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Abstract

A common way to simulate fluid flow in porous media is to use Lattice Boltz-

mann (LB) methods. Permeability predictions from such flow simulations are

controlled by parameters whose settings must be calibrated in order to produce

realistic modelling results. Herein we focus on the simplest and most commonly

used implementation of the LB method: the single-relaxation-time BGK model.

A key parameter in the BGK model is the relaxation time τ which controls flow

velocity and has a substantial influence on the permeability calculation. Cur-

rently there is no rigorous scheme to calibrate its value for models of real media.

We show that the standard method of calibration, by matching the flow profile

of the analytic Hagen-Poiseuille pipe-flow model, results in a BGK-LB model

that is unable to accurately predict permeability even in simple realistic porous

media (herein, Fontainebleau sandstone). In order to reconcile the differences

between predicted permeability and experimental data, we propose a method to

calibrate τ using an enhanced Transitional Markov Chain Monte Carlo method,

which is suitable for parallel computer architectures. We also propose a porosity-

dependent τ calibration that provides an excellent fit to experimental data and

which creates an empirical model that can be used to choose τ for new samples

of known porosity. Our Bayesian framework thus provides robust predictions

∗Hosa, Aleksandra
Email address: ola.hosa@ed.ac.uk (Hosa, Aleksandra)

Preprint submitted to Advances in Water Resources April 13, 2016



of permeability of realistic porous media, herein demonstrated on the BGK-LB

model, and should therefore replace the standard pipe-flow based methods of

calibration for more complex media. The calibration methodology can also be

extended to more advanced LB methods.

Keywords: Uncertainty Quantification, Porous Media, Permeability, BGK

Lattice Boltzmann, Fluid Flow, Bayesian

1. Introduction

Lattice Boltzmann (LB) simulation is one of the main methods used to

predict flow through porous materials [1, 2, 3, 4]. Such simulations are often

used to estimate particular quantities of interest concerning either the fluid

flow or the porous medium. Amongst the most interesting flow properties in5

reservoir engineering (our current area of focus) is the permeability of porous

subsurface rocks that contain fluid, and estimating permeability is important in

a wide variety of other fields such as biology [5, 6, 7], medicine [8, 9], soil science

[10, 11] and material science [12, 13, 14, 15].

The LB method simulates fluid flow by using the Boltzmann equation to10

dynamically update the fluid density as described by a set of interacting par-

ticles. The method relies on several parameters, some physics-based and some

algorithmic, which must be calibrated before using LB to predict quantities of

interest. The calibration of LB models has commonly been achieved by com-

paring the velocity of fluid flow simulated through a specific pore shape to one15

predicted analytically by the Hagen-Poiseuille equation [16]. The LB param-

eters are chosen to minimise the discrepancy of the flow profile that develops

in specific pore sizes to corresponding theoretically predicted values. The de-

ficiency of that method is that in real media the permeabilities to be matched

by LB come from laboratory experiments and the above theoretical value does20

not include any experimental uncertainty, nor does it necessarily relate to real

pore geometries which often contain a distribution of pore shapes and sizes with

complicated network connectivity.
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This paper provides a more robust method to predict permeability in real

porous media using LB. Our quantity of interest is the permeability of natural,25

complex porous media, and we show that the standard practice of calibrating

LB to theoretical predictions for even an idealised, simple system results in

significant uncertainties and model deficiencies. It appears that there has never

been a thorough uncertainty quantification of the predictive accuracy of LB.

We therefore perform a Bayesian calibration of the physical LB parameters as30

well as the model insufficiency parameters, using real permeability data in place

of the standard theoretical velocities in an analytical pipe model. Our method

of calibration is shown to provide more accurate simulations than the standard

method for the real pore systems studied.

Herein we present a calibration framework for the most basic LB model that35

uses the Bhatnagar-Gross-Krook (BGK) collision model. It is known that the

prediction of permeability using this single-relaxation-time LB model is sensi-

tive to parameter τ . This is due to insufficient consideration of the boundary

conditions [17, 16], as the bounce-back boundary rule imposes the location of

the solid boundary which has a numerical error that depends on the parameter40

τ . Multiple-relaxation-time (MRT) or two-relaxation-time (TRT) LB models

[18, 19, 20] considerably reduce the dependence on parameter τ , but do not

eliminate it completely [17, 16]. We confirm the dependence of permeability on

τ in flow simulations in natural porous media using the BGK-LB model. Rather

than performing purely a model-based sensitivity study where the variability in45

the predictions based on the variation of the fluid viscosity via its numerical

parameter τ would be investigated, we assume a data-driven approach by using

the full Bayesian framework. In further work we could apply the methodology

developed here to the more complex TRT or MTR LB models.

We adopt a Bayesian framework for complex mechanical systems [21, 22, 23,50

24, 25, 26, 27] to quantify and calibrate these parametric uncertainties based

on experimental measurements of the pore size distribution in real samples and

permeability measured in the same samples. Furthermore we propagate these

uncertainties through LB simulations to make robust predictions of the relevant
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quantity of interest. We employ an enhanced parallel variant of the Transi-55

tional Markov Chain Monte Carlo (TMCMC) algorithm [28, 29] to distribute

the large number of LB runs in clusters with heterogeneous computer architec-

tures [30]. TMCMC is a parallel evolutionary sampling algorithm inspired by

particle filtering that involves annealing and local Monte Carlo steps. Our re-

sults demonstrate the value of the Bayesian framework for LB simulations and60

provide credible uncertainty intervals for their predictions. We thus demonstrate

that permeability predictions using current methods may suffer from significant,

unquantified and unaccounted for uncertainties. We propose a semi-empirical

way to calibrate BGK-LB parameters more robustly in future.

The paper is organised as follows: in Section 2 we outline the elements65

of LB simulation. Section 3 describes the real porous medium used, in this

case a Fontainebleau sandstone. Section 4 presents a Bayesian framework in

the context of our experimental and computational set-up. Results for the

Bayesian calibration of LB parameters are given in Section 5. In Section 6 we

elaborate on the significance of our results compared to existing methods and70

on the implications for the future use of LB. Our summary and conclusions are

presented in Section 7.

