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ABSTRACT
The Synchronous Dataflow Graph (SDFG) and Cyclo-Static
Dataflow Graph (CSDFG) are two well-known models, used
practically by industry for many years, and for which there
is a large number of analysis techniques. Yet, basic prob-
lems such as the throughput computation or the liveness
evaluation are not well solved, and their complexity is still
unknown. In this paper, we propose K-Iter, an iterative
algorithm based on K-periodic scheduling to compute the
throughput of a CSDFG. By using this technique, we are
able to compute in less than a minute the throughput of
industry applications for which no result was available be-
fore.

Keywords
Cyclo-Static Dataflow Graph, Static analysis, Throughput

1. INTRODUCTION
The execution of streaming applications such as multi-

media streaming or signal processing by an embedded sys-
tem must respect strict constraints of throughput, latency,
memory usage, and power consumption. Several dataflow
programming languages have been developed to express this
class of applications in order to handle such requirements.

Dataflow modeling involves designing an application as
a set of tasks which communicate only through channels.
Synchronous Dataflow Graph (SDFG) and more generally
Cyclo-Static Dataflow Graph (CSDFG) are two models to
statically specify an application behavior. They are com-
monly used to evaluate applications in term of throughput
or memory consumption using dataflow static analysis tech-
niques.

The exact determination of the throughput requires to
compute an optimal schedule. Most of the authors consid-
ered as soon as possible schedules [14, 8]. Their computation
has an exponential complexity with respect to the dataflow
size in the worst case, and is usually too long for real-life
applications. Approximative methods were also developed
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to get polynomial-time evaluations. They usually limit their
space of solutions to particular categories of schedules such
as the periodic ones [1] (or equivalently strictly periodic). A
periodic schedule is a cyclic schedule whose definition is only
composed of a first execution time per task and a period of
execution per task. Polynomial methods have been proposed
to compute periodic schedules of SDFG [1] and CSDFG [4],
and these methods can be applied to throughput estimation
or buffer sizing.

Meanwhile, existing static dataflow languages are reveal-
ing new cases which are not well supported by these tech-
niques [4]. These cases are too complex to be used with ex-
act schedules: as an example, there is no optimal through-
put result for the H264 application proposed by [4]. Fur-
thermore, periodic solutions remain an over-approximation
which might be insufficient to be applied for embedded sys-
tems.

K-periodic scheduling [3] was developed as an alternative
method when both as soon as possible and periodic meth-
ods are not satisfactory. A K-periodic schedule is built by
periodically repeating a schedule of its Kt first executions.
The estimated value of the throughput directly depends on
the periodicity vector K. A periodic schedule can be seen
as a particular case of K-periodic schedule for which Kt = 1
for every task. Setting K equal to what is called the repe-
tition vector provides the optimal value of the throughput,
but space and time complexities are not scalable.

An exponential number of pertinent values K may be con-
sidered between these two extreme solutions to exactly eval-
uate the throughput. This paper aims to optimally compute
the throughput by iteratively increasing a periodicity vector
K until an optimal solution is reached. From a theoretical
point of view, the computation of a K-periodic schedule of
minimum period is presented, followed by an original opti-
mality test of a periodicity vector. Our algorithm is success-
fully compared for both SDFG and CSDFG with classical
approaches and solves several classical benchmarks.

The contributions of this paper are:

• an extension of K-periodic scheduling to CSDFG,

• an optimality test of a K-periodic schedule,

• and K-Iter, an heuristic to efficiently explore the pos-
sible K-periodic schedules for a CSDFG.

Section 2 introduces the model, notations and some defini-
tions on K-schedules. Our algorithm is presented in Section
3. Section 4 is devoted to the experimentations. Related
works are presented in Section 5. Section 6 is our conclu-
sion.



2. CYCLO-STATIC DATAFLOW GRAPHS
This section is devoted to the presentation of the model

and notations of Cyclo-Static Dataflow Graphs, followed by
the definition of the throughput. K-periodic schedules are
lastly introduced.

2.1 Model definition
A Cyclo-Static Dataflow Graph (CSDFG) is a directed

graph in which nodes model taks, and arcs correspond to
buffers. It is denoted by G = (T ,B) where T (resp. B) is
the set of nodes (resp. arcs).

