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ABSTRACT

In this work, the interactions between two oppositely charged proteins in solution, namely whey protein
isolate (WPI) and lactoferrin, were investigated for uses in nanoemulsions. {-potential and turbidity
measurements indicated that these two proteins interact strongly via electrostatic attraction at pH 6.
Quartz crystal microbalance with dissipation (QCM-D) was employed to study the adsorption behaviour
and the formation of different interfacial structures of the two proteins onto a model hydrophobic
surface that mimics the interface of an oil droplet in emulsions. Sequential addition of WPI and lacto-
ferrin (or vice versa) formed thin and rigid protein bi-layers (8—10 nm). However, a viscous and thick
surface layer (101 nm) was formed by the protein complex using a mixture of WPI and lactoferrin. High
pressure homogenization and solvent evaporation were then used to replicate the QCM-D results on real
nanoemulsion systems. Sequential adsorption of WPI and lactoferrin created bi-layered nanoemulsions
with stable and relatively small droplets (90 nm in diameter). In contrast, the sequential adsorption of
lactoferrin and WPI as well as the use of a mixture of WPI and lactoferrin (mixed layer) resulted in large
aggregates with poor stability. This study provided insights into the stability of nanoemulsions influ-
enced by structural features of interfacial layers based on two oppositely charged protein molecules.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

solubility and bioavailability of poorly soluble drugs (McClements
& Rao, 2011; Tiwari & Takhistove, 2012; Weiss, Gaysinsky,

Oil-in-water (O/W) nanoemulsions are defined as emulsions
containing oil droplets with size in the range of 10—100 nm in
diameter (Lee, Choi, Li, Decker, & McClements, 2011; Lee &
McClements, 2010;). The small droplet size of nanoemulsions has
a number of advantages including high stability against droplet
aggregation and coalescence, incorporation of bioactive com-
pounds into clear and transparent solutions and enhancement of
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Davidson, & McClements, 2009).

Like conventional emulsions containing large oil droplets
(01-100 pm), the structure and composition of the oil-water
interface of nanoemulsions can be manipulated to form emul-
sions with better performance and novel functionalities as micro-
encapsulation systems of bioactive compounds (Skirtach,
Yashchenok, & Mohwald, 2011; Trojer et al, 2015; Trojer,
Nordstiema, Nordin, Nydén, & Holmberg, 2013). This can be ach-
ieved by depositing oppositely charged biopolymers at the inter-
face of oil droplets using an electrostatic layer by layer (LBL)
deposition method to form multi-layer emulsions (Bouyer,
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Mekhloufi, Rosilio, Grossiord, & Agnely, 2012; Guzey &
McClements, 2006; Sukhorukov, Caruso, Davis, & Mohwald,
1998;). Alternatively, electrostatic complexes of two oppositely
charged biopolymers can be used to form mixed layer emulsions
(Bouyer et al., 2012; Tokle, Decker, & McClements, 2012). Examples
of multi-layer and mixed layer emulsions have been reported in the
literature, e.g. caseinate/sodium alginate multi-layer emulsions
(Pallandre, Decker, & McClements, 2007); B-lactoglobulin/lacto-
ferrin multi-layer emulsions (Ye & Singh, 2007); B-lactoglobulin/
lactoferrin multi-layer and mixed layer emulsions (Tokle et al.,
2012), and WPI/pectin mixed layer emulsions (Mao, Boiteux,
Roos, & Miao, 2014). These studies have shown that modification
of interfacial properties can influence the stability of emulsions
under environmental stresses (such as pH, ionic strength and
temperature) and affect chemical and oxidative stability of encap-
sulated components in the oil droplets. However, majority of these
studies have been focused on conventional emulsions containing
relatively large droplet size, and the mechanism underlying the
complex formation and the interfacial structure of small oil drop-
lets has yet to be fully understood. This is interesting because the
interfacial characteristic of nanoemulsions is different from con-
ventional emulsions. The small oil droplets of nanoemulsions are
being surrounded by a thicker interfacial layer whereas conven-
tional emulsions have a thinner interfacial layer relative to their
respective droplet size (McClements & Rao, 2011). As a result, the
interfacial properties of nanoemulsions have a greater influence on
the overall particle characteristics, such as physical stability, par-
ticle interactions and stability and digestibility of emulsions.
Formation of multi-layer interfaces involves species (e.g. weak
polyelectrolytes) having different isoelectric points in a pH
dependent process driven by electrostatic interactions (Guzey &
McClements, 2006; Ye & Singh, 2007). In the case of micron sized
emulsions, the composition and structure of the biomolecules
adsorbed at the droplet surface can be determined by centrifuga-
tion followed by gel electrophoresis of the cream layer (Sarkar, Goh,
Singh, & Singh, 2009; Ye & Singh, 2007). However, such protocol
cannot be employed with nanoemulsions, which are characterised
by kinetically stable small oil droplets that cannot be readily
separated by centrifugal forces. The interfacial structures on
nanoemulsions can be studied through indirect techniques such as
surface plasmon resonance (SPR), quartz crystal microbalance with
dissipation (QCM-D), atomic force microscopy (AFM), ellipsometry,
dual polarisation interferometry, optical tensiometry and dilata-
tional rheology (Boddohi, Almoddvar, Zhang, Johnson, & Kipper,
2010; Krivosheeva, Dédinaité, & Claesson, 2012; Lundin, Elofsson,
Blomberg, & Rutland, 2010; Trojer, Mohamed, & Eastoe, 2013).
Here, a model surface is used to mimic the oil droplet interface,
allowing the monitoring of the adsorption of different layers and
their resulting structural characteristics. For example, Berendsen,
Giell, Henry, and Ferrando (2014) used SPR technique to study
the formation of multi-layer emulsions with different interfacial
structures, e.g. mono-layer, bi-layer and complex layer.
Interestingly, QCM-D has not been well used to study the
interfacial structures of protein layers in emulsions. QCM-D is well-
suited to measure surface adsorption and structural properties of
adsorbed layers. In fact, the quartz crystals used in QCM-D mea-
surements can be chemically modified to create a hydrophobic
layer which can then be used to mimic the oil-water interface in
real emulsions. In previous studies, gold coated quartz crystals used
in the QCM-D experiments have been modified using an alka-
nethiol molecule (1-hexadecanethiol). This molecule has been used
in the formation of a self-assembled monolayer (SAM) hydrophobic
surface and contains a thiol group (CH3CH;)14CH,SH that can be
immobilised onto gold surfaces through a covalent bond (Ito, Arai,
Hara, & Noh, 2009; Novakova, Orinakova, Orinak, Hvizdos, &