2. Lattice Boltzmann (LB)

LB methods are a popular way to simulate fluid flow [1, 2, 3, 4, 31] in many

areas including material science [15, 14], hydrology [11], biology [9] as well as the75

simulation of oil and gas behaviour in porous rock [32, 33, 34, 35, 36]. LB simu-

lations of flow through pore geometries derived from real rocks have been used to

estimate effective permeability [37] or relative permeability [38, 39], using micro-

porous rocks [40], sandstones [41] (even the same Fontainebleau sandstone that

we use in this study [42]) and (typically with more complex porosity) carbonates80

[39]. Ever since computational power became sufficient to run LB on realistic

simulations, this method has been a popular alternative to the direct solution

of the Stokes equation. This is particularly true for complex, multi-scale media:

4



direct numerical simulations using gridded methods require extremely refined

grids to capture the small scale complexities and the definition of boundary85

conditions becomes cumbersome due to the complexity of the geometry, both

of which lead to high computational cost of simulation.

LB methods represent the fluid as a large number of particles, and calcu-

lates the probability (density) of finding a given particle at a given position

on a discrete lattice mesh. The algorithm consists of two steps: advection and90

collision. In the advection step the particles are propagated along their velocity

vectors to adjacent lattice sites. In collision, the particles converging at each

lattice site interact: they collide and are redistributed according to their veloc-

ities as follows. First the density ρ and the velocity vector u of the fluid at all

points in the lattice are calculated. Then the average velocity and force terms95

are calculated and the equilibrium densities for each velocity vector are found.

Finally collision takes place in which the particle densities are adjusted through

the fundamental equation of the BGK-LB model [43]:

fi(x+ vi∆t, t+ ∆t) = fi(x, t)− 1

τ
(fi(x, t)− feqi (x, t)) (1)

where i denotes the direction of momentum, fi is the directional density (prob-

ability density function (PDF) per unit space of a particle traveling in direction100

i), feqi is the equilibrium PDF, t is simulation time, ∆t is the simulation time

step, x is the location of the particle in the lattice, vi is the velocity of the

particle in direction i, and τ is the relaxation time parameter that is related to

kinematic viscosity ν through the relation [44]

ν =
τ − 0.5

3
(2)

Although τ is linked to kinematic viscosity (Equation (2)) and thus may105

seem to be a model state, it is in fact a model parameter. Due to numerical

stability issues, the value of τ which directly corresponds to the viscosity of the

fluid of interest (e.g. water) cannot be used and a value for which computation

is stable is used instead [16]. Equation (2) then calculates permeability.
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We perform LB simulations using the publicly available code LB3D v7.0,110

developed at University College London, University of Stuttgart and Eindhoven

University of Technology [44]. After Narvaez et al. [16] we use a computational

domain composed of inlet (I), outlet (O) and the sample of interest (S), with a

periodic boundary condition imposed on the inlet and outlet sides of the domain

and bounce-back boundaries on the remaining sides (Figure 1). We investigate115

four cases of single phase flow: in Case 1 we aim to calibrate relaxation param-

eter τ to the Hagen-Poiseuille (HP) law using our Bayesian framework and the

same simulation set-up as Narvaez et al. [16] with pipe axes aligned in the z

direction and varied widths w = {3, 4, 5, 6, 7, 12}. Domain dimensions in Figure

1 are defined as follows: Lx = Ly = w + 2,LS = 4w, and LI = LO = 3. Case 2120

takes into account the contribution of pores of different sizes to total error.

Cases 3 and 4 involve simulating flow through real rocks and calibration

using real permeability data. In these cases we run the simulation on digital

representations of cubic rock samples of dimension 1003 lattice units (i.e. Lx =

Ly = LS = 100). We introduce inlet and outlet buffers of thickness LI =125

LO = 10, and forcing at the inlet cross section C(1) (Figure 1). To avoid

boundary issues we define the walls of the simulation domain that are parallel

to the forcing direction to be solid. In each case we run LB simulations for

100000 time steps, at which point the properties of the simulations required to

calculate permeability (velocity, density and pressure) become stable (Figure 3).130

The permeability κ is calculated using Darcy’s law:

κ = −η 〈vz〉S
〈∇pz〉P∩S

(3)

where η is the dynamic viscosity, 〈vz〉S is an average over the sample S of

the components of the fluid velocity parallel to the overall flow direction, and

〈∇pz〉P∩S is the pressure gradient in the pore space P of sample S in the direc-

tion of the flow. The dynamic viscosity is η = ν〈ρ〉P∩S , where ν is as defined135

in Equation (2), and P is the set of pore grid points of the simulation domain,
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Figure 1: The computational domain of dimensions Lx,Ly and Lz consisting of the sample
S (solid outline) of thickness LS and inlet and outlet buffers (dashed outline) of thickness
LI and LO. The buffers are introduced to avoid artefacts. The fluid is accelerated in the
acceleration zone using body forces at the inlet cross section C(1).

pore solid
rock wall

buffer zone

of thickness L=10

fluid forced

in the z-direction

Figure 2: The computational domain in Cases 3 and 4. The Fontainebleau sandstone sample
of dimensions 1003 has buffer zones of thickness 10 attached to both walls perpendicular to
the z-direction. The walls parallel to the fluid forcing direction are defined to be solid rock.
The fluid is accelerated in the first layer (z = 1) of the inlet buffer.

and 〈ρ〉P∩S is the average density of the fluid in the volume of the pore space

of the sample.

