tracking the optimum, we

may in fact have underestimated the true gradient in

the optimum, either due to populations having not

reached migration/selection equilibrium or due to

changes in population density with latitude or longi-

tude. Differences in population density generate asym-

metric gene flow from high-density to low-density

areas, resulting in greater maladaptation in low-density

areas (Pease et al., 1989). If population density is great-

est in the center of a species range and declines toward

the periphery, then the latitudinal/longitudinal trend

will be shallower than the optimum, and consequently

B will be underestimated (Pease et al., 1989; Garc�ıa-

Ramos & Kirkpatrick, 1997). While relative abundance

of chaffinches is quite consistent across Britain, abun-

dance declines in northern regions (Scotland) for the

remaining species (Balmer et al., 2013). However, given

that most of the geographic variation in phenology

appears to be due to plasticity rather than local adapta-

tion, the effects of asymmetric dispersal on the spatial

distribution of phenotypes is likely to be small.

Numerous studies on wild systems have sought to

estimate the contribution of adaptive microevolution in

response to temporal changes in the environment (e.g.,

Sheldon et al., 2003). Despite such efforts, in very few

cases is the evidence for microevolution compelling

(Hansen et al., 2012; Meril€a, 2012). We find some evi-

dence consistent with a response to selection for earlier

lay date in pied flycatcher over the last 50 years, in that

lay date has advanced by significantly more in response

to the increase in spring temperature than expected

given our estimate of plasticity. Moreover, the differ-

ence between these slopes (posterior median = �2.3) is

of similar sign and magnitude to the difference between

our best estimate of the temperature sensitivity of selec-

tion and the degree to which this is tracked by plasticity

(posterior median of Blat � b = �1.1), which should

determine the strength and direction of selection. Con-

sistent with this interpretation, the pied flycatcher is

the least plastic of the focal species, meaning that it

may be least able to track the phenology of woodland

invertebrates via plasticity, and for a Dutch population

selection has been for earlier laying in most years (Vis-

ser et al., 2015). However, we suggest caution in inter-

preting our finding as rare evidence for microevolution

in response to climate change as (i) our inference is reli-

ant on our inferred cue being closely correlated with

the true cue and (ii) our test relies on the estimation of

three separate slopes, making it especially vulnerable to

the action of one or more third variables. For the

remaining species, while the magnitude of the response

to directional temperature change also exceeds b they

are not significant. It may be that there has been no

adaptive response in these species or that plasticity

tracks the optimum sufficiently well for selection to be

weak and the response hard to detect (Meril€a, 2012).

Our analyses provide strong evidence that mean

spring temperatures during specific sliding windows

are negatively correlated with lay date, as is well estab-

lished (Crick & Sparks, 1999; Husby et al., 2010). Con-

sistent with earlier work on great tits (Slagsvold, 1976),

we find a delay in the initiation of thermal sensitivity as

latitude increases, which begs the question what are the

conditions or cues that initiate the period of tempera-

ture sensitivity? Although models combining photope-

riod and average temperature are not the very best

performing in terms of AIC, we suggest that these mod-

els are the most biologically defensible given current

understanding of phenological cues (Caro et al., 2013).

Alternatively, the latitudinal gradients in the sliding

window start dates and durations (avtemp_latvar

model) may capture real geographic variation in cues.

If this were the case, then the Blat estimates obtained for

this model may indicate a violation of one or more of

the assumptions that we make in estimating B. In con-

trast to Schaper et al. (2012), we find no evidence that a

gradient in temperature, as opposed to the average

temperature, best predicts variation in first egg dates.

Our estimates of b, B and the detrended spatial slope

are all predicated on lay date (and the optimum) being

determined by an environmental cue that has been cor-

rectly identified. While the sliding window approach

we adopted identifies the period over which the tem-

perature–phenology correlation is strongest, unre-

solved issues remain with the notion that average

temperature is the direct cue. First, we find, as many

others have before (Perrins, 1965; Gienapp et al., 2005),

that the most predictive window overlaps substantially

with the period of laying (see the high frequency of

negative lag times in Fig. S1), implying, nonsensically,
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that birds cue off temperatures after laying to deter-

mine when to lay. In defense of the sliding window

approach, the effects that are identified may correlate

closely with the true mechanism, as has been shown for

growing degree day models in plants (Phillimore et al.,

2013; Roberts et al., 2015). Second, with respect to the

migratory pied flycatcher, temperature sensitivity (as

identified by the phototemp_i model) is initiated

around March 21, whereas first arrival dates on breed-

ing grounds in forests in southwest England and north-

east Wales average approximately 20 days later (M.

Burgess and B. Harris pers. comm). This mirrors earlier

findings in relation to migratory collared flycatchers

(L€ohrl, 1957). The period of temperature sensitivity

prior to return to the breeding grounds is possibly due

to spatial autocorrelation between temperatures on

migration and breeding grounds (Ockendon et al.,

2013; Finch et al., 2014). Alternatively, the effect of tem-

perature on lay date may be indirect, via its effect on

the phenology and growth of invertebrate prey, in turn

acting as a constraint or cue for laying (Perrins, 1965).

In this study, we show how spatiotemporal pheno-

logical observations can be used to identify cues and

estimate two parameters, plasticity and the environ-

mental sensitivity of the optimum, that are key to pro-

jecting population responses under a climate change

(Chevin et al., 2010). We find that plasticity may track

temperature-mediated variation in optimum lay date

for the four focal passerines, which, if true, suggests

that populations of these species are well positioned to

persist in the face of rising spring temperatures.
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Figure S1. The temporal slopes (blue lines) estimated within
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