Fedorkova, 2014). It has been shown that the formation of SAM of
alkyl thiols containing CH3 terminated groups is hydrophobic and
that protein adsorption on the modified surfaces is driven by hy-
drophobic interactions (Lebec et al., 2013). This technique enables
simultaneous measurement of the resonance frequency of an
oscillating sensor and decay of the oscillation (i.e. dissipation)
which are related to the amount of adsorbed layer and its visco-
elastic properties, respectively (Hook et al., 2001; Liu & Kim, 2009;
Lundin et al., 2010). This surface characterization technique has
been successfully used to study adsorption of proteins and forma-
tion of multi-layers on different surfaces for biomedical and other
applications (Chandrasekaran, Dimartino, & Fee, 2013; Craig,
Bordes, & Holmberg, 2012; Lundin et al., 2010). Still, QCM-D has
not been employed as a complementary technique to study protein
adsorption at the O/W interface in emulsion systems.

In this study, the interactions of WPI and/or lactoferrin at an oil-
water interface were studied in a model system by depositing
aqueous protein solutions to a gold hydrophobic surface using
QCM-D technique. This model system was used to simulate the
adsorption of protein on the hydrophobic surface of oil droplets in
aqueous solution. QCM-D was employed to measure the extent of
protein adsorption and to determine the formation of different
interfacial structures. Nanoemulsions with similar interfacial
structures were also prepared in parallel and the results from the
two sets of experiments compared. This study provides valuable
information on the structural design of layered nanoemulsions.

2. Materials and methods
2.1. Materials

Whey protein isolate (WPI) (Alacen™ 895) containing 93.9%
protein, 0.3% fat, 1.5% ash and 4.7% moisture was supplied by Fon-
terra Co-operative Group Limited, New Zealand. Lactoferrin powder
containing 98.8% protein (of which 92.8% was lactoferrin), 0.7% ash
and 0.4% moisture was obtained from Tatua Co-operative Dairy
Company, Morrinsville, New Zealand. 1-hexadecanethiol (>95%
GC) was purchased from Sigma Chemical Co. (St. Louis, MO, USA).
Ammonia (25%) and hydrogen peroxide (30%) were purchased from
Sigma Aldrich (Sydney, Australia). Corn oil was purchased from a
local supermarket (Davis Trading, Palmerston North, New Zealand).
Ethyl acetate (HPLC grade) was purchased from Fischer Scientific
(New Jersey, USA). Hydrochloric acid, sodium hydroxide and so-
dium azide were of analytical grade and purchased from Thermo
Fisher Scientific (Victoria, Australia) or BDH Chemicals (Poole,
England).

2.2. Preparation of protein solutions

Protein solutions containing 1% (w/w) WPI or lactoferrin were
prepared in Milli-Q water (Millipore, 18.2 MQ cm at 25 °C) under
gentle stirring for at least 3 h at room temperature. The pH of
protein solutions was adjusted with HCl or NaOH solutions to the
pH value required in the experiment (ranging from 2 to 10). A
mixture of WPI and lactoferrin was also prepared by mixing equal
volumes of both protein solutions at pH 6.

2.3. Analysis of protein solutions

2.3.1. Electrical charge ({-potential) measurements

The ¢-potentials of protein solutions and protein mixtures were
determined in disposable folded capillary cells (Model DTS1070)
using a Malvern Zetasizer Nano ZS (Malvern Instruments, Wor-
cestershire, UK). The samples were analysed at 25 °C in triplicate
without further dilution. The {-potential was calculated from the
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measured electrophoretic mobility of oil droplets using the Smo-
luchowski model (Zetasizer Software, Version 7.10, Malvern In-
struments, Worcestershire, UK).

2.3.2. Turbidity measurements

The optical density (0.D.) of individual protein solutions and
protein mixtures of WPI and lactoferrin was measured at 600 nm
using a UV-visible spectrophotometer (SPECTROstar™"°, BMG
LABTECH GmbH, Ortenberg, Germany) in a 1 cm path length optical
cell against a water reference.

2.4. Quartz crystal microbalance with dissipation (QCM-D)
measurements

2.4.1. Preparation of hydrophobic gold surfaces

AT-cut piezoelectric quartz crystals (Q-Sense, ATA Scientific,
Tarren Point, NSW, Australia) coated with gold and having a
fundamental frequency of 4.95 Hz were used. The gold sensors
were cleaned with “Piranha” solution (a mixture of 5:1:1 ratio of
Milli-Q water, 25% ammonia and 30% hydrogen peroxide) at 75 °C
for 10 min and rinsed with hot Milli-Q water. The sensors were
dried with nitrogen gas and placed in a UV/ozone chamber (Bio-
Force Nanosciences, USA) for 10 min.

After cleaning and drying the sensors, the gold surface was
rendered hydrophobic by introducing a self-assembled monolayer
(SAM) as per the protocol reported by Lebec et al. (2013) and
Mivehi, Bordes, and Holmberg (2013). Briefly, the cleaned gold
surface was immersed overnight in a solution of 2 mM hex-
adecanethiol in ethanol and then rinsed thoroughly with ethanol to
remove unadsorbed hexadecanethiol. The contact angle of the
modified sensor surface was measured using the drop analysis in
Image ] (Version 1.47, National Institutes of Health, USA).

