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Abstract

To identify common variants contributing to normal variation in two specific domains of cognitive 

functioning, we conducted a genome-wide association study (GWAS) of executive functioning 

and information processing speed in non-demented older adults from the CHARGE (Cohorts for 

Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing 

was available for 5429–32 070 subjects of European ancestry aged 45 years or older, free of 

dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery 

phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit 

Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic 

fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects 

from 20 independent cohorts. A significant association was observed in the discovery cohorts for 

the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value = 3.12 × 10−8) and in 

the joint discovery and replication meta-analysis (P-value = 3.28 × 10−9 after adjustment for age, 

gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance 

on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of 

the major transcript for the CADM2 gene, but is within an intron of a variant transcript that 
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includes an alternative first exon. The variant is associated with expression of CADM2 in the 

cingulate cortex (P-value = 4 × 10−4). The protein encoded by CADM2 is involved in glutamate 

signaling (P-value = 7.22 × 10−15), gamma-aminobutyric acid (GABA) transport (P-value = 1.36 

× 10−11) and neuron cell-cell adhesion (P-value = 1.48 × 10−13). Our findings suggest that genetic 

variation in the CADM2 gene is associated with individual differences in information processing 

speed.

INTRODUCTION

Cognitive function broadly refers to multiple dissociable, but inter-correlated cognitive 

domains, including memory, language, executive function, processing speed and 

visuospatial ability. Unimpaired cognitive abilities are an important determinant of quality 

of life. Impairment of cognitive abilities is seen with dementia, bipolar disorder, 

schizophrenia and attention deficit hyperactivity disorder.1–3 Among the cognitive domains, 

processing speed is considered a fundamental process, reflecting the speed at which 

cognitive operations are performed.4,5 Executive function reflects higher-order cognitive 

capabilities, presumably mediated by the frontal lobes, including response inhibition, 

attention, cognitive flexibility and planning.6

In addition to domain-specific variance, processing speed and executive function are also, in 

part, explained by an individual's general cognitive ability. The same holds true for the 

genetic variance of performance on individual cognitive tests.7 The estimated heritability of 

general cognitive ability from twin studies of intelligence ranges from approximately 50 to 

80%, and appears to increase with age.8 The general intelligence construct g has a 

heritability of around 29%, for example, observed in a genome-wide association study 

(GWAS) based on the GCTA procedure.9,10 Heritability of performance on tests within 

individual cognitive domains has been estimated from 12 to 68%11–14 for processing speed 

and 16–63%13,15,16 for executive function.

Of note, there is also considerable covariation between cognitive domains.17,18 There is, for 

example, debate as to whether processing speed is merely one of the cognitive domains, or 

whether processing speed has a more unique role as a fundamental process underlying 

variation in more complex cognitive traits as well as in cognitive aging.19,20

Identifying variants that influence quantitative variation in processing speed and executive 

function may provide insight into the normal variation in these important cognitive 

functions, and may ultimately increase our understanding of diseases that disrupt these 

cognitive domains.

Although various genes have been identified as potential candidates affecting different 

dimensions of cognitive function, prior studies have yielded inconsistent results.21 

Candidate gene meta-analyses have shown associations of the apolipoprotein E (APOE) 

gene22 and the DTNBP1 (dystrobrevin binding protein 1) gene23 to general cognitive ability, 

although these findings do not meet the current standard of genome-wide significance (P-

value between 0.01 and 0.05 for APOE, P-value = 0.003 for DTNBP1). Linkage analyses of 

executive function tasks have identified regions on chromosomes 2q, 5q, 11q, 13q and 
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14q.24–26 To our knowledge, there are currently five published GWAS on processing speed 

and executive traits in adults.5,27–30 Processing speed was suggestively associated with 

several loci, of which the TRIB3 (tribbles homolog 3) gene was the strongest and 

biologically most interesting.5 For executive function, one study30 identified a genome-wide 

significant association (P-value = 4.32 × 10−8) of a single-nucleotide polymorphism (SNP) 

in the WDR72 gene (chromosome 15) for a cognitive test similar to the Stroop interference 

test. The WDR72 gene has also been associated with kidney function.31 Prior studies of 

executive function and processing speed have been limited by small sample sizes (700 and 

4000 subjects), resulting in limited power, and by application of lenient significance 

thresholds. Replication of prior findings has been lacking both across and within cognitive 

domains.