Following Narvaez et. al [16] we make an approximation of the average fluid

density using just two cross sections through the sample. This is justified by the140

fact that after a long simulation the values of density fall uniformly across the

pores of the sample. We use an average of the values in the inlet cross section
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C(LI + 1) and the outlet cross section C(Lz − LO), so:

〈ρ〉IO ≈
〈ρ〉C(Lz−LO)∩P + 〈ρ〉C(LI+1)∩P

2
(4)

where we define IO = (C(Lz −LO)∪C(LI + 1))∩P which is the pore space in

the inlet and outlet cross-sections. Similarly, the average pressure drop across145

the sample is approximated using the same two cross sections:

〈∇pz〉IO ≈
〈pz〉C(Lz−LO)∩P − 〈pz〉C(LI+1)∩P

(LS − 1)
(5)

Due to the fact that the velocity of fluid varies inside the sample and depends

on pore geometry and topology, we calculate average velocity 〈vz〉S by dividing

the sum of all velocity components in the direction of the flow across the entire

sample S by the volume of the sample.150

3. Porous media

The porous medium we use for Cases 3 and 4 is derived from 3D micro

computed tomography (microCT) of a sample of Fontainebleau sandstone ob-

tained at the Institute for Computational Physics of the University of Stuttgart

(http://www.icp.uni-stuttgart.de/microct/) [45]. We use a 1003 sub-image of155

the full image with voxel resolution of 14.6µm.

Since the microCT images are monochromatic (in this case their voxel values

are within a range between 0 and 216) as illustrated in Figure 4, we must binarise

the images into either solid or void before we can use them for LB simulations.

Binarisation defines all voxels with monochromatic value less than a threshold160

to be pore space or void, and the rest to be solid. Figure 4 illustrates how

choosing a higher threshold value results in a higher porosity sample than a

lower threshold.

In our calibration method we investigate the porosity-permeability curve,

so we need several samples of varied porosity. To obtain these we binarise the165

microCT image using eight different thresholds (6, 36, 66, 96, 126, 156, 186
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Figure 3: Outputs of the LB simulation used to calculate permeability shown throughout
the run with τ = 0.6 (100000 iterations): solid - high porosity (21.2%) sample, dashed - low
porosity (6.2%) sample. From top to bottom we have average flow velocity in the direction of
fluid forcing averaged over the volume of the entire sample - 〈vz〉S , the approximated average
fluid density in the pores of the sample calculated using the inlet and outlet cross sections -
〈ρ〉IO, and pressure difference between the inlet and outlet walls of the sample - 〈∇pz〉IO. All
outputs are in dimensionless LB units.

and 216) to arrive at binarised representations with different porosities (6.2,

8.3, 9.8, 11.2, 12.7, 14.4, 16.4 and 21.2 percent, respectively). Figure 5 depicts

these results, and Figure 6 illustrates that the corresponding porous media are

complex and multiscaled as pore sizes range over an order of magnitude in all170

cases.

We are aware that the way we obtain samples of varying porosity by changing

the binary threshold is not equivalent to obtaining samples in which differences

in porosity arise from different stages of natural processes (i.e. diagenesis).

However, the process of binarisation at different thresholds implemented here175

can be considered as a proxy for cementation. Greyscale values in the image

change gradually from a grain (white, maximum pixel value of 216) to a pore
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Figure 4: Slice through microCT image of Fontainebleau sandstone in grey scale (left). Cumu-
lative percentage of pore voxels in a 3D sample of size 1003 (right): the smaller the threshold
we choose for binarisation (x-axis), the smaller the proportion of pore-voxels in the binarised
medium (proportion of voxels on y-axis is equivalent to resultant porosity).

(black, minimum pixel value of 0), therefore as the binarisation threshold is

decreased the grains are progressively being ’overgrown’ with more solid voxels

(a proxy for cement). This results in overall porosity of the rock decreasing180

with the threshold of binarisation, e.g. threshold of 186 results in a porosity of

about 17%, while threshold of 156 results in more ’cement’ overgrown around

the grains and a porosity of 15% (Figure 4). In this way the samples binarised

at different thresholds maintain topologies similar to samples of Fontainebleau

sandstone at different porosities.185

4. Bayesian framework

We now present an overview of the Bayesian framework for model-based

uncertainty quantification that we use herein. We start with the general formu-

lation and continue with case-specific adaptations. Table 1 contains a summary

of all variables.190
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Figure 5: Slices through 3D microCT images of Fontainebleau sandstone of dimension 1003 and
resolution 14.6µm. The same sample binarised at eight different thresholds creates samples
with eight different porosities: 6.2, 8.3, 9.8, 11.2, 12.7, 14.4, 16.4 and 21.2 percent. Dark
indicates pore space and light grey indicates solid.

4.1. General Bayesian formulation

Consider a class of models M which in our case will be the set of all LB

models considered. Individual models within that class are assumed to differ

due to variations in a set of parameters θ. Our goal is to use both data from

empirical laboratory experiments or analytical calculations, and any other infor-195

mation available that is independent of the data (so-called prior information),

to constrain appropriate values for θ.

In a Bayesian framework [47, 48], the uncertainty in parameters θ of model

classM is quantified with a prior probability distribution function (PDF) π(θ|M)

which is updated with information from data D to give the so-called posterior200
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Figure 6: Effective pore size distribution (PSD) functions (top) and their cumulative distribu-
tions (bottom) for the microCT image of Fontainebleau sandstone binarised at eight different
threshold values. The effective pore diameters, defined as the maximum diameter of a sphere
that fits inside the pore, were calculated using the methods described in [46].

PDF p(θ|D,M) according to Bayes rule:

p(θ|D,M) =
p(D|θ,M) π(θ|M)

p(D|M)
(6)

Here p(D|θ,M) is the likelihood of observing data D within the model class

considered given a particular set of parameter values θ, and p(D|M) is the so-

called evidence or estimate for the model class as a whole being appropriate

to represent data D. This evidence is given by the multi-dimensional marginal205

integral of the numerator over the space of all possible LB model parameter

values:

p(D|M) =

∫
θ

p(D|θ,M)π(θ|M)dθ (7)

The prior PDF π(θ|M) of the model parameters incorporates all available

12



Table 1: Variables used in the Bayesian formulation.