2.4.2. QCM-D experiment

Protein adsorption on the SAM hydrophobic surfaces was car-
ried out using a QCM-D system (Q-Sense E4 system, Q-Sense, ATA
Scientific, Tarren Point, NSW, Australia) equipped with a tempera-
ture controlled measuring chamber and a peristaltic pump
(ISMATEC® IPC High Precision Multi channel Dispenser, IDEX
Health & Science, Germany). Each QCM-D experiment started with
pre-equilibration with Milli-Q water to obtain a signal baseline
before addition of protein solutions. The test solutions were then
fed to the SAM hydrophobic QCM-D sensors at a flow rate of 0.1 ml/
min. All experiments were measured at 22 + 2 °C.

Protein bi-layers were obtained at a given pH value in the range
of 2—10 by successive addition of the individual protein solution
until equilibrium, i.e. when stable frequency and dissipation signals
were reached. Poorly adsorbed or unadsorbed proteins were
removed by intermediate rinsing steps with Milli-Q water with the
same pH as the protein solution. The adsorption of protein complex
was studied at pH 6 by feeding the protein mixture until equilib-
rium, followed by a rinse with Milli-Q water.

2.4.3. Data analysis of QCM-D results

In the QCM-D experiments, the changes in the resonance fre-
quency and dissipation were recorded at several overtones and
analysed to calculate the mass adsorbed using the Sauerbrey or the
Kevin-Voigt model using Q-Tools™ software (version 3.0.12, Biolin
Scientific AB, Sweden).

In the simplest case of a thin, homogeneous and rigidly adsor-
bed layer, the frequency shift of the oscillating quartz crystal is
linearly related to the mass adsorbed on the crystal surface ac-
cording to the Sauerbrey model (Sauerbrey, 1959):

am— —c¥
n

(1)

where 4m is the adsorbed mass, 4f is the frequency shift at the
overtone number, n and C is the mass sensitivity constant of the
quartz crystal. For the 4.95 MHz sensor used in this study, the
constant (C) is equal to 17.7 ng/cm? Hz (Malmstrom, Agheli,
Kingshott, & Sutherland, 2007). The thickness of the adsorbed
layer, hefr, can be calculated from the following equation:

Am
Peff

heff = (2)

where pefris the effective surface density of adsorbed protein layer.
However, when the adsorbed film displays strong viscoelastic
properties, the Sauerbrey equation underestimates the actual mass
adsorbed (Liu & Kim, 2009). In this case, the frequency and dissi-
pation data collected at different overtones are modelled using the
software based on the Kevin-Voigt model (Voinova, Rohahl, Jonson,
& Kasemo, 1999). According to this model, the viscoelastic prop-
erties of the adsorbed protein layer and the QCM-D responses, 4f
(frequency shift) and 4D (dissipation shift), can be expressed (Liu &
Kim, 2009). In this case, the 5th, 7th and 9th overtones were used
and the parameters of the fit for fluid viscosity and density were
assumed to be 0.001 kg.ms and 1000 kg/m>, respectively.

2.5. Preparation of nanoemulsions

Nanoemulsions were prepared by emulsification and solvent
evaporation technique following the method reported by Lee et al.
(2011) with some modifications. In this method, two different
phases, denoted as organic phase and aqueous phase, were initially
prepared separately and then mixed at an organic phase and
aqueous phase ratio of 10:90 to produce nanoemulsions. The
aqueous phase consisted of a 2% (w/w) protein solution (WPI or
lactoferrin) or a protein mixture of WPI and lactoferrin (1:1 ratio)
while the organic phase consisted of 90% (w/w) ethyl acetate and
10% (w/w) corn oil. The aqueous phase and organic phase were
mixed together using a high shear mixer (Ultra Turrax® T25 Basic,
IKA, Staufen, Germany) at 16,000 rpm for 2 min to form a coarse
emulsion. The coarse emulsion was passed through a high-pressure
homogeniser (M-110P, Microfluidics, Westwood, MA, USA) for 4
times at 12,000 psi (82.7 MPa) to produce a fine emulsion. There
was a decrease in particle size of the coarse emulsion from around
1200 to 90 nm after microfluidisation. The fine emulsion was then
treated for evaporation in a round bottom flask to remove ethyl
acetate using a rotary evaporator (Buchi Rotavapor R-215, Vacuum
Controller V850 and Heating Bath B-491, BUCHI Labortechnik AG,
Flawil, Switzerland) operated at 50 °C with a vacuum pressure of
153 mbar for 20—25 min. The particle size of nanoemulsions was
further decreased to 80 nm after evaporation. This resulted in the
nanoemulsion droplets that were comprised entirely of corn oil.
During evaporation, in addition to ethyl acetate, some water was
also removed and this was adjusted by adding water back based on
the mass balance of emulsion before and after solvent evaporation. .
The nanoemulsions containing 1% (w/w) oil stabilised by WPI or
lactoferrin or a mixture of them are denoted hereafter as primary
nanoemulsions (or emulsions) with a single layer or mixed layer,
respectively.

For bi-layer nanoemulsions, the WPI- or lactoferrin-stabilised
primary nanoemulsions were mixed with an equal proportion of
lactoferrin or WPI solution at pH 6. The resulting bi-layer nano-
emulsions contained 0.5% (w/w) oil and are denoted as the sec-
ondary WPI-LF and LF-WPI nanoemulsions, respectively. The single
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layer or mixed layer primary nanoemulsions were also diluted with
water to make a final oil concentration of 0.5% (w/w). All emulsions
were stored for 1 day at room temperature (20 + 1 °C) before
analysis.

2.6. Characterisation of nanoemulsions

2.6.1. Droplet size and size distribution

The droplet size and size distribution of single layer nano-
emulsions and WPI-LF nanoemulsions were measured by dynamic
light scattering technique using a Malvern Zetasizer Nano ZS
(Malvern Instruments Ltd, Worcestershire, UK) equipped with a
helium/neon laser employing a wavelength of 633 nm and a
backscattering angle of 173°. The emulsion samples were analysed
without further dilution. The droplet size results were reported as
Z-average mean diameter based on Stokes-Einstein equation. For
sequential adsorption of lactoferrin and WPI or mixed layer
emulsions containing relatively large droplets (>6 um) that could
not be measured using the Malvern Zetasizer, they were measured
using a Mastersizer instrument (Mastersizer 2000 Hydro MU,
Malvern Instruments, Worcestershire, UK). A refractive index of
147 and 1.33 was used for the oil droplets and the dispersant
medium, respectively and the sample was gently dispersed in wa-
ter. The particle size was reported as the volume mean diameter,

dy3 = ;f;f 7 where n; is the amount of droplets with diameter d;.