In this study, we performed a large-scale meta-analysis to identify genetic variants 

associated with executive function and information processing speed combining GWAS 

from multiple cohorts of non-demented middle-aged and older adults from the CHARGE 

(Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium.32

MATERIALS AND METHODS

Study populations

The discovery phase included 20 cohorts contributing to one or more test (N per test = 

5429–32 070) (Supplementary Table 1). The number of discovery cohorts and subjects 

varied based on the availability of each test. Each cohort had extensive phenotypic data on 

one or more traits, and genome-wide SNP data available. Details for each cohort are given in 

Supplementary Table 1. Subjects aged 45 and older who were free of stroke and dementia 

and of European ancestry were eligible for the study.

Twenty replication cohorts (total N = 1311–21 860) (Supplementary Table 1) were selected 

based upon comparability of the study populations to the discovery cohorts, and availability 

of genotype data, and these cohorts were invited to share data from a GWAS run according 

to the same protocols. Applying the same inclusion criteria for age (≥45 years) and the 

absence of stroke or dementia, we also included cohorts of African-American ancestry (N = 

1004–3164 depending on the trait) in the replication phase, partly to evaluate whether our 

findings could be extrapolated to persons of other ethnicities. Data from the discovery and 

replication studies were further meta-analyzed. Additional details are provided in the 

Supplementary Material. Each participant provided informed consent and all studies were 

approved by their local Institutional Review Boards.

Executive function and processing speed tests

Each cohort included some tests of executive function and/or processing speed. Test 

batteries differed across cohorts. Tests of executive function included the Trail Making Test 

part B (Trail B), Stroop card 3 (color word card) and tests of phonemic (letters, see 

Supplementary Material) and semantic (animals) fluency. Tests of processing speed 

included Trail Making Test part A (Trail A), Stroop card 2 (color card), the Digit-Symbol 

Substitution Test (DSST), Letter-Digit Substitution Task (LDST), the Letter Digit Coding 
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Test (LDCT) and the Symbol Digit Modalities Test (SDMT). All tests were administered in 

a standardized manner by an investigator unaware of any genetic information on the 

subjects. Details for the test administration and raw scores are given in Supplementary Table 

1 and in the Supplementary Methods. Because the nature of the task and procedures for 

DSST, LDST, LDCT and SDMT were so similar, these measures were combined (that is, 

treated as the same test; referred to hereafter as DSST/LDST) in analysis. To assess the 

validity of combining these measures into a single meta-analysis, we conducted a substudy 

to determine the correlation between these measures in 102 volunteers not included in the 

meta-analysis cohorts. Details of the substudy are provided in the Supplementary Material, 

section 6 and Supplementary Table 5.

Genotyping and imputation

Genotyping was independently performed by each cohort using commercially available 

arrays ranging from the Illumina 300 and 610 k to the Affymetrix GeneChip SNP Array 6.0 

(Supplementary Table 2). Each cohort applied standard quality control filtering before 

genetic imputations. These filters included a SNP call rate of at least 90%, sample call rate 

of at least 92%, minor allele frequency of at least 0.01, and Hardy–Weinberg deviation P-

value of at most 10−3 (Supplementary Table 3). Genetic data imputations were performed in 

each cohort using HapMap II CEPH (Utah residents with ancestry from northern and 

western Europe) as the reference panel, with the exceptions of ARIC and GENOA African-

American cohorts that imputed their genetic data using both HapMap II CEPH and YRI 

(Yoruba in Ibadan) populations as a reference.33 Details on genotyping and imputations are 

provided in Supplementary Tables 2–4.

Genome-wide association analysis

Each cohort performed a linear regression model of test scores against the dosage of coded 

alleles for each SNP testing an additive effect of the genetic variants. Skewness and kurtosis 

were evaluated before the analyses. A detailed description of the screening for latent 

population substructure in each cohort is given in part 5 of the Supplementary Material and 

Supplementary Table 3. Where appropriate, principal components or family-specific 

methods such as mixed model score were applied to correct for familial relationships 

(Supplementary Material, part 5).