General formulation

θ Model parameter set

M LB model class

π(·) Prior PDF

p(·) Posterior PDF

D Measured data

f Model predictions

e Prediction error

n Number of observations (measurements)

J(·) Weighted measure of fit between the model predic-

tions and measured data

Σ Covariance matrix of the error term

Q Quantity of interest

N Number of TMCMC samples

Case-specific formulation

θ ≡ τ LB model temporal relaxation parameter

Q ≡ κ Permeability (κ) is the quantity of interest in all cases

fκ Model predictions: permeability predicted in LB sim-

ulation

Dκ,A Measured data: analytically obtained permeability of

a pipe of square cross-section in Cases 1 and 2

Dκ,E Measured data: experimentally derived permeability

of Fontainebleau sandstone in Cases 3 and 4

w Pipe width (size) in Case 2

σ2
w Variance of uncertainty on pore size w in Case 2

g(w) Functional form of the weight variance in Case 2

d(w) Pore size distribution in Case 2

φ Porosity

13



information on the uncertainty of the model parameters before data D is taken

into consideration. This may derive from previous experience in other modelling210

exercises, from mathematical knowledge (of convergence criteria of underlying

equations, for example), or from any other relevant source. It could be obtained

and parametrised by expert elicitation [49, 50], by literature surveys, or by

conducting independent modelling tests.

Assuming that the model predictions f(θ|M) and the measurement data D215

satisfy the model prediction equation

D = f(θ|M) + e (8)

where the prediction error e (accounting for measurement, computational and

modelling inadequacy) is normally distributed with zero mean and covariance

matrix Σ, the likelihood p(D|θ,M) is given as [21]

p(D|θ,M) =
|Σ(θ)|−1/2

(2π)
n/2

exp

[
−1

2
J(θ;M)

]
(9)

where220

J(θ;M) = [D − f(θ|M)]
T

Σ−1(θ)[D − f(θ|M)] (10)

is the weighted measure of fit between the system model predictions and the

measured data, | · | denotes determinant, and the parameter set θ is augmented

to include parameters that can be used to describe values of the covariance

matrix Σ.

One of the key parameters to be identified within a BGK-LB simulation225

is the relaxation rate τ in Equation (1). In this work we concentrate on cali-

brating that parameter in four ways: Cases 1 and 2 use the Hagen-Poiseuille

law, where data D is the analytically derived permeability Dκ,A in a pipe of

square cross-section; Cases 3 and 4 both use experimental permeability data for

Fontainebleau sandstone Dκ,E , the distinction between them being that Case 3230

is porosity-independent and Case 4 is porosity-dependent.

14



4.2. Bayesian formulation for calibration using Hagen-Poiseuille (HP) law (Cases

1 and 2)

When calibrating BGK-LB models using the Hagen-Poiseuille law we follow

the steps of Narvaez et al. [16] and simulate the flow in a single open-ended235

pore of square cross-section (a pipe). We perform six LB simulations for pipes

of various widths (3, 4, 5, 6, 7 and 12 lattice units). These widths are within

the range of the pore widths typical for Fontainebleau sandstone. Figure 6

shows that the pore diameters range from 1 to 9 grid units for all investigated

porosities. In each case the permeability derived from LB is compared with the240

analytically obtained permeability in a pipe of square cross-section calculated

using the Hagen-Poiseuille law [16]:

Dκ,A(w) = lim
m→∞

w2

4

(
1

3
− 64

π5

m∑
n=0

tanh
(
(2n+ 1)π2

)
(2n+ 1)5

)
(11)

In this calibration we treat the pore size w as a model state rather than a

model parameter. In this case the prediction error equation (8) which quantifies

the discrepancy between the LB predictions of the permeability for each state245

w has the functional form f(θ|M) ≡ fκ(τ ;w) and the theoretically calculated

values D ≡ Dκ,A are given by

Dκ,A = fκ(τ ;w) + e (12)

where e ∼ N(0,σ2
w) and the variance of the error is some function σ2

w = g(w)

of the width w of the pipe.

In general we identify three separate possible sources of uncertainty within250

the term e: experimental uncertainty σ2
exp, sampling uncertainty σ2

time−sample

and model error σ2
model. The overall uncertainty associated with each size w of

the pore [47] is then

σ2
w = σ2

exp + σ2
time−sample + σ2

model (13)

Recall that the values Dκ,A as dictated from Hagen-Poiseuille flow are an-

15



alytically derived. Thus, in cases 1 and 2 there is no error associated with255

experimental measurements (σ2
exp = 0). Furthermore, the sampling uncertainty

in the case of LB is negligible, as the model reaches a steady equilibrium with

minute fluctuations at steady state after O(105) steps. This can be viewed in

Figure 3 which shows the convergence of the system properties throughout a

typical LB run. Hence σ2
time−sample ' 0.260

However, there is uncertainty associated with the inadequacy of the class M

of BGK Lattice Boltzmann models to capture the theoretical values accurately

(as LB is only a computational model). As a result of the first 2 components

being negligible, the overall error for each width of the pipe σ2
w is the model

error, that is σ2
w ' σ2

model.265

We investigate 2 ways of calculating the model error. The more straightfor-

ward (Case 1) treats all six considered pore sizes (3, 4, 5, 6, 7 and 12) equally,

and the error is described with the formula:

σ2
w = g(w) =

1

6
σ2 (14)

where σ is a constant that is to be estimated and 1
6 is the weight normalising

factor (introduced so that the sum of the weights for the six pore sizes is equal270

to 1).

The other approach (Case 2) is inspired by the fact that eventually we will

apply the calibrated LB model to multi-scaled porous media and therefore we

would like to allow that each pore size may contribute differently towards the

final error estimate of the LB simulation. For example, smaller pores may be275

more poorly represented in cell-based discretisations such as those in Figure 5.

Also, the rock is a collection of interconnected pores of multiple sizes (Figure

6) and it seems likely that a pore size that appears more frequently might

contribute more towards errors in the model result than pore sizes that do not

occur so frequently.280

Let us consider a simple porous structure: a pipe with diameter 10 and

length 100 lattice units. The pore size distribution of this structure consists of
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100% of large pores and the permeability of such a structure is very high. On

the other hand, consider the same pipe with a planar blockage of thickness 1

lattice unit across the end, but where that blockage has a single hole of width285

1 through the middle of it. The pore size distribution by volume now includes

99.9% of large pores and 0.1% of small pores. We have changed the pore size

distribution only slightly, but the permeability of the porous medium drops

dramatically; the single small pore therefore has an impact on permeability

much greater than could be inferred from its representation in the pore size290

distribution alone. The smaller the cross-sectional area of the small pore, the

greater its curbing of permeability. Similarly, in a complex multiscale porous

medium, fluid usually flows through multiple passages along any overall flow

path and it is the cross-sectional area of the narrowest part of such passages

that controls the passage flux.295

Given the above physical arguments we expect the uncertainty associated

with pores of width w to increase with the number of such pores and to decrease

with increasing pore cross-sectional area. We therefore use the following ansatz

for the uncertainty contribution from pores of width w:

σ2
w = g(w) =

1∑
w

d(w)
w2

· d(w)

w2
· σ2 (15)

where d(w) is the normalised frequency of occurrence of pore size w in the porous300

medium. The weight normalising factor (first term on the right in Equation (15))

is equal to the reciprocal of the sum of weighting factors d(w)
w2 for all considered

pore sizes w.