Every task t ∈ T is decomposed into ϕ(t) phases; for every
value p ∈ {1, · · · , ϕ(t)}, the pth phase of t is denoted by tp
and has a constant duration d(tp) ∈ N. One iteration of
the task t ∈ T corresponds to the ordered executions of the
phases t1, · · · , tϕ(t).

Furthermore, every task t ∈ T is executed several iter-
ations: for every integer n and for every phase p, 〈tp, n〉
denotes the nth execution of the pth phase of t.

Every buffer b = (t, t′) ∈ B represents a buffer of un-
bounded size from the task t to t′ with an initial number
of stored data, M0(b) ∈ N. ∀p ∈ {1, · · · , ϕ(t)}, inb(p) data
are written in b at the end of an execution of tp. Similarly,
∀p′ ∈ {1, · · · , ϕ(t′)}, outb(p′) data are read from b before
the execution of t′p′ . In addition, we set

ib =

ϕ(t)∑
p=1

inb(p) and ob =

ϕ(t′)∑
p=1

outb(p
′).

A Synchronous Dataflow Graph (SDFG) can be seen as a
special case of CSDFG where each task has only one phase:
∀t ∈ T , ϕ(t) = 1.

Figure 1 shows a buffer b between the two tasks t and
t′. The respective numbers of phases of the two tasks are
ϕ(t) = 3 and ϕ(t′) = 2. The two associated vectors of b are
inb = [2, 3, 1] and outb = [2, 5], thus ib = 6 and ob = 7. The
initial number of data is M0(b) = 0.

t t′
[2,3,1] [2,5]

. . . . . . . . . . . . . .0

Figure 1: An simple buffer b between two tasks t and t′.

2.2 Schedules and consistency
A feasible (or valid) schedule associated with a CSDFG

is a function S that associates, for every triple (t, p, n) with
t ∈ T , p ∈ {1, · · · , ϕ(t)} and n ∈ N − {0}, S〈tp, n〉 ∈ R,
the starting time of 〈tp, n〉, such that the number of data in
every buffer b ∈ B remains non-negative, i.e. no data are
read before they are produced.

Consistency is a necessary (but non-sufficient) condition
for the existence of a valid schedule within bounded mem-
ory that was first established for SDFG [10]. It has been
extended to CSDFG [2] by considering the cumulative num-
ber of data produced/consumed by one iteration of its tasks.
A CSDFG is consistent if there exists a repetition vector
q ∈ (N− {0})|T | such that

∀b = (t, t′) ∈ B, qt × ib = qt′ × ob.

The repetition vector defines the number of task executions
in a sequence that preserves data quantities in each buffer.
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. . . . . . . . . . . . . .
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[6,2,1] [6]
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[3,5]

[24]
. . . . . . . . . . . . . .13

[36]

[6]

. . . . . . . . . . . . . .
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Figure 2: A consistent CSDFG with d(A) = [1, 1], d(B) =
[1, 1, 1], d(C) = [1] and d(D) = [1].
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Figure 3: An as soon as possible feasible schedule for the
CSDFG pictured in Figure 2.

For instance, the repetition vector of the CSDFG presented
in Figure 2 is q = [6, 12, 6, 1], the graph is thus consistent.

So, as consistency is a necessary condition for the exis-
tence of a valid schedule, our study focuses on consistent
CSDFG.

2.3 Throughput of a CSDFG
The throughput of a task t ∈ T associated with a schedule
S is usually defined as

ThSt = lim
n→∞

n

S〈t1, n〉
.

Theorem 1 proved by Stuijk et al. [16] characterizes the
relations between the throughput of different tasks using
the repetition vector.

Theorem 1 ([16]). Let G = (T ,B) be a consistent CS-
DFG and S a valid schedule. For any pair of tasks (t, t′),
ThSt
qt

=
ThS

t′
qt′

where q is the repetition vector of G.

The throughput of a valid schedule S is then equal to

ThSG =
ThSt
qt

for any task t ∈ T . The period is ΩSG = 1
ThS

G
.

Let’s consider a consistent CSDFG G = (T ,B) initially
marked by M0(b), b ∈ B. The problem addressed by the
present paper is to evaluate the maximum reachable through-
put of G which is denoted by Th?G .