We used two models of association analysis; with and without education level as a covariate 

in addition to age, gender and other study specific confounders, for example, study site, 

familial relations or population substructure. This is because there is a dynamic, two-way 

relationship between cognitive function and level of education. The ability to score high on 

cognitive tests is influenced by background familiarity with, for example, the numbers and 

alphabet (Trails tests) or a large vocabulary (fluency tests), which are typically acquired 

during one's formal education. Estimates are that, even in the Netherlands (10%) and the 

USA (22%), functional illiteracy is common among adults aged 16–65.34,35 Conversely, 

there is a genetic correlation between education and cognitive ability.36
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Meta-analysis

The meta-analysis was performed in METAL.37 For all tests except the Stroop test and 

LDST/DSST, meta-analysis was performed using the inverse variance method. For the 

Stroop test and LDST/DSST, a sample size weighted meta-analysis was performed because 

of the differences in the test methodology and measurement units that impeded the pooling 

of the beta coefficients. The z-statistic was weighted by the effective sample size (sample 

size × (observed dosage variance/expected dosage variance)) for each SNP. Genomic 

control was applied within each cohort before meta-analysis. The meta-analyses were 

restricted to autosomal SNPs common to all studies for each neurocognitive test.

Additional analyses

Expression quantitative trait locus analyses—All variants with a discovery P-value 

< 5 × 10−6 were analyzed further to test whether they were associated with RNA expression. 

For this, we used the Genotype Tissue expression portal (GTex, Broad Institute, Boston, 

MA, USA; http://www.gtexportal.org/home/) to assess the variants for their influence on 

expression of their closest genes in brain tissue.38 We also performed expression 

quantitative trait locus (eQTL) experiments in 138 human hippocampal cell lines obtained in 

vivo from patients undergoing surgery for treatment-resistant epilepsy. Details on the 

methods of this functional follow-up study are given in the Supplementary Material. 

Cognitive tests are never completely limited to a single cognitive domain. Even in executive 

function and processing speed tests, working memory (and other capabilities) may have a 

role. For example, one needs to remember the assignment and which words were already 

used in fluency tasks, and those who are better able to passively learn the key in the LDST 

or DSST should likewise produce a higher (better) score. Thus, some hippocampal 

involvement might be expected along with the predominant frontal processes of executive 

function and processing speed. Hence we used the hippocampal cell lines to identify 

associations between whole-genome SNP (Illumina Human 660 W array) and RNA 

expression data (Illumina HumanHT-12v3). The Bonferroni corrected level of eQTL 

significance for a given SNP can be assumed to be 0.05/n of genes for a given SNP and a 

given test, leading to a P-value of 0.05/20 000 = 2.5 × 10−6 for the hypothesis-free, genome-

wide search for eQTL associations.

Gene network and functional prediction analysis—A gene network analysis was 

performed using the Gene Network database (http://www.genenetwork.nl/genenetwork, by 

Groningen University, The Netherlands) (Fehr-mann et al., manuscript in preparation), 

which incorporates gene expression data from 77 840 human, mouse and rat Affymetrix 

microarrays from the Gene Expression Omnibus.39,40 Using principal components analysis 

on the probeset correlation matrices, so-called transcriptional components were identified 

that describe major biological pathways. We combined these data into a multi-species gene 

network with 19 997 unique human genes. Predictions of gene function were made using 

biological databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG, 

www.genome.jp/kegg),41 Gene Ontology (GO, www.geneontology.org) Database42 and 

Reactome pathway database (www.reactome.org).43 Additionally, we consulted the GTex 

website for tissue expression data on the genes of interest. More detailed information on the 

gene network approach is given in the Supplementary Material.
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RESULTS

Phenotypes

Analyses in an independent group of 102 volunteers showed correlations between LDST, 

DSST and SDMT above 0.8 (P-value < 0.01). After partialling out age, correlations 

remained above 0.7 (P-value < 0.01). (Supplementary Table 6 and Supplementary Figure 1). 

We therefore deemed it appropriate to combine these three tests into one sample size-

weighted meta-analysis.

GWAS and eQTL analysis

Baseline characteristics of the study populations and mean test results for each trait are 

provided in Supplementary Table 1. Supplementary Figure 2 shows the quantile-quantile 

plots for the discovery-phase GWAS meta-analysis of each trait. No inflation due to hidden 

substructure or cryptic relatedness was observed for any cohort.

In the meta-analysis for processing speed (LDST/DSST tests), only one genome-wide 

significant association was observed at an intronic variant (rs17518584, P-value = 3.12 × 

10−8 in the model adjusted for age, sex and education and P-value = 6.25 × 10−7 in the 

model adjusted for age and sex) in the gene encoding cell adhesion molecule 2 (CADM2) on 

chromosome 3 (Supplementary Figure 3 and Table 1). This gene is also known as 

SYNCAM2 (synaptic cell adhesion molecule 2). This variant explains 0.05% (age, sex and 

education-adjusted model) of the variance in scores on the LDST/DSST in the Rotterdam 

Study, one of the largest population-based cohorts.