The pore size frequency distribution is estimated using a publicly available

code developed by Bhattacharya et al. [46]. We calculate the effective pore305

size distribution (the maximum diameter of a spherical particle which fits inside

the pore) in lattice units for all eight realisations of different porosity of the

Fontainebleau sample (Figure 6) and use the average of the eight curves as

d(w). The weights we obtain for pore sizes 3, 4, 5, 6, 7 and 12 are 0.777, 0.133,
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0.060, 0.022, 0.007 and 0.0003 respectively. The mismatch between permeability310

derived theoretically and permeability derived through LB simulation for most

values of τ is greater for smaller pore sizes [16] so giving them largest weights

will increase the resulting estimate of overall uncertainty of the prediction.

We define the covariance matrices Σ1 and Σ2 (the subscripts indicate case

number) in Equation (10) to be diagonal matrices containing the entries of315

Equations (14) and (15) respectively on their diagonals, that is Σ1,ii = 1
6σ

2
wi

and Σ2,ii = 1∑
wi

d(wi)

w2
i

· d(wi)
w2
i
· σ2
wi , where entry i on the diagonal corresponds to

one of the six pipe widths wi (3, 4, 5, 6, 7 or 12 lattice units).

4.3. Bayesian formulation for calibration using permeability data (Cases 3 and

4)320

Cases 3 and 4 demonstrate Bayesian calibration of the LB model for flow in

porous media given experimentally measured permeability data. The data D ≡

Dκ,E used in these Case 3 is the porosity-permeability relationship of the Milly la

Foret ’normal’ Fontainebleau sandstones from [51] (shown in Figures 9 and 10).

The covariance matrix Σ3 that enters the likelihood formulation in Equation (10)325

then contains several contributions, some of which differ from those in Cases 1

and 2. The first contribution is the experimental uncertainty in the data (σ2
exp):

this consists of the uncertainty in the exact permeability of the rock sample given

the experimental error involved in measuring permeability σ2
measure, as well as

the effect of anisotropy in the rock which results in differences in permeability330

depending on the flow direction σ2
anisotropy [51]. Our source of experimental

data provides only one permeability value per sample and does not explicitly

take the direction of flow into account. We make an estimate of this anisotropy

uncertainty of 10% of the nominal value of permeability: this is based on LB flow

simulations using the three possible cube face pairs of the porous media sample335

as inflow and outflow boundaries, and comparison of the resulting permeabilities

in the three directions.

A further component of the experimental error stems from the fact that,

even though Fontainebleau sandstone is fairly homogenous, there is variability
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in the measured permeability depending on the sample of the rock that we340

extract. The variability stems both from the size of samples and from the

location of samples in the bigger block of rock. LB simulations in this study

are performed on cubic samples of edge length about 1.5mm. The permeability

measurements were done on cylindrical plugs with a diameter 40mm and length

40-80mm [51]. There is a discrepancy arising from the smaller scale of the sub-345

samples in which flow is simulated. We performed a test for sub-sample sizes

from 603 to 2803 voxels and confirmed that there is variability in permeability

depending on the sub-sample size. The other variability component comes from

sub-sample location: different similarly sized sub-samples of a rock sample can

have different permeability, even if their porosity happens to be the same or350

very similar. We combine both of these uncertainties into σrock−sample. Since

our inference method relies on TMCMC sampling which in turn translates to

numerous LB runs, we limit the sample size to control the computational cost

to a size of 1003 for which we estimate σrock−sample of 10% based on our tests.

Similarly to Cases 1 and 2 we have σ2
time−sample ' 0 and the final contri-355

bution encompasses the remaining unexplained model error. The overall uncer-

tainty is then:

Σ3,ii = diag(σ2
measure,i + σ2

anisotropy,i + σ2
rock−sample,i + σ2

model). (16)

The final term pertaining to the model error is assumed to be constant for all

permeabilities.

As an extension to the above, in Case 4 we make a porosity-dependent360

calibration where we inlude an independent τ(φi) parameter for LB simulations

on samples of different porosities. We couple them using the prediction error

equation (8). In order to obtain a mean value and experimental uncertainty for

each porosity we bin the measured values from [51] around the chosen porosities,

which results in each having multiple measurements. Thus Case 4 augments the365

number of unknowns to nine, as the relaxation rates are different for each of the

eight porosities (6.2, 8.3, 9.8, 11.2, 12.7, 14.4, 16.4 and 21.2 percent). That is,
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when data D ≡ Dκ,E is derived experimentally,

Dκ,E = fκ(τi|M) + e (17)

where e ∼ N(0, Σ4), and Σ4 is defined in (16). The individual relaxation rates

per porosity are now coupled via the prediction error e through Equation (8).370

4.4. Priors on τ and σ

Regarding the priors for the model parameter τ , we assume a uniform prior

truncated at bounds τ = 0.5 and τ = 1.5, where the simulation is known

to be numerically unstable or computationally impractical. This distribution

includes the value of 1.0, routinely used in BGK-LB simulations, as well as the375

value of 0.857 which is reported by Narvaez et al. [16] to yield the best result

of permeability for Poiseuille flow in a quadratic pipe. We also assume uniform

priors on σ, truncated at bounds σ = 0.001 and σ = 10.0.

