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TWO RATIONAL NODAL QUARTIC THREEFOLDS

IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Abstract. We prove that the quartic threefolds defined by

5∑

i=0

xi =

5∑

i=0

x
4

i
− t

(
5∑

i=0

x
2

i

)2

= 0

in P5 are rational for t = 1

6
and t = 7

10
.

1. Introduction

Consider the six-dimensional permutation representation W of the group S6. Choose
coordinates x0, . . . , x5 in W so that they are permuted by S6. Then x0 . . . , x5 also serve
as homogeneous coordinates in the projective space P5 = P(W).

Let us identify P4 with a hyperplane

x0 + x1 + x2 + x3 + x4 + x5 = 0

in P5. Denote by Xt the quartic threefold in P4 that is given by the equation

(1.1) x40 + x41 + x42 + x43 + x44 + x45 = t
(
x20 + x21 + x22 + x23 + x24 + x25

)2
,

where t is an element of the ground field, which we will always assume to be the field C

of complex numbers. Then Xt is singular for every t ∈ C. Indeed, denote by Σ30 the
S6-orbit of the point [1 : 1 : ω : ω : ω2 : ω2], where ω = e

2πi

3 . Then |Σ30| = 30, and Xt is
singular at every point of Σ30 for every t ∈ C (see, for example, [12, Theorem 4.1]).

The possible singularities of the quartic threefold Xt have been described by van der
Geer in [12, Theorem 4.1]. To recall his description, denote by L15 the S6-orbit of the
line that passes through the points [1 : 0 : −1 : 1 : 0 : −1] and [0 : 1 : −1 : 0 : 1 : −1],
and denote by Σ6, Σ10, and Σ15 the S6-orbits of the points [−5 : 1 : 1 : 1 : 1 : 1],
[−1 : −1 : −1 : 1 : 1 : 1], and [1 : −1 : 0 : 0 : 0 : 0], respectively. Then the curve L15 is a
union of fifteen lines, while |Σ6| = 6, |Σ10| = 10, and |Σ15| = 15. Moreover, one has

Sing(Xt) =





L15 if t =
1

4
,

Σ30 ∪ Σ15 if t =
1

2
,

Σ30 ∪ Σ10 if t =
1

6
,

Σ30 ∪ Σ6 if t =
7

10
,

Σ30 otherwise.

Furthermore, if t 6= 1

4
, then all singular points of the quartic threefold Xt are isolated

ordinary double points (nodes).
1
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The threefoldX 1

2

is classical. It is the so-called Burkhardt quartic. In [3], Burkhardt dis-

covered that the subset Σ30∪Σ15 is invariant under the action of the simple group PSp4(F3)
of order 25920. In [7], Coble proved that Σ30∪Σ15 is the singular locus of the threefold X 1

2

,

and proved that X 1

2

is also PSp4(F3)-invariant. Later Todd proved in [22] that X 1

2

is ra-

tional. In [15], de Jong, Shepherd-Barron, and Van de Ven proved that X 1

2

is the unique

quartic threefold in P4 with 45 singular points.
The quartic threefold X 1

4

is also classical. It is known as the Igusa quartic from its

modular interpretation as the Satake compactification of the moduli space of Abelian
surfaces with level 2 structure (see [12]). The projectively dual variety of the quartic
threefold X 1

4

is the so-called Segre cubic. Since the Segre cubic is rational, X 1

4

is rational

as well.
During Kul!fest conference dedicated to the 60th anniversary of Viktor Kulikov that

was held in Moscow in December 2012, Alexei Bondal and Yuri Prokhorov posed

Problem 1.2. Determine all t ∈ C such that Xt is rational.

Since Xt is singular, we cannot apply Iskovskikh and Manin’s theorem from [14] to Xt.
Similarly, we cannot apply Mella’s [18, Theorem 2] to Xt either, because the quartic
threefold Xt is not Q-factorial by [1, Lemma 2]. Nevertheless, Beauville proved

Theorem 1.3 ([1]). If t 6∈ {1

2
, 1
4
, 1
6
, 7

10
}, then Xt is non-rational.

Both X 1

2

and X 1

4

are rational. The goal of this paper is to prove

Theorem 1.4. The quartic threefolds X 1

6

and X 7

10

are also rational.

Surprisingly, the proof of Theorem 1.4 goes back to two classical papers of Todd.
Namely, we will construct an explicit A6-birational map P3 99K X 7

10

that is a special case

of Todd’s construction from [20]. Similarly, we will construct an explicit S5-birational
map P3 99K X 1

6

that is a degeneration of Todd’s construction from [21]. We emphasize

that our proof is self-contained, i.e. it does not rely on the results proved in [20] and [21],
but recovers the necessary facts in our particular situation using additional symmetries
arising from group actions.