2.6.2. Microscopy analysis

The microstructure of nanoemulsions was monitored by trans-
mission electron microscopy (TEM). Sample preparation for TEM
was carried out according to the method described by Gallier, Tate,
and Singh (2013). Emulsion samples were injected into freshly
made 3% agarose tubes (Hydragene Co. Ltd., Xiamen, China) and
sealed at the end of tube with remaining agarose. The embedded
samples in agarose tubes were fixed with 3% (w/w) glutaraldehyde
in 0.1 M cacodylate buffer (Merck, Darmstadt, Germany) at pH 7.2
and subjected to a second fixture with 1% osmium tetraoxide
(ProSciTech, Thuringowa, Australia) in the same buffer. The samples
were dehydrated in a series of acetone washes consisting of 25% (v/
v) acetone (15 min), 50, 75 and 90% (v/v) acetone (30 min each) and
100% acetone (30 min for 3 times) (Merck, Darmstadt, Germany).
The samples were then immersed in a 1:1 ratio of acetone and resin
(ProSciTech, Thuringowa, Australia) for overnight, then transferred
to 100% resin for 52 h and finally embedded in a fresh 100% resin.
The samples were polymerized at 63 °C for 48 h.

The embedded samples in resin blocks were trimmed using a
glass knife on the ultramicrotome (Leica EM UC7, Heidelberg,
Germany) and sliced to ultrathin sections using a diamond knife
(Diatome, Hatfield, PA, USA). The thin sections of the embedded
samples were placed on a copper grid using a Coat Quick “G” ad-
hesive pen (Saiko, Japan) and stained with saturated uranyl acetate
(BDH Chemicals, Poole, England) in 50% (w/w) ethanol (Merck,
Darmstadt, Germany) followed by 0.25% (w/w) lead citrate (BDH
Chemicals, Poole, England). Sections were then mounted in a
specimen holder and inserted into the microscope cooled by liquid
nitrogen. The samples were viewed using a transmission electron
microscope (FEI Tecnai™ G2 Spirit BioTWIN, Czech Republic)
operated at 60 kV and equipped with a LaBg filament. The TEM
images were captured with a 2K x 2K Veleta camera (14 bit)
(Olympus Soft Imaging Solutions GmbH, Miinster, Germany).

2.7. Data analysis
All experiments were carried out at least in duplicates using

freshly prepared samples. All statistical analysis was done using
MS-Excel 2010 package. The results are reported as means and

standard deviations.

3. Results and discussion

3.1. Characteristics of individual protein solution and protein
mixture

The knowledge of the characteristics of aqueous solutions con-
taining the proteins under investigation (i.e. WPI and lactoferrin) is
fundamentally important to elucidate the structure of the resulting
interfacial layer at the oil-water interface of nanoemulsions. The -
potential of proteins was measured at different pH values ranging
from 2 to 10. As reasonably expected, the {-potential of WPI was
positive at acidic pH and turned negative at basic pH (Fig. 1). The
results obtained in this study were similar to a study on the effect of
pH on the {-potential of protein solutions (e.g. B-lactoglobulin and/
or lactoferrin) reported by Tokle et al. (2012). The point of zero
charge (or isoelectric point, pI) for WPI was 4.9, a value matching
previous results reported in the literatures (Berendsen et al., 2014;
Salminen & Weiss, 2013). An increase in the turbidity of protein
solutions containing WPI related to protein aggregation was
apparent at pH close to the pl (pH 4.5-5.5) due to loss of electro-
static repulsion (Fig. 2). On the other hand, the pl of lactoferrin
molecules was around 8.8 because of its high concentration of basic
amino acids (Baker & Baker, 2005; Steijns & van Hooijdonk, 2000).
The lactoferrin molecules were however stable to aggregation
across the pH range studied with no noticeable change in solution
turbidity even at the pl of the molecules (Fig. 2). It is known that
lactoferrin contains amphiphilic moieties and exists as a mixture of
positively charged monomers and negatively charged aggregates in
the bulk solution (Mela, Aumaitrem, Williamson, & Yakubov, 2010).
At pH below the pI, the lactoferrin is dominated by the monomers
and are positively charged. As the pH approaches the pl, the
monomers decrease and the aggregates increase. However, because
the aggregates are negatively charged there are intra-molecular
repulsive forces for the lactoferrin solution to remain clear which
explains why lactoferrin solution is clear at the pl.

When the solution pH is at the intermediate range between the
pl for WPI and lactoferrin, the two proteins possess opposite charge
and will interact with each other through electrostatic forces. To
assess the pH at which the two proteins would interact strongly, the
{-potential of a mixture of WPI and lactoferrin was measured across
the same pH range (Fig. 1). The results clearly indicated that the
point of zero net charge for the protein mixture was approximately

Positively Oppositely charged Negatively
f ) \r . —
40
30 A
2
>
E 10 1
£ 0 ; . S ; ; : ,
=
2
g -10 |
slp
20 { ——WPI —
Lactoferrin E
_30 i -
m —A— WPI/lactoferrin ;
2 3 4 5 6 7 8 9 10

pH

Fig. 1. Mean {-potential of 1% (w/w) protein solutions of WPI and lactoferrin and 1%
(w/w) of protein mixtures of WPI and lactoferrin (1:1 ratio) at different pH values.
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——WPI
—a—Lactoferrin
3 { ——WPIl/lactoferrin

Optical density (at 600 nm)
)

0 . L 5 * ' ' T
2 3 4 5 6 7 8 9 10
pH

Fig. 2. Mean optical density (at 600 nm) of 1% (w/w) protein solutions of WPI and
lactoferrin and 1% (w/w) protein mixtures of WPI and lactoferrin (1:1 ratio) at different
pH values, including a photograph of the protein mixtures.

between pH 5.5 and 6 which corresponds to the pH at which the
charge difference between the two individual proteins was the
highest. Under these conditions, strong electrostatic interactions
between the oppositely charged proteins were expected. In-
teractions of the two oppositely charged proteins led to the for-
mation of complexes as evidenced by an increase in turbidity
observed at pH 5.5 and 6 (Fig. 2). This corroborated with previous
findings that complex coacervation of B-lactoglobulin and lacto-
ferrin occurred in the pH range of 5.7—6.2 (Yan et al., 2013). Based
on the results, all protein samples considered henceforth in this
work were prepared at pH 6 to maximise the electrostatic in-
teractions between WPI and lactoferrin.