Additional information was sought for all SNPs with a discovery P-value of below 5 × 10−6 

and a minor allele frequency of >0.05. At this phase, 7 SNPs were analyzed for LDST/

DSST, 15 SNPs for the Stroop test, 12 SNPs for Trail A, 17 SNPs for Trail B, 9 SNPs for 

letter fluency and 34 SNPs for semantic fluency. Of all the loci tested in the independent 

cohorts, including both subjects of European and African-American ancestries, a nominally 

significant association in the same direction as in the discovery analyses was observed only 

for the CADM2 variant rs17518584 with LDST/DSST (nominal P-value = 0.03 for meta-

analyses of results in the additional cohorts, adjusting for age and sex, and nominal P-value 

= 0.05 for meta-analysis of results after adjusting for age, sex and education). Meta-analysis 

of discovery and replication cohorts yielded genome-wide significant evidence for 

association of rs17518584 in CADM2 with scores for the LDST/DSST processing speed 

tests, in the fully-adjusted model that included age, sex and education (P-value = 3.28 × 

10−9) (Table 1). The findings of the individual studies (both discovery and replication) are 

shown in Table 2.

When examining association signals for loci previously identi-fied in genetic analyses of 

cognitive function, rs7412 and rs429358 used to genotype the APOE ε4 allele associated 

with general cognition22 were not present in the analyzed SNP sets. However, a single SNP 

proxy for APOE ε4 (rs4420638)44 was associated with the LDST/DSST (P-value = 2.11 × 

10−4) in the fully adjusted model. We found no effect of additional adjustments for 

rs4420638 on the association of rs17518584 with the LDST/DSST in the Rotterdam study 

cohorts. There was no evidence for association of SNPs in any of the other tested candidate 
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genes that have previously been associated with executive and processing speed functions. 

(DTNBP1: lowest P-value = 0.019 for rs2619522 for the Stroop test, TRIB3: lowest P-value 

= 0.155 for phonemic fluency, WDR72 lowest P-value = 0.157 for LDST/DSST in our 

GWAS meta-analysis for the fully adjusted model). Also, regions for which linkage was 

reported (2q, 5q, 11q, 13q and 14q) were not genome-wide significant. The strongest 

association was seen in the 11q.25 region in which we found a SNP rs2734839 to be 

suggestively associated with performance on the LDST/DSST (P-value = 4.39 × 10−7 for the 

age- and sex-adjusted model and 3.08 × 10−6 for the model adjusted for age, sex and 

education). Rs2734839 is an intronic SNP in the DRD2 gene encoding the D2 subtype of the 

dopamine receptor.

Bioinformatics analysis

The GTex tissue expression data (www.broadinstitute.org/gtex) show that CADM2 is 

expressed more abundantly in different areas of the brain than in any other tissue, and most 

specifically in the frontal and anterior cingulate cortex (Supplementary Figure 4). In the 

GTex eQTL analysis, the top hit from the LDST/DSST GWAS, rs17518584, showed 

association with RNA expression levels of CADM2 in the cingulate cortex (P-value = 4 × 

10−4), general hemispheral cortex (P-value = 0.004), substantia nigra (P-value = 0.007), 

frontal cortex (P-value = 0.02) and cerebellum (P-value = 0.03). No significant cis or trans 

associations were identified in the ex-vivo hippocampal data. Gene network analysis shows 

that CADM2 is significantly expressed in human brain (P-value for expression in cerebral 

cortex = 2.47 × 10−171, area under the curve (AUC) = 0.99; P-value for expression in the 

prefrontal cortex specifically = 1.29 × 10−31, AUC = 1.0; P-value for expression in the 

hippocampus = 8.2 × 10−36, AUC = 0.99). The gene network analyses suggest that CADM2 

is likely involved in biological processes that include the glutamate signaling pathway (P-

value = 7.22 × 10−15), gamma-aminobutyric acid (GABA) transport (P-value = 1.36 × 

10−11) and neuron cell-cell adhesion (P-value = 1.48 × 10−13). CADM2 shows strong 

positive co-expression with several genes involved in the GABA and other glutamate 

neurosignaling pathways, such as GABA A receptor alpha 1 and beta 2 (GABRA1, 

GABRB2) and glutamate receptor metabotropic 5 (GRM5). Further, there is strong positive 

co-expression with many members of the voltage-gated potassium channel group including 