Remark 1.5. Todd proved in [22] that the Burkhardt quartic X 1

2

is determinantal (see

also [19, §5.1]). The constructions of our birational maps P3 99K X 7

10

and P3 99K X 1

6

imply

that bothX 7

10

andX 1

6

are determinantal (see [19, Example 6.4.2] and [19, Example 6.2.1]).

Yuri Prokhorov pointed out that the quartic threefold

det




y0 y1 y2 y3
y4 y0 y3 y4
y2 y1 y1 y0
y0 y3 y2 y4


 = 0

in P4 with homogeneous coordinates y0, . . . , y4 has exactly 45 singular points. Thus, it is
isomorphic to the Burkhardt quartic X 1

2

by [15]. It would be interesting to find similar

determinantal equations of the threefolds X 7

10

and X 1

6

.

The plan of the paper is as follows. In Section 2 we recall some preliminary results
on representations of a central extension of the group S6, and some of its subgroups.
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In Section 3 we collect results concerning a certain action of the group A5 on P3, and
study A5-invariant quartic surfaces; the reason we pay so much attention to this group is
that it is contained both in A6 and in S5, and thus the information about its properties
simplifies the study of the latter two groups. In Section 4 we collect auxiliary results
about the groups S6, A6 and S5, in particular about their actions on curves and their
five-dimensional irreducible representations. In Section 5 we construct an A6-equivariant
birational map P3 99K X 7

10

. Finally, in Section 6 we construct anS5-equivariant birational

map P3 99K X 1

6

and make some concluding remarks.

Throughout the paper, we denote a cyclic group of order n by µn, and we denote a
dihedral group of order 2n by D2n. In particular, one has D12

∼= S3 × µ2. By F36 we
denote a group isomorphic to (µ3 × µ3)⋊ µ4, and by F20 we denote a group isomorphic
to µ5 ⋊ µ4.

Acknowledgements. This work was supported within the framework of a subsidy
granted to the HSE by the Government of the Russian Federation for the implementation
of the Global Competitiveness Program. Constantin Shramov was also supported by the
grants RFFI 15-01-02158, RFFI 15-01-02164, RFFI 14-01-00160, MK-2858.2014.1, and
NSh-2998.2014.1, and by Dynasty foundation.

We are grateful to Dmitrii Pasechnik, Yuri Prokhorov, Kristian Ranestad, Leonid Ryb-
nikov, and Andrey Trepalin for very helpful and useful discussions. Special thanks go to
our friend and colleague Ilya Karzhemanov who was our source of inspiration when we
worked on this paper.

2. Representation theory

Recall that the permutation groupS6 has two central extensions 2
+S6 and 2−S6 by the

group µ2 with the central subgroup contained in the commutator subgroup (see [8, p. xxiii]
for details). We denote the first of them (i. e. the one where the preimages of a transpo-
sition in S6 under the natural projection have order two) by 2.S6 to simplify notation.
Similarly, for any group Γ we denote by 2.Γ a non-split central extension of Γ by the
group µ2.

We start with recalling some facts about four- and five-dimensional representations of
the group 2.S6 we will be working with. A reader who is not interested in details here can
skip to Corollary 2.1, or even to Section 4 where we reformulate everything in geometric
language. Also, we will see in Section 4 that our further constructions do not depend
much on the choice of representations, and all computations one makes for one of them
actually apply to all others.

Let I and J be the trivial and the non-trivial one-dimensional representations of the
groupS6, respectively. Consider the six-dimensional permutation representationW ofS6.
One has

W ∼= I⊕W5 ⊗ J

for some irreducible representation W5 of S6. We can regard I, J and W5 as repre-
sentations of the group 2.S6. Recall that there is a double cover SL4(C) → SO6(C),
see e.g. [10, Exercise 20.39]. Using it, we conclude that there is an embedding of the
group 2.S6 into SL4(C). This embedding gives rise to two four-dimensional representa-
tions of 2.S6 that differ by a tensor product with J. We fix one of these two representations
U4. Note that

I⊕W5
∼= Λ2(U4).
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Recall that there are coordinates x0, . . . , x5 in W that are permuted by the group S6.
We will refer to a subgroup of 2.S6 fixing one of the corresponding points as a standard
subgroup 2.S5; we denote any such subgroup by 2.Sst