3.2. Adsorption of protein bi-layers on hydrophobic surface using
QCM-D

Since WPI and lactoferrin are capable of electrostatic in-
teractions under a certain pH range, they can assemble a variety of
different emulsion interfacial structures, such as single layer, bi-
layer and mixed layer (Tokle et al., 2012). For example, each indi-
vidual protein can form oil droplets surrounded by a single layer of
protein (Fig. 3a) or different proteins can be sequentially deposited
on the droplets to form bi-layer (Fig. 3b). Alternatively, the proteins
may form an electrostatic complex (a mixed layer) at the interface
of oil droplets (Fig. 3c). Until now, few works have reported the
characteristics of protein coatings at the oil-water interface, which
constitute important data for the design of interfacial structures
and allow manipulation of the functionality of nanoemulsions.

As a first step, the surface adsorption and structure of protein
layers on surfaces was studied by QCM-D to indirectly obtain in-
formation about the behaviour of proteins at the oil-water interface

that may occur in emulsions. In our experiments, a SAM hydro-
phobic layer to mimic the oil-water interface in real emulsions was
formed on gold surfaces. The measured contact angle of the SAM
modified QCM-D sensors was 107.1 + 0.5° indicating a hydrophobic
layer was formed (contact angle of unmodified gold surface was
21.2 + 2.3°).

The protein solutions were prepared and used in pH conditions
in which they were oppositely charged. At pH 6, WPI has a negative
charge of —19.3 + 1.2 mV while the {-potential of lactoferrin
is +14.0 + 1.3 mV (Fig. 1). The two proteins can thus interact with
each other via electrostatic interactions. The individual protein
solutions were adsorbed to the gold surface to form a mono-layer
and the bi-layer was formed by adding the other oppositely
charged protein solution. Based on the order of protein addition,
the positively charged lactoferrin molecules were adsorbed to a
negatively charged WPI layer denoted as “WPI-LF” or the negatively
charged WPI molecules were adsorbed to a positively charged
lactoferrin layer denoted as “LF-WPI” in the experiment.

Using QCM-D, the adsorption of proteins on the modified hy-
drophobic surface was monitored and the frequency and dissipa-
tion shifts were recorded as a function of time. Fig. 4 reports the
QCM-D results for the sequential adsorption of WPI and lactoferrin
(WPI-LF sample) while Fig. 5 reports the analogous data where
lactoferrin and WPI were instead sequentially adsorbed (LF-WPI
sample). The qualitative trend of the two experiments was very
similar, regardless of the sequence of protein loading to the QCM-D.
When the first protein was fed, a rapid decrease in the frequency
signal mirrored by a simultaneous dissipation increase was
observed. This result is consistent with rapid adsorption of the
protein molecules to the bare hydrophobic surface of the quartz
sensor. Protein adsorption continued to occur at a slower rate until
adsorption-desorption equilibrium was reached, as indicated by a
corresponding plateau in the frequency and dissipation signals.
During the first washing step with water, the frequency slightly
increased while the dissipation returned back to the baseline. This
condition is clearly associated with the removal of loosely bound
proteins at the surface (Messina, Satriano, & Marletta, 2009). The
remaining adsorbed layer consisted of protein molecules rigidly
and irreversibly bound to the hydrophobic surface of the QCM-D
sensor. This layer constituted a priming layer for subsequent
adsorption of the oppositely charged protein. Similar phenomena
were observed when the second protein solution was added and
subsequently washed, i.e. an initial frequency decrease and dissi-
pation increase during protein loading (formation of second protein
layer) followed by partial frequency regain and dissipation going to
zero during washing (removal of loosely viscoelastic layer of pro-
teins and formation of a rigid irreversible layer).

The energy dissipation can be defined as the energy loss of
adsorbed layer during oscillation and provides information about
the viscoelastic properties of the adsorbed layer (Craig et al., 2012;
Liu & Kim, 2009). It is suggested that little energy dissipation is

Types of Interfacial Structures

(a) Mono-layer
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@ Water

(b) Bi-layer
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%{ “B”
Water

(c) Mixed layer

“AB”
.. complex

Water

Fig. 3. Schematic illustrations of nanoemulsions with different interfacial structures that can be formed using two different types of proteins labelled as “A” and “B” in the diagram.



A. Teo et al. / Food Hydrocolloids 56 (2016) 150—160 155

WPI Water Lactoferrin Water

} | } |

-100 4

N W s
L L

Frequency shift (Hz)
® & b W
S & S & o

Dissipation shift (10-%)

-1 A
-2

=
~
-
(=)
e
s

Time (hours)
Fig. 4. Frequency and dissipation shift versus time at 7th overtone for the sequential
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Fig. 5. Frequency and dissipation shift versus time at 7th overtone for the sequential
adsorption of lactoferrin first and then WPI on the quartz crystal surface with alternate
rinse intervals with water at pH 6.

associated to a thin, rigid film but higher energy is dissipated for a
viscoelastic layer (Liu & Kim, 2009; Reviakine, Johannsmann, &
Richter, 2011). While the protein solutions were initially fed into
the QCM-D sensors, a relatively high dissipation signal was
apparent, indicating that the adsorbed layer had a viscous
component. However, this viscous layer was loosely bound and
removed during rinsing, thus exposing a layer of rigidly adsorbed
protein. This observation holds true for both the first and the sec-
ond layer of proteins, irrespective of the order in which the proteins
were fed to the sensor. Mivehi et al. (2013) proposed a trade-off of
1 x 1078 in the dissipation signal to distinguish between rigid and
viscoelastic layers, while Reviakine et al. (2011) stated that the
adsorbed layer can be assumed rigid when
AD/(—Af/n) << 4 x 1077 Hz" . Both conditions were satisfied for
the residual protein layers following water wash, therefore the
protein films were considered rigid and the adsorbed mass was
calculated using the Sauerbrey model given in Equation (1).