The most common scheduling policy consists of executing
the tasks as soon as possible. Figure 3 presents first exe-
cutions of the as soon as possible schedule for the CSDFG
pictured in Figure 2.

The as soon as possible schedule maximizes the through-
put. Nevertheless, its description can be of exponential size,
as it depends on the repetition vector rather than the prob-
lem size. So other scheduling policies must be considered to
reduce the computation time of the maximum throughput.

2.4 K-periodic scheduling
Let K = [K1, . . . ,K|T |] ∈ (N − {0})|T |. A schedule S

is K-periodic with a fixed vector K if, for any task t ∈ T
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Figure 4: A K-periodic schedule for the CSDFG pictured in
Figure 2 of periodicity factor K = [2, 1, 1, 1]. Highlighted
executions correspond to initial starting times, others are
derived from the period µSt .

and for any integers p ∈ {1, · · · , ϕ(t)} and β ∈ {1, · · · ,Kt},
the period µSt and values S〈tp, β〉 are fixed. Then for any
integer n ∈ N− {0} such that n = α×Kt + β with α ∈ N
and β ∈ {1, · · · ,Kt}, we get

∀p ∈ {1, · · · , ϕ(t)}, S〈tp, n〉 = S〈tp, β〉+ αµSt .

If the periodicity vector K is unitary (i.e. Kt = 1, ∀t ∈ T ),
the shedule is said to be periodic, or 1-periodic.

The throughput of any task t ∈ T for a valid K-periodic
schedule S verifies ThSt = Kt

µS
t

. The throughput of S is then

ThSG =
Kt

qt × µSt
.

Alternatively, the period of S is denoted by

ΩSG =
1

ThSG
=
qt × µSt
Kt

∀t ∈ T .

As example, the periodicity factor of task A in Figure 4
equals 2, thus the KA × ϕ(A) = 4 first executions of A are
fixed; starting times of all the successive ones are implicitly
defined using the period µSA = 12. The period of S is thus
ΩSG = 12×6

2
= 36. It is important to note that for a 1-

periodic schedule the maximal reachable throughput of G
was only ΩSG = 108.

All these notations will be used in the Section 3 to present
our contributions.

3. THROUGHPUT EVALUATION METHOD
This section presents our algorithm. Subsection 3.1 re-

calls the characterization of periodic schedules of a CSDFG,
which is extended to K-periodic schedules in subsection 3.2
using a simple transformation. Next subsection treats the
computation of the minimum period of a K-periodic sched-
ule. Subsection 3.4 is devoted to an original optimality test
of a fixed K. Subsection 3.5 is devoted to our algorithm
K-Iter which heuristically explores the possible K-periodic
schedules for a CSDFG in order to optimally provide its
maximal throughput.

3.1 Periodic scheduling of a CSDFG
The following Theorem 2 defines a feasible periodic sched-

ule as a set of linear constraints. This set of constraints com-
poses a linear program which solve the maximal throughput
of a periodic schedule. In order to define the Theorem 2,
several definition are required.

First, the total number of data produced by t in the buffer
b at the completion of 〈tp, n〉 is defined as

Ia〈tp, n〉 =

p∑
α=1

inb(α) + (n− 1)× ib.

Similarly, the number of data consumed by t′ in the buffer
b at the completion of 〈t′p′ , n′〉 is defined by Oa〈t′p′ , n′〉 =∑p
α=1 outb(α) + (n′ − 1)× ob.
The total number of data contained in a buffer must re-

main non-negative. That is, any execution 〈t′p′ , n′〉 can be
done at the completion of 〈tp, n〉 if and only if M0(a) +
Ia〈tp, n〉 −Oa〈t′p′ , n′〉 ≥ 0.

For example, considering the CSDFG pictured in Figure
1, the execution 〈t′2, 1〉 can be done at the completion of
〈t1, 2〉 since M0(a) + Ia〈t1, 2〉 −Oa〈t′2, 1〉 = 0 + 8− 7 ≥ 0.

For any pair of values (α, γ) ∈ Z×N− {0}, we set bαcγ
and dαeγ as:

bαcγ =

⌊
α

γ

⌋
× γ and dαeγ =

⌈
α

γ

⌉
× γ.