5 . A subgroup of 2.S6 that is
isomorphic to 2.S5 but is not conjugate to a standard 2.S5 will be called a non-standard
subgroup 2.S5; we denote any such subgroup by 2.Snst

5 . These agree with standard and
non-standard subgroups of S6 isomorphic to S5, although outer automorphisms of S6

do not lift to 2.S6. Any subgroup of 2.S6 that is isomorphic to 2.A5, 2.S4 or 2.A4 and
is contained in 2.Sst

5 is denoted by 2.Ast
5 , 2.Sst

4 or 2.Ast
4 , respectively. Similarly, any

subgroup of 2.S6 that is isomorphic to 2.A5, 2.S4 or 2.A4 and is contained in 2.Snst
5 is

denoted by 2.Anst
5 , 2.Snst

4 or 2.Anst
4 , respectively.

The values of characters of important representations of the group 2.S6, and the in-
formation about some of its subgroups are presented in Table 1, cf. [8, p. 5]. The first
two columns of Table 1 describe conjugacy classes of elements of the group 2.S6. The
first column lists the orders of the elements in the corresponding conjugacy class, and the
second column, except for the entries in the second and the third row, gives a cycle type
of the image of an element under projection to S6 (for example, [3, 2] denotes a product
of two disjoint cycles of lengths 3 and 2). By id we denote the identity element of 2.S6,
and z denotes the unique non-trivial central element of 2.S6. Note that the preimages of
some of conjugacy classes in S6 split into a union of two conjugacy classes in 2.S6. The
next three columns list the values of the characters of the representations W, W5 and U4

of 2.S6. Note that there is no real ambiguity in the choice of
√
−3 since we did not specify

any way to distinguish the two conjugacy classes in 2.S6 whose elements are projected
to cycles of length 6 in S6 up to this point (note that the two ways to choose a sign here
is exactly a tensor multiplication of the representation with J, i.e. the choice between
two homomorphisms of 2.S6 to SL4(C) having the same image). The remaining columns
list the numbers of elements from each of the conjugacy classes of 2.S6 in subgroups of
certain types. By 2.F36 (respectively, by 2.F20, by 2.Dnst

12 ) we denote a subgroup of 2.S6

(respectively, of 2.S6, or of 2.S
nst
5 ) isomorphic to a central extension of F36 (respectively,

of F20, or of D12) by µ2. A subgroup 2.F20 is actually contained in a subgroup 2.Sst
5 and

in a subgroup 2.Snst
5 . Note that the intersection of a conjugacy class in a group with a

subgroup may (and often does) split into several conjugacy classes in this subgroup.
It is immediate to see from Table 1 that U4 is an irreducible representation of the

group 2.S6. Using the information provided by Table 1, we immediately obtain the
following results.

Corollary 2.1. Let Γ be a subgroup of 2.S6. After restriction to the subgroup Γ the
2.S6-representation U4

(i) remains irreducible, if Γ is one of the subgroups 2.A6, 2.S
nst
5 , 2.Anst

5 , 2.Snst
4 , 2.F36,

or 2.F20;
(ii) splits into a sum of two non-isomorphic irreducible two-dimensional representa-

tions, if Γ is one of the subgroups 2.Ast
5 , 2.A

nst
4 , or 2.Dnst

12 .

Proof. Compute inner products of the corresponding characters with themselves, and
keep in mind that neither of the groups 2.Ast

5 , 2.A
nst
4 , and 2.Dnst

12 has an irreducible three-
dimensional representation with a non-trivial action of the central subgroup. �

Remark 2.2. By Corollary 2.1(i), the 2.Snst
5 -representation U4 is irreducible. One can

check that it is not induced from any proper subgroup of 2.Snst
5 , i.e. it defines a primitive