The layer thickness of the individual proteins of WPI and lac-
toferrin was 4.95 and 6.97 nm, respectively (Table 1) and they are
consistent with the dimensions of the proteins reported in the
literature. It has been reported that whey proteins have a rigid,
compact structure and B-lactoglobulin (which represents a major-
ity of whey proteins) exists as dimers at neutral pH with a diameter
of 48 nm based on light and X-ray scattering measurements
(Baldini et al., 1999; Jost, 1993). On the other hand, the dimensions
of lactoferrin based on lattice cell parameter data are
~4 x 51 x 71 nm (Mela et al., 2010). The obtained value of lacto-
ferrin layer (6.97 nm) corresponds well to the longest axis of lac-
toferrin molecule, indicating that a well-formed mono-layer was
adsorbed on the hydrophobic surface of the QCM-D sensor.

QCM-D results for the formation of the secondary layer were
significantly different for the two bi-layers considered in this study.
For WPI-LF bi-layer, a large frequency shift occurred following
lactoferrin adsorption (Fig. 4), suggesting that lactoferrin molecules
were deposited on the WPI-coated surface. The thickness of this
secondary layer was of 5.12 nm, consistent with the size of lacto-
ferrin molecules, leading to a bi-layer having total thickness of
10.1 nm (Table 1). In contrast, addition of WPI solution to the LF-
WPI sample displayed a relatively small frequency shift, with an
additional layer of 1.49 nm deposited following loading of the WPI
solution. According to Trojer, Holmberg, and Nydén (2012),
desorption can occur when electrostatic interactions between the
adsorbed layers are weaker than hydrophobic interactions between
the surface and first layer. In this case, WPI competes for the
adsorption onto the hydrophobic SAM and partially displaces the
previously adsorbed lactoferrin molecules, with the formation of a
mixed proteinaceous layer. Similar results have been observed by
Wahlgren, Arnebrant, and Paulsson (1993) using in situ ellipsom-
etry at pH 7 for the sequential adsorption of lactoferrin and B-
lactoglobulin (one of the main proteins in WPI) on silica surfaces.
The authors in fact reported that a large amount of lactoferrin was
deposited on pre-adsorbed B-lactoglobulin, but detected a decrease
in the adsorbed mass when B-lactoglobulin was reversely added to
a lactoferrin adsorbed layer.

3.3. Effect of pH on the adsorption of WPI and lactoferrin bi-layers

The stable bi-layer formed by lactoferrin molecules when
deposited on WPI-coated surface was further investigated under
different pH conditions. The pH of the individual proteins was
precisely adjusted in the range from 2 to 10, hence spanning across
the different combinations of both positively charged proteins
(below pH 5), oppositely charged (between pH 5 and pH 9), and
both negatively charged proteins (above pH 9). WPI was fed first to
the QCM-D sensors, followed by an intermediate rinsing step with
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Table 1

Thickness of different interfacial structures of WPI and lactoferrin adsorbed on SAM modified hydrophobic gold surface at pH 6.

Structure 1st Layer

Protein type Thickness (nm)

2nd Layer Total thickness (nm)

Protein type Thickness (nm)

Bi-layer WPI
Lactoferrin
WPI/lactoferrin

4.95 + 1.60
6.97 + 1.26

Mixed layer 101% + 33

Lactoferrin 512 +0.21 10.1 + 1.40
WPI 1.49 + 0.21 8.46 + 1.05
— 101 + 33

2 Thickness achieved after loading the protein mixture for 5 h and water rinse.

water (Fig. 6a), then lactoferrin was loaded and the run was
completed with a final water wash (Fig. 6b). All the solutions used
in this experiment were at same pH conditions. Fig. 6b shows the
frequency and dissipation shifts for the adsorption of lactoferrin on
the WPI-coated surface at different pH values, while Fig. 7 presents
the thickness of the second layer obtained after lactoferrin
absorption.

As the investigated range of pH spanned from acidic to basic
conditions, the individual protein molecules are expected to un-
dergo some structural changes which will affect their interaction
and adsorption on surfaces. Under the adsorption conditions
employed, there was a larger decrease in frequency corresponding
to higher protein adsorption after the addition of WPI (first layer) at
pH 4 and 6 which is intermediate to the pl of WPI around 4.9
(Fig. 6b). This corresponds well with the literature on the adsorp-
tion of proteins on surfaces which in general exhibited pH de-
pendency with a higher adsorption rate near to its pl (Belegrinou
et al,, 2008; Ma, Wu, & Zhang, 2013). The dominance of hydro-
phobic attraction is strongest at its pl with little changes in
conformational structure of protein which will favour their in-
teractions on hydrophobic gold surfaces. On the other hand, a
relatively smaller decrease in frequency shift was observed in
particular at pH 2 (Fig. 6a), indicating WPI adsorption was lower.
This is interesting because B-lactoglobulin (a major component of
whey proteins) exists as a dimer at neutral pH but can dissociate
into monomers under acidic conditions (<pH 3) which can then
expose hydrophobic groups (Hunt & Dalgleish, 1994; Liu & Kim,
2009). Therefore, it may be expected that hydrophobic interaction
between WPI molecules and hydrophobic surface to increase at
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Fig. 7. Thickness of secondary layer after adsorption of lactoferrin on the WPI-coated
surface at different pH from 2 to 10 using the Sauerbrey model.