Let us consider a buffer b = (t, t′) ∈ B. For any pair
(p, p′) ∈ {1, · · · , ϕ(t)} × {1, · · · , ϕ(t′)}, let us define

QGa (p, p′) = Oa〈t′p′ , 1〉 − Ia〈tp, 1〉 −M0(b) + inb(p).

We also note gcda = gcd(ib, ob),

αGa (p, p′) =
⌈
QG(p, p′)−min{inb(p), outb(p′)}

⌉gcda

and

βGa (p, p′) =
⌊
QG(p, p′)− 1

⌋gcda
.

We now recall Theorem 2 which characterizes any feasible
periodic schedule.

Theorem 2 ([3]). Let G be a consistent CSDFG. Any
periodic schedule S of period ΩSG is feasible if and only if, for
any buffer b = (t, t′) and for every pair (p, p′) ∈ {1, · · · , ϕ(t)}×
{1, · · · , ϕ(t′)} with αGa (p, p′) ≤ βGa (p, p′),

S〈t′p′ , 1〉 − S〈tp, 1〉 ≥ d(tp) + ΩSG ×
βGa (p, p′)

qt × ib
.

3.2 Extension to K-Periodic scheduling
The extension of Theorem 2 to K-periodic schedules with

a fixed periodicity vector K comes from a transformation
of the initial CSDFG G = (T ,B) to another equivalent one

G̃ = (T , B̃) of the same structure for which the adjacent
vectors of any task t are duplicated Kt times.

For any vector v of size s, and any integer P > 0, [v]P

denotes the vector of size s × P obtained by duplicating v
exactly P times, i.e. ∀k ∈ {1, · · · , s},

[v]P (k) = [v]P (k + s) = · · · = [v]P (k + (P − 1)× s) = v(k).

For any task t ∈ T , we set ϕ̃(t) = Kt×ϕ(t) and for any p ∈
{1, · · · , ϕ̃(t)}, d̃(t) = [d(t)]Kt . For any buffer b = (t, t′) ∈ B,

we set ĩnb = [inb]
Kt , õutb = [outb]

Kt′ and M̃0(b) = M0(b).

A consequence of this transformation is ĩb = Kt × ib and
õb = Kt′ × ob.
G̃ is a consistent graph. Indeed, by definition of q, for any

buffer b = (t, t′) ∈ B, qt × ib = qt′ × ob, and thus

qt ×
lcm(K)

Kt
× ĩb = qt′ ×

lcm(K)

Kt′
× õb,

where lcm(K) is the least common multiple of values Kt,

t ∈ T . Let q̃t = qt × lcm(K)
Kt

for t ∈ T be a repetition vector

of G̃.



Let us set for any buffer b = (t, t′) ∈ B̃,

Y(a) = {(p, p′) ∈ {1, · · · , ϕ̃(t})× {1, · · · , ϕ̃(t′)},

αG̃a (p, p′) ≤ βG̃a (p, p′)},

The determination of the minimum period Ω?G̃ of a periodic
schedule can be modeled with the following linear program
following Theorem 2:

Minimize ΩS̃G̃ with

∀a = (t, t′) ∈ B̃, ∀(p, p′) ∈ Y(a),

S̃〈t′p′ , 1〉 − S̃〈tp, 1〉 ≥ d̃(tp) + ΩS̃G̃ ×
βG̃a (p, p′)

ĩa × q̃t
∀t ∈ T , ∀p ∈ {1, · · · , ϕ̃(t)}, S̃〈tp, 1〉 ∈ R+

ΩS̃G̃ ∈ R
+ − {0}

The next theorem highlights the relationship between the

periods of G̃ and G:

Theorem 3. Let S̃ be a 1-periodic feasible schedule of G̃
of period ΩS̃G̃ . Starting times of S̃ define a K-periodic feasible

schedule S of G with normalized period ΩSG = ΩS̃G̃/lcm(K).

Proof. By construction of G̃, any periodic feasible sched-

ule S̃ is a K-periodic feasible schedule S of G. Then, for any

task t ∈ T , µSt = µS̃t and ΩSG =
qt×µS

t
Kt

, thus

ΩS̃G = q̃t × µS̃t = qt ×
lcm(K)

Kt
× µSt = ΩSG × lcm(K).