KCNJ9, KCNJ10, KCNB2 and KCNC, and with the OPCML (opioid binding protein/cell 

adhesion molecule-like) gene and EPHA5 (EPH receptor A5) (Figure 1). Supplementary 

Table 7 and Supplementary Figure 4 provide the expression data in neuronal tissues. As 

expected, Gene Network and GTex show that DRD2 is predominantly expressed in the 

pituitary (GTex reads per kilobase per million (RPKM) = 50), putamen (gene network AUC 

= 1, P-value = 5 × 10−12, GTex RPKM = 40), substantia nigra (gene network AUC = 0.98, 

P-value = 4 × 10−15, GTex RPKM = 4) and nucleus accumbens (GTex RPKM = 28). 

However, the intronic variant rs2734839 is not associated with expression at nominal 

significance in any region reported (cingulate, frontal or general cortex, amygdala, caudate 

nucleus, nucleus accumbens, putamen, substantia nigra, cerebellum, hippocampus, 

hypothalamus, pituitary or spinal cord).
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DISCUSSION

The discovery phase of our study yielded genome-wide significance for an association of 

processing speed (LDST/DSST) with rs17518584. In silico replication in additional 

independent cohorts yielded nominally significant support for association. In the combined 

discovery-replication analysis, the model adjusted for age, sex and education resulted in 

genome-wide significant association between rs17518584 and LDST/DSST performance. 

The variant is associated with CADM2 expression, at least at nominal significance.

Rs17518584 is located about 170 kb upstream of the transcription start site of the major 

transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an 

alternative first exon. Variants in the CADM2 gene have been previously associated with 

body mass index,37 but not with cognitive function. The gene has been studied as a 

candidate for autism spectrum disorders,45 and showed a suggestive association with scores 

on the persistence items on a personality scale.46 The protein is likely involved in long-term 

signal depression and potentiation and neuroactive ligand-receptor interaction (http://

www.genome.jp/kegg/), and is a member of the immunoglobulin superfamily. The gene 

encodes a neuronal adhesion molecule that has been shown to be widely expressed in the 

developing and adult brain in laboratory mice,47 as well as in human and rat brain tissue, 

with highest expression AUCs for the prefrontal cortex. In the GTex analyses, rs17518584 

significantly influenced CADM2 expression levels in the brain, most specifically in the 

cingulate cortex. This finding is of interest in the background of diffusion tensor imaging 

experiments that have shown an association between fractional anisotropy in the cingulum 

and performance on executive and processing speed tasks.48,49 The co-expression data from 

gene network analysis also revealed some interesting links to Alzheimer's disease (Figure 1). 

OPCML has been associated with a variety of cognitive domains in a follow-up of linkage 

regions for Alzheimer's disease.50 EPHA5 is a member of the same family of ephrin 

receptors as the EPHA1 gene, which is associated with Alzheimer's disease.51,52

No significant cis or trans associations with gene expression were identified in the 

experiments using ex-vivo hippocampal tissue from epilepsy patients. However, both GTex 

and Gene Network bioinformatics sources show that CADM2 is expressed in normal 

hippocampal tissue (obtained postmortem).

We identified only one genome-wide significant variant explaining a small part of the 

variance in performance on the LDST/DSST (R2 = 0.005). These findings should be 

interpreted in light of the sample size studied. The number of persons analyzed varied 

considerably between outcomes, with 5555–32 900 subjects per individual test. This 

variability is a consequence of the nature of the CHARGE consortium, which uses the data 

previously collected in the individual cohorts, long before the GWAS era. As a 

consequence, there were differences in the test batteries administered in each cohort, and 

some tests were available in a larger number of cohorts than others. Limitations in sample 

size may have prevented us from finding variants (false negatives) associated with some 

outcomes. To minimize the detection of false positives, we sought replication in independent 

studies.
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This may also explain, in part, why rs17518584 was identified only in LDST/DSST, which 

had the largest discovery sample. The strongest association for this SNP in other traits was 

in letter fluency, with a P-value of 0.076 in the discovery meta-analysis, with all studies 

showing a positive effect of the T allele (as in LDST/DSST). This may reflect the influence 

of processing speed on fluency performance previously described in the literature.18 Our 

analyses lacked power to address genes with small effects affecting tests for which we had 

only a limited sample size. The lack of test-specific power should also be taken into account 

when interpreting the lack of association with candidate genes beyond APOE (DTNBP1, 

TRIB3 and WDR72). There was only one other intronic variant (rs2734839) in the DRD2 

gene, encoding the D2 subtype of the dopamine receptor, that approached genome-wide 

significance. The bioinformatic analyses did not support a functional effect of the expression 

of the gene in the substantia nigra. This variant therefore remains to be replicated. A further 

limitation is that the cognitive phenotypes were based on single assessments and thus we 

were unable to determine genetic effects on age-related cognitive decline. Despite some 

limitations, this is the first study to discover and replicate a genetic variant involved in 

processing speed.