4.5. Uncertainty propagation for robust posterior predictions

To obtain the marginal posteriors p(τ |Dκ,A) in Cases 1 and 2 and p(τ |Dκ,E)380

in Cases 3 and 4 we marginalise the joint posterior of the physical parameter

τ with respect to the prediction error parameters. The marginalisation inte-

grals are performed using kernel density estimates of the posterior samples, as

produced from the last stage of the TMCMC algorithm [28, 29].

Robust posterior prediction of the output quantity of interest Q (in our385

case it is the permeability κ) is obtained by taking into account the posterior

uncertainties in the model parameters given the measured data D [52]. We

define FQ(Q|θ,M) to be the conditional cumulative distribution of Q given the

model parameters θ and the BGK Lattice Boltzmann model M . The posterior

estimate is generally formulated as follows [29, 52]390

µ̄Q ≈
1

N

N∑
i=1

µQ

(
θ(i);M

)
(18)
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(where N is the number of TMCMC samples) and the posterior variance

σ̄2
Q ≈

1

N

N∑
i=1

σ2
Q(θ(i);M) +

1

N

N∑
i=1

[
µQ(θ(i);M)− µ̄Q

]2
(19)

of the outputQ, where θ(i) are taken from the posterior distribution of θ givenD.

The posterior PDF in (6), the posterior mean in (18) and the posterior variance

in (19) constitute robust measures of uncertainty of Q given the models and

the data, taking into account the modelling and parametric uncertainties. The395

coefficient of variation COV (Q), defined as the ratio of the standard deviation

σ̄Q to the posterior mean value µ̄Q, constitutes an alternative measure of the

uncertainty in Q.

5. Results

In Table 2 we summarise the three inference campaigns and some computa-400

tional details. Each of the four TMCMC sampling campaigns had a significant

computational cost. Each LB simulation for the eight samples that occurs in

the posterior formulation has a time to solution of around 2 hours running on

64 cores. In order to make the sampling campaign feasible, a significant por-

tion of the κ predictions was replaced by Kriging meta-models using the ideas405

described in [29]. We ran simulations for several values of parameter τ for each

sample and due to the smoothness of the κ(τ) curves (Figure 7) we were able

to estimate the permeability prediction for τ values in-between the simulations

we ran. This resulted in a substantial reduction in the computational cost (by

92%).410

5.1. Uncertainty quantification and propagation using HP (Cases 1 and 2)

In Cases 1 and 2 we use the theoretical formulation of the HP flow through

a narrow pipe to infer the posterior PDF of the τ parameter of LB, and we

propagate this uncertainty to permeability predictions. We use 5000 samples

per TMCMC stage, for a total of 30000 samples, following six stages until con-415

vergence.
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Figure 7: The circles represent the LB runs we performed for the sample of porosity 21.2%
and the grey curve represents the best fit to the points that we have used as a surrogate
meta-model to predict permeabilities of this sample for a large number of τ values without
the computational cost of running the LB simulation.

Table 2: Summary of the four Bayesian inference campaigns presented in the results section.

Case Data Source Params TMCMC Samples (N) CPU-hrs 1

1 HP permeability
(
τ ,σ2

)
30,000 120,000

2 HP permeability
(
τ ,σ2

w

)
30,000 120,000

3 Fontainebleau permeability
(
τ ,σ2

)
35,000 210,000

4 Fontainebleau permeability
(
τ ,σ2

)
35,000 250,000

1 As recorded in simulations performed using the UK National Supercomputing Service

Archer.

To compare the two models we determine the Bayes factor K = p(D|M2)
p(D|M1)

,

where p(D|Mi) is the posterior probability of observed data D given model Mi,

or model evidence; M1 is the error model in Case 1 and M2 is the error model

in Case 2. The model evidence in Cases 1 and 2 is 0.72 and 19.48 respectively,420

which gives a Bayes factor of 27.0 and points to M2 being significantly more

strongly supported by the data than M1 [21].

The posterior PDF p(τ |Dκ,A) in each case is estimated using kernel density

estimates from the 5000 samples of the last sampling stage, and is presented in

Figure 8 (solid curves). The most probable value of τ in Case 1 is 0.949 and in425
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Table 3: Results of τ calibration for the four cases.

Case Prior τ Maximum-a-posteriori τ Posterior mean τ

Coeff. of

variation

u

1 C1 · U(0.5, 1.5)1 0.949 0.947 3.5%

2 C2 · U(0.5, 1.5) 0.906 0.892 7.5%

3 C3 · U(0.5, 1.5) 0.661 0.667 5.3%

4 C4 · U(0.5, 1.5) τ(φ) = −1.047φ+ 0.804 multiple multiple

1 C1,C2,C3 and C4 are normalising constants.

Case 2 it is 0.906. Both are somewhat higher than the value of 0.857 suggested

in the literature [16]. The associated coefficient of variation (standard deviation

divided by mean) of τ are 3.5% and 7.5% respectively. The distribution in Case 1

has a well pronounced symmetrical peak and in Case 2 is skewed slightly towards

higher values with a tail towards lower values to accommodate predictions of all430

pore sizes.

Using the final 5000 samples we predict the permeability using Equations

(18) and (19). We propagate the results using porous media in Figure 5 in order

to test whether the so-calibrated LB model can accurately predict permeability

for different porosities. The results for Case 1 are summarised in Figure 9 and435

for Case 2 in Figure 10.

The predictions of permeability are quite similar for the two HP cases. The

95% and 50% credibility intervals (shaded areas), defined as ranges of values

with 95% and 50% probability respectively of the predicted value falling within

the interval, are considerably wider in Case 2. This reflects the fact that this440

model endeavours to capture a range of pore sizes.

Our result in Case 1 suggests that the BGK-LB model cannot quantitatively

capture the experimental permeability values. The result in Case 2 suggests

that the LB model can capture the experimental permeability only for low
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Figure 8: Solid black - calibration using the Hagen-Poiseuille law (Case 1), maximum-a-
posteriori (MAP) value at τ̂ = 0.949; solid grey - calibration using the Hagen-Poiseuille law
using a model that takes pore size and abundance into account (Case 2), MAP value at
τ̂ = 0.906, dashed - calibration using permeability data (Case 3), MAP value at τ̂ = 0.661.

porosities (< 0.12). For higher values predicted permeability lies well outside of445

the 95% credibility interval, demonstrating the model deficiency in this porosity

regime. This over-estimation of the permeability in the LB simulation for even

these relatively simple naturally porous sandstones is alarming, as it throws into

question the method’s applicability to realistic media.