T
W

O
R
A
T
IO

N
A
L

N
O
D
A
L

Q
U
A
R
T
IC

T
H
R
E
E
F
O
L
D
S

5

Table 1. Characters and subgroups of the group 2.S6

ord type W W5 U4 2.S6 2.A6 2.Snst
5 2.Ast

5 2.Anst
5 2.Snst

4 2.Anst
4 2.F36 2.F20 2.Dnst

12

1 id 6 5 4 1 1 1 1 1 1 1 1 1 1

2 z 6 5 −4 1 1 1 1 1 1 1 1 1 1

2 [2] 4 −3 0 30 0 0 0 0 0 0 0 0 0

4 [2, 2] 2 1 0 90 90 30 30 30 6 6 18 10 6

4 [2, 2, 2] 0 1 0 30 0 20 0 0 12 0 0 0 8

6 [3] 3 2 2 40 40 0 20 0 0 0 4 0 0

3 [3] 3 2 −2 40 40 0 20 0 0 0 4 0 0

6 [3, 2] 1 0 0 120 0 0 0 0 0 0 0 0 0

6 [3, 2] 1 0 0 120 0 0 0 0 0 0 0 0 0

6 [3, 3] 0 −1 −1 40 40 20 0 20 8 8 4 0 2

3 [3, 3] 0 −1 1 40 40 20 0 20 8 8 4 0 2

8 [4] 2 −1 0 180 0 60 0 0 12 0 0 20 0

8 [4, 2] 0 −1 0 180 180 0 0 0 0 0 36 0 0

10 [5] 1 0 1 144 144 24 24 24 0 0 0 4 0

5 [5] 1 0 −1 144 144 24 24 24 0 0 0 4 0

12 [6] 0 1
√
−3 120 0 20 0 0 0 0 0 0 2

12 [6] 0 1 −
√
−3 120 0 20 0 0 0 0 0 0 2
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subgroup isomorphic to 2.S5 in GL4(C). Note that this subgroup is not present in the
list given in [9, §8.5]. It is still listed by some other classical surveys, see e.g. [2, §119].
Corollary 2.3. Let Γ be a subgroup of 2.S6. After restriction to the subgroup Γ the
2.S6-representation W5

(i) remains irreducible, if Γ is one of the subgroups 2.A6, 2.S
nst
5 , or 2.Anst

5 ;
(ii) splits into a sum of the trivial and an irreducible four-dimensional representation

if Γ is a subgroup 2.Ast
5 ;

(iii) splits into a sum of the trivial and two different irreducible two-dimensional rep-
resentations if Γ is a subgroup 2.Dnst

12 .

In the sequel we will denote the restrictions of the 2.S6-representations U4 and W5

to various subgroups by the same symbols for simplicity. The next two corollaries are
implied by direct computations (we used GAP software [11] to perform them).

Corollary 2.4. The following assertions hold:

(i) the A6-representation Sym2(U∨
4 ) does not contain one-dimensional subrepresenta-

tions;
(ii) the A6-representation Sym4(U∨

4 ) does not contain one-dimensional subrepresenta-
tions;

(iii) the Anst
5 -representation Sym2(U∨

4 ) splits into a sum of two different irreducible
three-dimensional representations and one irreducible four-dimensional represen-
tation;

(iv) the 2.Anst
5 -representation Sym3(U∨

4 ) does not contain one-dimensional subrepre-
sentations;

(v) the Anst
5 -representation Sym4(U∨

4 ) has a unique two-dimensional subrepresentation,
and this subrepresentation splits into a sum of two trivial representations of Anst

5 .

Recall that all representations of a symmetric group are self-dual. Therefore, to study
invariant hypersurfaces in P(W5) we will use the following result.

Corollary 2.5. Let Γ be one of the groups S6, A6 or Snst
5 . Then

(i) the Γ-representation Sym2(W5) has a unique one-dimensional subrepresentation;
(ii) the Γ-representation Sym4(W5) has a unique two-dimensional subrepresentation,

and this subrepresentation splits into a sum of two trivial representations of Γ.

We conclude this section by recalling some information about several subgroups of 2.S6

that are smaller than those listed in Table 1. Namely, we list in Table 2 orders, types and
numbers of elements in certain subgroups of 2.Anst

5 . We keep the notation used in Table 1.
By 2.S′

3 we denote a subgroup of 2.Anst
5 isomorphic to 2.S3. Note that the preimage in

2.S6 of any subgroup µ5 ⊂ S6 is isomorphic to µ10.
Looking at Table 2 (and keeping in mind character values provided by Table 1) we

immediately obtain the following.

Corollary 2.6. Let Γ be a subgroup of 2.Anst
5 ⊂ 2.S6. After restriction to Γ the 2.S6-

representation U4

(i) splits into a sum of two non-isomorphic irreducible two-dimensional representa-
tions if Γ is a subgroup 2.D10;

(ii) splits into a sum of an irreducible two-dimensional representation and two non-
isomorphic one-dimensional representations if Γ is a subgroup 2.S′

3;
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Table 2. Subgroups of 2.Anst
5

ord type 2.D10 2.S′
3 2.(µ2 × µ2) µ10

1 id 1 1 1 1

2 z 1 1 1 1

4 [2, 2] 10 6 6 0

6 [3, 3] 0 2 0 0

3 [3, 3] 0 2 0 0

10 [5] 4 0 0 4

5 [5] 4 0 0 4

(iii) splits into a sum of two isomorphic irreducible two-dimensional representations if
Γ is a subgroup 2.(µ2 × µ2);

(iv) splits into a sum of four pairwise non-isomorphic one-dimensional representations
if Γ is a subgroup µ10.