3.3 Resolution of the linear program
The linear program for the determination of a minimum

period can be transformed to a Max Cost-to-time Ratio
Problem (MCRP in short), which is a polynomially solved
problem [5]. Considering a bi-valued directed graph G =
(N,E) where any arc e ∈ E is bi-valued by L(e) and H(e),
the Cost-to-time Ratio of any circuit c = (e1, e2, · · · , ep) is
defined as

R(c) =

∑p
i=1 L(ei)∑p
i=1H(ei)

.

Let C(G) be the set of elementary circuits of G. The maxi-
mum Cost-to-time Ratio of a graph H is then

λH = max
c∈C(G)

R(c).

An elementary circuit c ∈ C(G) is critical if R(c) = λH .
The bi-valued directed graph G = (N,E) associated with

our linear program is defined as follows:

• N = {〈tp, 1〉, t ∈ T , p ∈ {1, · · · , ϕ̃(t)}} is the set of nodes;

• E = {(〈tp, 1〉, 〈t′p′ , 1〉), a = (t, t′) ∈ B̃, (p, p′) ∈ Y(a)} is
the set of arcs; any arc e = (〈tp, 1〉, 〈t′p′ , 1〉) ∈ E is bi-
valued by

(L(e), H(e)) = (d̃(tk),−β
G̃
a (p, p′)

ĩa × q̃t
).

The determination of the minimum period Ω?G̃ is then
equivalent to the computation of the maximum Cost-to-time
Ratio, i.e. Ω?G̃ = λH .

Figure 5 presents the bi-valued graph H that corresponds
to the CSDFG pictured in Figure 2 with K = [1, 1, 1, 1]. The
maximum Cost-to-time Ratio equals 108 and is reached by
the circuit c = {A1, D1, C1} with H(c) = 1

36
and L(c) = 3.

This therefore implies that the minimum period of a feasible
periodic schedule for the CSDFG is Ω?G = 108.

3.4 K-periodic Schedule optimality test
A method based on the MCRP returns critical circuits,

i.e. circuits c for which the value R(c) is maximum. We
take advantage of them to testify the optimality of a K-
periodic schedule. The next theorem will allow us to test
if the maximum throughput associated with a periodicity
vector K is the maximal reachable throughput of the graph
G.

Theorem 4 (Optimality test). Let G = (T ,B) be a
consistent CSDFG, a periodicity vector K and the associated
bi-valued graph G = (N,E). Let us suppose that c ∈ C(G) is
a critical circuit such that for every execution 〈tp, 1〉 of c, Kt

is a multiple of q̄t =
qt

gcd{qt′ , t′ ∈ c}
. Then, the maximum

reachable throughput of G equals
lcm(K)

R(c)
.

Proof. By using Theorem 3, the minimum period of the

CSDFG G̃ associated with G and K verifies Ω?G̃ = R(c).
Let C be a sub-graph of G composed of the task from the
circuit c. The minimum period of C is obtained for a K-
periodic schedule with K following the assumption of the
theorem.

For instance, let us consider the bi-valued graph from Fig-
ure 5. With the critical circuit A,D,C, we observe q̄B = 2
and KB = 1, thus KB is no a multiple of q̄B , the optimality
test is not checked.

3.5 The K-iter algorithm
Algorithm 1 computes iteratively a sequence of critical

circuits by increasing the periodicity factor until the opti-
mality test from Theorem 4 is fulfilled. The update of the
periodicity factor ensures that the circuit c will realize the
optimality test if it remains critical at the next step.

The values of the periodicity factor necessarily increase at
every time the loop test is false. The convergence of the algo-
rithm is guaranteed since the number of elementary circuits
of a graph G is bounded and each circuit c is modified at
most once: indeed, any modified circuit tested subsequently
in the algorithm will fulfill the optimality test.

A1A2

B1B2

B3

C1

D1

(1, 0)

(1,− 1
36 )

(1, 1
72 )

(1,− 1
72 )

(1,− 1
72 )

(1, 1
72 ) (1, 1

18 )(1, 1
36 )

(1,− 1
18 )

(1, 1
36 )

Figure 5: A bi-valued graph H = (N,E) that corrresponds
to the CSDFG pictured in Figure 2 when the periodicity vec-
tor is [1,1,1,1]. The maximum Cost-to-time Ratio is reached
by the circuit c = {A1, D1, C1} and is equal to ΩS = 108.



noend 1 Compute the CSDFG maximal throughput

Require: A CSDFG G = (T ,B)
Ensure: A vector K and a circuit c of G such that the

maximal reachable throughput of G verifies Th?G = lcm(K)
R(c)

.