very low pH. However, WPI adsorption on the surface at pH 2 was
reduced compared to at other pH levels. This can be attributed to
the fact that WPI molecules were highly positive charged and
electrostatic repulsion between the protein molecules was strong
enough to overcome their hydrophobic attraction at the interface
which can potentially reduce their alignment and intermolecular
interaction on surfaces, thus less adsorption to form a less dense
protein layer. This may also be related to some changes in the
conformation and quaternary structure of whey protein due to pH
change. For example, in a study by Zhang, Dalgleish, and Goff

Lactoferrin

v |

shift (Hz)
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I — I — I
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5 wn
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Fig. 6. Frequency and dissipation shift versus time at 7th overtone for (a) the adsorption of WPI on the quartz crystal surface (first layer) and (b) the adsorption of lactoferrin on the

WPI-coated quartz crystal surface (second layer) at various pHs.
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(2004) that reported protein adsorption to air/water interfaces in
aqueous foam, B-lactoglobulin is described to be less competitive to
interfacial adsorption at pH 3 due to its becoming more rigid and
thermodynamically stable at low pH.

In the second stage of the adsorption, lactoferrin molecules
were added to the WPI-coated surface under the same pH condi-
tions. At pH 2 and 4, the frequency remained practically at the
baseline of WPI (Fig 6b), indicating that there was no adsorption of
lactoferrin on the WPI layer, mainly because of charge repulsion
between the two positively charged proteins. At pH 6 or higher, the
frequency shift was significant, indicating the adsorption of lacto-
ferrin molecules on top of the WPI-coated surface. Interestingly, the
thickness of this secondary layer of lactoferrin slightly decreased as
the pH further increased above pH 6 (Fig. 7). This result is consis-
tent with the large but opposite charge densities on the two pro-
teins studied at pH 6 (Fig. 1), with electrostatic interactions playing
the strongest role at this pH. Interestingly, there was still a
considerable amount of lactoferrin adsorbing to the WPI-coated
surfaces at pH equal or higher than 9 (Fig. 7). Lactoferrin is a
large globular protein which displays a bipolar charge distribution
(Mantel, Miyazawa, & Broxmeyer, 1994). Therefore, the protein
presents positively charged patches even at the pl or above (lafisco,
Foggia, Bonora, Prat, & Roveri, 2011; Miiller, 2014). In addition, the
interactions between lactoferrin and WPI can be enhanced by other
interaction forces such as hydrophobic attractions and hydrogen
bonds which tend to dominate near the pI (McClements, 1999). This
result is consistent with the study on adsorption of lactoferrin on
negatively charged adsorbents at different pH and salt concentra-
tions (Du, Lin, Wang, & Yao, 2014). The authors reported that there
was substantial amount of lactoferrin adsorbed even at pH near the
pl of lactoferrin.

3.4. Adsorption of protein complex on hydrophobic surface using
QCM-D

The adsorption behaviour of a protein mixture of WPI and lac-
toferrin was very different to that previously observed with
sequential adsorption of the two proteins. The adhered layers dis-
played relatively large frequency and dissipation shifts and showed
no trend of reaching saturation or equilibrium after 5 h exposure to
the protein mixture (Fig. 8). This could be due possibly to a feature
of continuous sedimentation associated with large aggregates of
protein complex of WPI and lactoferrin at pH 6 as indicated in
Table 1 and Fig. 2. The layer formed was however stable against
rinsing with water, indicating relatively strong cohesive
interactions.

According to the high dissipation value measured for the
adsorption of protein complex, the Kevin-Voigt model was used to
estimate the thickness of the adsorbed film at the end of the
experiment (Table 1). This thickness is to be considered an indic-
ative measure only, because of the limitations of the Voigt model to
describe such thick layers, and also because the layer did not reach
an equilibrium value. The formed layer had a thickness of 101 pm,
much larger than what was obtained when sequentially loading the
two pure proteins in bi-layers, and potentially could have further
increased after continuous loading of the protein mixture. This
observation, together with the negligible desorption of proteins
during the rinsing step, additionally indicates the formation of a
strong cohesive adsorbed layer with the two proteins mutually
interacting. The complex proteinaceous layer was formed by a
mixture of WPI and lactoferrin at pH 6, where the opposite elec-
trical charges on the proteins are fostering a strong durable layer.
The consequent aggregation and unfolding of the two proteins lead
to establishment of additional hydrophobic, hydrogen bonding as
well as some dipole-dipole and charge-dipole interactions, with the
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Fig. 8. Frequency and dissipation shift versus time at 7th overtone for the adsorption
of protein complex of WPI and lactoferrin on the quartz crystal surface with water
rinse after 5 h at pH 6.

consequent formation of stable electrically neutral adsorbed layer
of proteins (Ye, 2008). These non-electrostatic attractive forces can
act in concert offering a large driving force for the continued
adsorption of the protein complex on the sensor surface and
formed a thick layer.

To gain more information on the adsorption behaviour, dissi-
pation shift was plotted as a function of frequency shift (Fig. 9). In
such a plot, a relatively small slope (i.e. small dissipation gain for a
given frequency shift) characterises rigidly adsorbed layers, while a
larger slope (i.e. high dissipation for a given frequency shift) is
representative of a soft viscoelastic layer (Belegrinou et al., 2008).
Based on the results reported in Fig. 9, the mixed protein layer
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Fig. 9. Dissipation shift versus frequency shift plot at 7th overtone during the
adsorption of protein complex of WPI and lactoferrin at pH 6. Line 1: trend line during
adsorption of initial layer. Line 2: trend line during formation of secondary soft layer.
Line 3: rinse step with water.
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Table 2

Mean droplet size and {-potential of emulsions containing different interfacial structures at pH 6.
Emulsion type Mean particle diameter (nm) Mean PDI/Span Mean ¢{-potential (mV)
WPI 784" + 1.8 0.21 + 0.01 -263+13
Lactoferrin 94.2° + 5.5 0.18 + 0.01 +20.0 + 0.8
WPI-lactoferrin 90.1" + 4.7 0.23 + 0.02 +13+03
Lactoferrin-WPI 15759° + 5386 1.37 + 0.01 -24+11
WPI/lactoferrin mixed 22291° + 2650 2.07 £0.11 -7.7+05

2 Particle size of nanoemulsions stabilised by WPI, lactoferrin and WPI-lactoferrin is reported as Z-average mean diameter using a Malvern Zetasizer Nano ZS.
b Pparticle size of lactoferrin-WPI emulsion and WPI/lactoferrin mixed layer emulsion is reported as the volume mean diameter (D43) measured using a Mastersizer 2000.