The present report provides the most comprehensive meta-analysis of processing speed and 

executive function GWAS to date. We found a genome-wide significant association between 

widely-used tests of processing speed (LDST/DSST) and a SNP in the CADM2 gene, which 

is involved in glutamatergic and GABA-ergic transmission, in middle-aged and older non-

demented adults. This gene is a candidate for autism and personality, but based on the 

pathway and expression analyses it may also be relevant to a broad range of 

neuropsychiatric diseases including dementias.
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Figure 1. 
Gene network plot for CADM2, based on biological processes. Gray lines indicate positive 

co-expression and blue lines indicate negative co-expression, with the density of the line 

reflecting the strength of the co-expression.
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Table 2

Effect size and direction of effects across cohorts for rs17518584

Study Test Time (seconds) Coded allele Non-coded allele Beta 
Coeff./SE 
(age, sex 

adjusted)

P-value Beta 
Coeff./SE 
(age, sex, 

education 
adjusted)

P-value

Discovery

    ARIC DSST53 90 T C 0.235 (0.157) 1.34 × 10−1 0.275 (0.146) 5.97 × 10−2

    CHS 90 T C 0.317 (0.387) 4.12 × 10−1 0.469 (0.358) 1.90 × 10−1

    GENOA 90 T C 0.503 (0.550) 3.61 × 10−1 0.553 (0.534) 3.02 × 10−1

    ORCADES 90 T C 1.516 (1.101) 1.68 × 10−1 1.541 (1.054) 1.44 × 10−1

    AGES DSST54 90 T C 0.682 (0.282) 1.56 × 10−2 0.808 (0.259) 1.84 × 10−3

    Korcula 120 T C -0.350 (0.967) 7.18 × 10−1 −0.161 (0.838) 8.48 × 10−1

    Split 60 T C 0.495 (0.664) 4.56 × 10−1 0.549 (0.588) 3.51 × 10−1

    Vis 120 T C 0.725 (1.155) 5.31 × 10−1 0.880 (1.089) 4.19 × 10−1

    Health ABC DSST55 90 T C 0.448 (0.452) 3.22 × 10−1 0.458 (0.432) 2.89 × 10−1

    LBC 1921 DSST56 120 T C 0.755 (1.178) 5.22 × 10−1 0.804 (1.140) 4.80 × 10−1

    LBC 1936 120 T C 1.074 (0.630) 8.84 × 10−2 0.776 (0.611) 2.04 × 10−1

    ASPS LDST57 60 T C 0.850 (0.600) 1.55 × 10−1 0.545 (0.580) 3.44 × 10−1

    RS 60 T C 0.176 (0.174) 3.12 × 10−1 0.224 (0.165) 1.76 × 10−1

    RS2 60 T C 0.370 (0.212) 8.08 × 10−2 0.329 (0.205) 1.09 × 10−1

    RS3 60 T C 0.648 (0.216) 2.72 × 10−3 0.599 (0.208) 3.91 × 10−3

    MAP SDMT58 90 T C −1.214 (0.530) 2.15 × 10−2 −1.193 (0.520) 2.14 × 10−2

    ROS 90 T C 1.154 (0.462) 1.22 × 10−2 1.218 (0.450) 6.58 × 10−3

    PROSPER LDCT59 60 T C 0.336 (0.155) 3.04 × 10−2 0.303 (0.148) 4.07 × 10−2

Replication

    BLSA DSST53 90 T C −0.119 (0.663) 8.58 × 10−1 −0.155 (0.678) 8.20 × 10−1

    MAS DSST55 90 T C 1.651 (0.586) 4.81 × 10−3 1.425 (0.576) 1.33 × 10−2

Abbreviations: Coeff, coefficient; DSST, Digit Symbol Substitution Test; LDCT, Letter Digit Coding Test; LDST, Letter-Digit Substitution Task; 
SDMT, Symbol Digit Modalities Test; SE, standard error of beta coefficient; Model 1: adjusted for age and gender; Model 2: adjusted for age, 
gender and education.
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