5.2. Uncertainty quantification and propagation using permeability data450

In order to reconcile the prediction and experimental discrepancy, we proceed

to calibrate our LB model parameter with experimental permeability data.

5.2.1. Porosity-independent relaxation parameter (Case 3)

We again employ the TMCMC with 5000 samples per stage, for a total of

35000 samples, following seven stages until the convergence criteria have been455

satisfied.

The posterior PDF p(τ |κ) is estimated using kernel density estimates from

the 5000 samples of the last sampling stage, and is presented in Figure 8 (dashed

curve). A comparison between the three posterior PDFs in Cases 1, 2 and 3

in Figure 8 indicates that the PDF in Case 3 is almost disjoint from the PDFs460

in Cases 1 and 2. The mode of the posterior PDF using the permeability
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information is at τ = 0.661, whereas its associated uncertainty is smaller at

5.3%. This significantly smaller than the value of 1.0 typically used in BGK-LB

simulations.

Propagation of the TMCMC samples with the calibrated τ value yields re-465

sults presented in Figure 11. It is clear that our prediction is significantly better

compared to Case 1 or Case 2. We capture a greater range of porosities within

the modelling uncertainty. We can predict values with porosities larger than

0.16 compared to 0.12 in Cases 1 or 2. For larger values of porosity, however,

we still do not manage to recreate the experimental observations.470

The large difference in the predicted values of τ in the HP cases (1 and 2) and

Case 3, as well as the persisting discrepancy for over-estimating the permeability

for higher-porosity samples, suggests the need to refine the LB model to allow

for porosity-dependent relaxation rates.
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Figure 9: Prediction using the Hagen-Poiseuille law calibration (Case 1). Small dots - ex-
perimental data of the permeability of Fontainebleau sandstone (Dκ,E) from [51]; light and
dark grey shading - 50% and 95% Bayesian credibility intervals; large circles - permeability
predictions fκ using the MAP τ̂ .
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5.2.2. Porosity-dependent relaxation rate (Case 4)475

We repeat the sampling campaign in order to estimate the posterior distri-

bution function of p (τ |κ), where now we allow for the relaxation rates to be

porosity dependent. We split the data into eight disjoint regimes of porosity,

where we assume that the prediction error within each regime is the same. The

marginal τ distributions for all eight porosities are shown in Figure 12.480

Figure 13 shows that the MAP values of τ̂φi fit well with the experimental

data and interestingly in this case there is clearly a long tail in each posterior

PDF towards lower permeability values. We also fit these MAP values of τ with

a linear function in order to suggest which value of parameter τ should be used

in simulations on rocks of porosities that we did not model explicitly. Figure 14485

presents the resulting MAP relaxation rates as identified for each porosity.
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Figure 10: Prediction using the Hagen-Poiseuille law calibration in Case 2. Small dots -
experimental data of the permeability of Fontainebleau sandstone (Dκ,E) from [51]; light and
dark grey shading - 50% and 95% Bayesian credibility intervals; large circles - permeability
predictions fκ using the MAP τ̂ .
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Figure 11: Robust prediction using permeability data (Case 3). Circles indicate predictions
using posterior mean τ ; crosses indicate predictions using MAP τ ; small dots - experimental
data of the permeability of Fontainebleau sandstone (Dκ,E) from [51]; light and dark grey
shading - 50% and 95% Bayesian credibility intervals; large circles - permeability predictions
fκ using the MAP τ̂ .

6. Discussion

Our Bayesian calibration of the BGK-LB parameter τ using permeability

data and a porosity-independent formulation (Case 3) results in the MAP value

τ = 0.661. This value is considerably smaller than the value found when us-490

ing the Hagen-Poiseuille law for calibration, and it leads to significantly more

accurate permeability predictions (Figure 11). This value, however, is close to

the value of τ = 0.688, which is reported by Narvaez et al. [16] as resulting

in permeability values that are in good agreement with experimental data for

Fontainebleau sandstone. Routine calibration of LB parameters in the litera-495

ture to-date have depended upon theoretical values for channel flow or similar

theoretical cases that are used as test-beds. Results of such calibration fail to

predict the experimental values of permeabilities in porous media, even under

uncertainty. In the case of a Hagen-Poiseuille calibration the estimated pos-

terior PDF of τ is of limited value for predicting permeability values. This is500
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due to the different nature of the geometry and flow inside porous media, con-

taining contributions from a range of pore sizes and their complex patterns of

interconnections.

When we calibrate τ using all permeability data in a porosity-independent

mode (Case 3) the permeability predictions improve overall, but still contain505

significant discrepancies for samples of higher porosities. This inspired us to

assume a porosity-dependent mathematical formulation for the relaxation pa-

rameter τ (Case 4). This calibration yields a result where the MAP parameter τ

is approximately a function of the total porosity φ of a complex medium: τ(φ) =

−1.047 · φ+ 0.804 (Figure 14). This new semi-empirical model for choosing the510

time relaxation parameter provides significantly more accurate predictions (Fig-

ure 13) compared to the porosity-independent case (Figure 11). The superiority

of porosity-dependent calibration can be quantified by using Bayesian model pre-

diction and the Bayes ratio between the porosity-independent model evidence

and porosity-dependent model evidence in the permeability-based calibration of515
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Figure 12: Inference of τ from permeability data using the porosity-dependent model (Case
4). Marginals of the joint posterior PDFs for the eight τ parameters for each analysed porosity
(6.2% though 21.2%) are obtained via kernel densities.
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Figure 13: Prediction using permeability data in the porosity-dependent mode (Case 4).
Circles indicate predictions using posterior mean τ ; crosses indicate predictions using MAP τ ;
small dots - experimental data of the permeability of Fontainebleau sandstone (Dκ,E) from
[51]; light and dark grey shading - 50% and 95% Bayesian credibility intervals; large circles -
permeability predictions fκ using the MAP τ̂ .
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Figure 14: Black circles are the MAP τ for investigated porosities and the grey line is a linear
fit of the form τ(φ) = p1 · φ+ p2, where p1 = −1.047, p2 = 0.804.