Set Kt = 1, ∀t ∈ T ;
repeat

Compute a critical circuit c associated with G̃;
OptCircuitFound:= ∀t ∈ c, Kt is a multiple of q̄t;
if not OptCircuitFound then
∀t ∈ c, set Kt = lcm(Kt,

qt
gcd{qt′ ,t′∈c}

);

until OptCircuitFound

As an example, with the previous bi-valued graph from
Figure 5, because the optimality test is not checked, the al-
gorithm would continue to run with a new K-periodic sched-
ule of periodicity vector K = [1, 2, 1, 1].

4. EXPERIMENTAL RESULTS
The K-Iter algorithm is implemented as a C++ applica-

tion and is available online1. We compared K-Iter with the
state-of-the-art throughput evaluation methods for SDFG
[7, 6] and CSDFG [16, 4]. SDF3 benchmarks [8] are con-
sidered for SDFG. Our experimentations are summarized
in Table 1 and is composed of four categories of graphs,
including an actual DSP category. For CSDFG, we consid-
ered IB+AG5CSDF [4]; our results are presented in Table 2,
which is also composed of actual and synthetic applications.
All these experiments were performed on an Intel i5-4570
computer with 16GB RAM.

4.1 Evaluation of SDFG
We compare K-Iter with two optimal SDFG techniques.

First, the symbolic execution based method [8], which con-
sists of executing an application until it reaches a previously
known state. This ensures a cyclic execution pattern, and
then the application throughput can be computed. Second,
we consider the cycle-induced sub-graph method [6], which
consists of producing a dependency graph, similar to ex-
pansion techniques [10], and solving its maximal cycle ratio
problem. These experiments are summarized in Table 1.

We observe that for the two category MimicDSP and
LgTransient, the overall performance of K-Iter is between
one and two orders of magnitude better than [6] and [8].
For the LgHSDF category, the performance of [6] and K-Iter
are similar when [8] is two orders of magnitude slower. For
the ActualDSP category, K-Iter is slower in average. When
we look at the detail of these experiments, K-Iter is only
slower for a particular graph. For this graph (namely, H263
Decoder) K-Iter computation time is 148 ms when [6] is
4ms and [8] is 36ms. This is the longest computation time
observed for K-Iter in the whole SDF3 benchmark. In com-
parison, the longest duration for [6] was 3 sec and 22 sec for
[7].

4.2 Evaluation of CSDFG
For the CSDFG evaluation, we compared the K-Iter al-

gorithm with two existing techniques: an approximative
method [4] based on periodic scheduling, and an exact tech-
nique based on symbolic execution [16]. The symbolic execu-

1https://github.com/bbodin/kiter

tion technique we used was the publicly available implemen-
tation of SDF3 [15], including a correction of the repetition
vector computation method to avoid integer overflow. For
this reason, our results differ from [4]. These experiments
are summarized in Table 2.

The industry cases are considered with and without buffer
size constraints. In both cases K-Iter performs well. The
K-Iter algorithm is several order of magnitude faster than
the symbolic execution. Futhermore, K-Iter provides op-
timal results for applications which hasn’t be done before
(namely, the JPEG200 and the H264 with buffer size con-
straints). Indeed, if [4] provided an optimal solution for one
of them, because this was an approximative method, there
was no way to prove optimality until now.

For the synthetic graphs, if the periodic method always
provides a solution, these solutions are not necessarily opti-
mal. In contrast the K-Iter algorithm does provide optimal
solutions for three examples and is always faster than the
symbolic execution. For the two most complex examples
(
∑
t qt greater than a billion) K-Iter doesn’t provide solu-

tion, nor does the symbolic execution method.