Fig. 10. TEM images of nanoemulsions with different interfacial structures (0.5% wjw oil) of (a) WPI mono-layer, (b) Lactoferrin mono-layer, (c¢) WPI-lactoferrin bi-layer, (d)
Lactoferrin-WPI bi-layer and (e) WPI/lactoferrin mixed layer.
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initially deposited onto the sensor was rigidly coupled to the hy-
drophobic surface, but progressive deposition produced a softer
second layer having more viscous structure which might be ex-
pected due to retention of water as the protein film was continu-
ously deposited on the surface. It is important to note that there is
the possibility that the secondary adsorption observed (line 2 in
Fig. 2) could also be possibly related to continuous sedimentation of
large aggregates of the mixed proteins described above.

The thickness of this mixed protein layer was 10 times larger
than the one measured for the protein bi-layer. It is worth noticing
that the layer thickness of the protein bi-layers approximately
corresponded to the sum of the two stacked mono-layers for the
individual proteins, whereas the mixture of proteins formed a thick
multi-layer of protein complex. Preliminary results confirmed that
the thickness of the bi-layer can be further increased by sequential
addition of the oppositely charged proteins, leading to film with
larger thicknesses than the simple bi-layer. However these exper-
iments are not part this current study and will be discussed more in
details in the future.

3.5. Formation of nanoemulsions with different interfacial
structures

Nanoemulsions with different interfacial structures were
formed using a combination of emulsification and solvent evapo-
ration. All the nanoemulsions were prepared at pH 6 as the
magnitude of the net opposite charge between WPI and lactoferrin
was highest at this pH. The nanoemulsions stabilised by WPI or
lactoferrin (single layer) were relatively small (<100 nm) and with
electrical characteristics consistent with the charge of the proteins
(Table 2). At pH 6, the WPI-stabilised primary emulsion droplets
were negatively charged (—26.3 + 1.3 mV) while the ones stabilised
by lactoferrin were positively charged (+20.0 + 0.8 mV).

Sequential adsorption of lactoferrin onto WPI-stabilised pri-
mary nanoemulsions lead to an increase in droplet size of around
11.7 nm in diameter, consistent with the formation of a stable bi-
layer where the second layer had a thickness of around 5.8 nm.
This result is very similar to what previously obtained in the QCM-D
experiments (Table 1). The TEM images revealed that the singly
WPI-coated or lactoferrin-coated oil droplets seem to have a rela-
tively thin layer surrounding the oil droplets (Fig. 10a and b)
although this is not seen clearly. However, a thicker layer (pre-
sumably protein) seems to form in bi-layer nanoemulsions of WPI
and lactoferrin with some flocs (Fig. 10c and d). The good stability of
WPI-stabilised nanoemulsions coated by lactoferrin suggested that
lactoferrin molecules on the outer layer provide a strong steric
hindrance arising from the carbohydrate side chains on the lacto-
ferrin molecules (Tokle et al., 2012).

On the other hand, nanoemulsions with lactoferrin in the first
monolayer became unstable and formed large aggregates upon
addition of the WPI solution. In fact, the {-potential of the resulting
droplets was close to neutrality, providing little electrostatic
repulsion to overcome the attractive forces of hydrophobic inter-
action for droplet aggregation. As a result, the droplet size of this
secondary emulsion was very large (D43 ~15 + 5.4 um), and emul-
sion flocs appeared in the TEM image of LF-WPI nanoemulsions
(Fig. 10d). This result is again consistent with the QCM-D results,
where the LF-WPI experiment was characterized by the competi-
tive displacement of lactoferrin by the incoming WPI, producing a
mixed layer containing both proteins. Accordingly, it is reasonable
to assume the overall charge displayed by the resulting droplet is
near neutral (Table 2).

Nanoemulsions treated with the protein complex containing a
mixture of WPI and lactoferrin at pH 6 produced a poorly stable
emulsion which led to phase separation. This is confirmed by the

TEM images which showed a large aggregated mass of proteins
surrounding the droplets (Fig. 10e). This observation is again in
good agreement with the QCM-D results, where the protein com-
plexes were continuously adsorbed to the sensor surface indicating
a high tendency for protein aggregation to occur. In addition, the
protein complex adsorbed to the surface of oil droplets will be
constituted by unfolded or partially folded proteins, whose hy-
drophobic groups are exposed, hence further promoting proteins
aggregation and engulfment of the droplets.

4. Conclusions

In this study, the properties of nanoemulsions with different
interfacial configurations composed of WPI and lactoferrin were
investigated in line with QCM-D to understand the mechanism
underlying their interactions at droplet interface using a simulated
model on hydrophobic surfaces. It was found that nanoemulsions
stabilised with a bi-layer structure of WPI and lactoferrin were
more stable than those formed by lactoferrin and WPI or a mixture
of the two proteins at pH 6. On the contrary, nanoemulsions formed
by protein complex caused droplet aggregation as a result of
attractive interactions between the adsorbed layers of the droplets.
This finding is in agreement with the QCM-D data obtained for the
adsorption of different interfacial structures of proteins on a
modified hydrophobic surface. The QCM-D results showed that
there was protein adsorption when the protein layers were added
to a surface pre-coated by another protein to form a thin layer via
electrostatic interactions. However, the protein complex formed a
thick, viscous layer that was strongly attached to the surfaces. This
research provided in depth understanding of the formation of
stable nanoemulsions with different interfacial structures.
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