τ [21]. This ratio is equal to 12.3, which according to Jeffreys [53] is a strong

evidence that the porosity-dependent model is significantly more plausible given

our experimental data.
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This empirical model provides a new modus-operandi regarding permeabil-

ity predictions. To illustrate the predictive power of our model we selected two520

independent samples of Fontainebleau sandstone. From the collection of mi-

croCT images of Fontainebleau sandstone made available by the Institute for

Computational Physics of the University of Stuttgart [45] we select two images

different from the image used so far: one of resolution 14.6µm and the other

29.2µm (Figure 15). Following the procedure detailed in Section 3 we obtain525

several binary variants of each of the two greyscale microCT images, each with

a different porosity: for the 14.6µm image we generate eight binarisations and

for the 29.2µm image we generate six binarisations (Table 4). We perform two

sets of predictions of permeability, one with the value of τ = 0.661 calibrated

for the porosity-independent case, and the other using τ according to our semi-530

empirical model τ(φ) = −1.047 · φ + 0.804 (Table 4). The results of the LB

simulation for the porosity-independent case (Figure 16) yield permeabilities

that fall within the credibility intervals of our propagation for the analysed

sample. In the porosity-dependent case (Figure 17) the permeabilities of the

independent samples again fall within the credibility intervals, but this time535

they are also much closer to the experimental data for Fontainebleau sandstone.

Table 4: Parameters τ for the independent samples calculated using the model in Figure 14.

14.6µm sample 29.2µm sample

Porosity [%] τ Porosity [%] τ

6.1 0.740 5.3 0.748

8.2 0.718 7.6 0.725

9.6 0.703 10.0 0.699

11.1 0.688 12.6 0.672

12.5 0.673 15.9 0.638

14.2 0.655 20.2 0.593

16.3 0.634

20.1 0.584
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We would like to stress that LB parameterisation methods, especially for

more complex LB models of for example two-phase flows, should be approached

with great caution. Depending on the quantity of interest and the experimental

set-up we want to simulate, we must carefully assess the relevance of previously540

published values from literature. Here we present a study for a rock type with

published experimental permeability data. In the absence of data for a spe-

cific rock formation we suggest that porosity-permeability data at least from a

similar rock-type are used. A more involved hierarchical Bayesian approach to

calibration involving different types of rocks and theoretical expressions could545

also be advantageous in this LB calibration method.

Our findings also have significant ramifications for more advanced LB mod-

els, including multi-phase, multi-species examples. The usual method of cali-

bration in those systems includes experimental set-ups using contact angle sim-

ulations. In future work we will investigate how this calibration compares to550

calibration with real relative permeability data in the above Bayesian frame-

work. We seek to resolve this matter in two-phase LB simulations (oil and

water), which is of notable interest to petroleum engineering.
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Figure 15: Images of the independent samples used in calibration validation. Slices through
microCT image of Fontainebleau sandstone in grey scale.
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Figure 16: Permeabilities of independent samples calculated using τ = 0.661 in the context
of prediction using permeability data (Case 3). Triangles - permeabilities for the 14.6µm
sample; squares - permeabilities of the 29.2µm sample; small dots - experimental data of the
permeability of Fontainebleau sandstone (Dκ,E) from [51]; light and dark grey shading - 50%
and 95% Bayesian credibility intervals; large circles - permeability predictions fκ using the
MAP τ̂ .

7. Conclusions

We develop a Bayesian inference framework to analyse the power of single-555

relaxation-time Bhatnagar-Gross-Krook (BGK) Lattice-Boltzmann (LB) mod-

els to predict permeability of porous media. The framework enables system-

atic parameter estimation of LB model parameters (in the scope of this work,

the relaxation parameter τ), for the currently used calibrations of LB based on

Hagen-Poiseuille law. Our prediction of permeability using the Hagen-Poiseuille560

calibration suggests that this method for calibration is not optimal and in fact

leads to substantial discrepancies with experimental measurements, especially

for highly porous complex media.

We proceed to re-calibrate the LB model using permeability data from

porous media, which results in a substantially different value of the maximum-565

a-posteriori (MAP) τ parameter than those proposed previously (0.661 here

compared to 1.0 typically used in BGK-LB simulations or 0.857 resulting from
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Figure 17: Permeabilities of independent samples calculated using porosity-dependent τ as in
Table 4 in the context of prediction using experimental data in the porosity-dependent mode
(Case 4). Triangles - permeabilities for the 14.6µm sample; squares - permeabilities of the
29.2µm sample; small dots - experimental data of the permeability of Fontainebleau sandstone
(Dκ,E) from [51]; light and dark grey shading - 50% and 95% Bayesian credibility intervals;
large circles - permeability predictions fκ using the MAP τ̂ .

the calibration for the 3D Poiseuille flow in a quadratic pipe by Narvaez et al.

[16]). We augment our model introducing porosity-dependence, where we find

that the MAP value for τ decreases for samples of higher porosity. In this new570

semi-empirical model one first identifies the porosity of the given medium, and

on that basis choses an appropriate LB relaxation parameter from the relation

in Figure 14. These two approaches result in permeability predictions much

closer to the experimental permeability data, with the porosity-dependent case

being the better of the two. Validation of this calibration method with inde-575

pendent samples of the same rock type yields permeability predictions that fall

close to the experimental data (Figure 16), and again the porosity-dependent

model provides better results (Figure 17). We thus conclude that our calibra-

tion model is a powerful tool for accurate prediction of complex porous media

permeability.580

Note that the optimal (MAP) τ is adjusted specifically for the pore ge-
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ometries and size distribution of Fontainebleau sandstone. Rock types with

a significantly different pore space character should undergo an adjustment of

their own.

Finally, the results of this work do not promote the use of BGK-LB over585

more advanced Multiple Relaxation Time (MRT) scheme, we merely present

a state-of-the-art calibration method and showcase the instability of the LB

relaxation parameter in the BGK collision model, which is of high importance

for any future users of the BGK-LB scheme and should be taken into account

in the decision making process of the user.590
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