5. RELATED WORK
A first throughput evaluation method has been proposed

[10] which consists of the transformation of an SDFG to a
particular HSDFG (a case of SDFG for which every produc-
tion and consumption rate is equal to 1) where each node
corresponds to a task execution and where edges are prece-
dence relationships. This is the expansion. However, this
transformation is not polynomial, its complexity is related to
the repetition vector of an SDFG. Later, it was proved that
this transformation was considering more arcs and nodes
than required and two solutions were proposed to reduce
the HSDFG’s size [12, 6]. More recently, a max-plus albegra
solution proposed to progressively build an expansion until
it reachs optimality [9]. This solution uses pessimistic and
optimistic throughput evaluation methods to test optimal-
ity.

In contrast, a throughput evaluation technique based on
symbolic execution has been proposed for SDFG [8] and ex-
tended to CSDFG [16]. These methods rely on the fact that
the state-space of a consistent (C)SDFG is a finite set. By
executing every tasks as soon as possible, a previously known
state has to be met again. Then, when a cyclic execution
pattern is revealed, the throughput can easily be computed.
Yet the minimal distance between two identical states is not
polynomially related to the instance size. In consequence
the complexity of this method is exponential.

When the throughput evaluation is used as a decision
function (such as in design space exploration), accurate solu-
tions are no longer required and approximative methods can
be used. Several solutions were proposed to reduce the com-
plexity of the problem by ignoring cycles [13] or restricting
the considered schedules to periodic schedules [1, 4, 11].

6. CONCLUSION
This article presents K-Iter, an optimal algorithm to fastly

evaluate CSDFG throughput and which is based on a K-
periodic scheduling technique. If its worst case complexity is
comparable to other optimal methods, it has been observed
to be more efficient. However several cases exist for which
the K-Iter algorithm is as slow as or even slower than other



Table 1: Average computation time of three optimal throughput evaluation methods using the SDF3[8] benchmark.

Category name
Total number Task count Channel count

∑
t(qt) Evaluated algorithms

of graphs min/avg/max min/avg/max min/avg/max K-Iter [6] [8]
ActualDSP 5 4/12/22 6/26/52 13/1988/4754 29.82 ms 2.42 ms 38.32 ms
MimicDSP 100 3/20/25 3/24/35 3/1008/10213 0.24 ms 2.99 ms 5.30 ms
LgHSDF 100 6/13/15 6/22/31 47/8166/208751 0.69 ms 0.40 ms 1110.31 ms
LgTransient 100 181/284/300 216/359/394 181/284/300 0.03 ms 70.13 ms 320.00 ms

Table 2: Performance comparison between, K-Iter, a periodic method [4] and an optimal method [16] using IB+AG5CSDF
[4]. Percentages correspond to the result optimality and are followed by computation times. N/S means no periodic solution
and ?? is unknown optimality.

Application Tasks Buffers
∑
t(qt) periodic [4] K-Iter symbolic execution [16]

n
o

b
u
ff
e
r

s
iz

e BlackScholes 41 40 11895 100% 0.28ms 100% 0.28ms 100% 22.43ms
Echo 240 703 802971540 100% 0.12ms 100% 0.26ms 100% 37.57ms
JPEG2000 38 82 336024 100% 1.07ms 100% 1.02ms 100% 3960.73ms
Pdetect 58 76 3883200 100% 6.15ms 100% 5.96ms 100% 117.60ms
H264 Encoder 665 3128 24094980 100% 3.83ms 100% 7.34ms - > 1 d

fi
x
e
d

b
u
ff
e
r

s
iz

e BlackScholes 41 80 11895 98% 0.36ms 100% 0.51ms 100% 4sec
Echo 240 1406 802971540 33% 0.14ms 100% 27770.91ms 100% 188sec
JPEG2000 38 164 336024 N/S 2.37ms 100% 531.13ms - > 1d
Pdetect 58 152 3883200 100% 10.98ms 100% 10.77ms 100% 4928sec
H264 Encoder 665 6256 24094980 100% 6.76ms 100% 9.60ms - > 1d

graph1 90 617 752976 0.1% 3 ms 100% 312sec 100% 646sec
graph2 70 473 2479863720 ??% 4 ms - > 1d - > 1d
graph3 154 671 3705826224 ??% 9 ms - > 1d - > 1d
graph4 2426 2900 615612 96% 218 ms 100% 300ms 100% 2320sec
graph5 2767 4894 1874910 2% 600 ms 100% 18sec 100% 3874sec

optimal solutions. We believe such cases are key to study
the complexity of the throughput evaluation problem. This
is an opportunity for future direction.
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