3. Icosahedral group in three dimensions

In this section, we consider the action of the group A5 on the projective space P3

arising from a non-standard embedding of A5 →֒ S6. Namely, we identify P3 with the
projectivization P(U4), where U4 is the restriction of the four-dimensional irreducible
representation of the group 2.S6 introduced in Section 2 to a subgroup 2.Anst

5 (which
we will refer to as just 2.A5 in this section). Recall from Corollary 2.1(i) that U4 is an
irreducible representation of 2.A5.

Remark 3.1 (see e. g. [8, p. 2]). Let Γ be a proper subgroup of A5 such that the index of Γ is
at most 15. Then Γ is isomorphic either to A4, or to D10, or to S3, or to µ5, or to µ2×µ2.
In particular, if A5 acts transitively on the set of r < 15 elements, then r ∈ {5, 6, 10, 12}.
Lemma 3.2. Let Ω be an A5-orbit of length r 6 15 in P3. Then either r = 10, or r = 12.
Moreover, P3 contains exactly two A5-orbits of length 10 and exactly two A5-orbits of
length 12.

Proof. By Remark 3.1 one has r ∈ {1, 5, 6, 10, 12, 15}. The case r = 1 is impossible
since U4 is an irreducible 2.A5-representation. Restricting U4 to subgroups of 2.A5 iso-
morphic to 2.A4, 2.D10, and 2.(µ2 × µ2), and applying Corollaries 2.1(ii) and 2.6(i),(iii),
we see that r 6∈ {5, 6, 15}.

Restricting U4 to a subgroup of 2.A5 isomorphic to 2.S3, applying Corollary 2.6(ii) and
keeping in mind that there are ten subgroups isomorphic to S3 in A5, we see that P3

contains exactly two A5-orbits of length 10.
Finally, restricting U4 to a subgroup of 2.A5 isomorphic to µ10, applying Corol-

lary 2.6(iv) and keeping in mind that there are six subgroups isomorphic to µ5 in A5,
we see that P3 contains exactly two A5-orbits of length 12. �

Lemma 3.3. There are no A5-invariant surfaces of degree at most three in P3.

Proof. Apply Corollary 2.4(iii),(iv). �
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By Corollary 2.1(ii), the subgroup A4 ⊂ A5 leaves invariant two disjoint lines in P3,
say L1 and L′

1. Let L1, . . . , L5 be the A5-orbit of the line L1, and let L′
1, . . . , L

′
5 be the

A5-orbit of the line L′
1.

Lemma 3.4. The lines L1, . . . , L5 (respectively, the lines L
′
1, . . . , L

′
5) are pairwise disjoint.

Proof. Suppose that some of the lines L1, . . . , L5 have a common point. Since the action
of A5 on the set {L1, . . . , L5} is doubly transitive, this implies that every two of the lines
L1, . . . , L5 have a common point. Therefore, either all lines L1, . . . , L5 are coplanar, or
all of them pass through one point. Both of these cases are impossible since the 2.A5-
representation U4 is irreducible by Corollary 2.1(i). Therefore, the lines L1, . . . , L5 are
pairwise disjoint. A similar argument applies to the lines L′

1, . . . , L
′
5. �

Corollary 3.5. Any A5-orbit contained in the union L1 ∪ . . . ∪L5 has length at least 20.

Proof. Corollary 2.1(ii) implies that the stabilzier Γ ∼= A4 of the line L1 acts on L1

faithfully. Therefore, the length of any Γ-orbit contained in L1 is at least four. Thus the
required assertion follows from Lemma 3.4. �

We are going to describe the configuration formed by the lines L1, . . . , L5, L
′
1, . . . , L

′
5.

Definition 3.6. Let T1, . . . , T5, T
′
1, . . . , T

′
5 be different lines in a projective space. We say

that they form a double five configuration if the following conditions hold:

• the lines T1, . . . , T5 (respectively, the lines T ′
1, . . . , T

′
5) are pairwise disjoint;

• for every i the lines Ti and T
′
i are disjoint;

• for every i 6= j the line Ti meets the line T ′
j .

Lemma 3.7. The lines L1, . . . , L5, L
′
1, . . . , L

′
5 form a double five configuration. Moreover,

the only line in P3 that intersects all lines of L1, . . . , L5 but Li is the line L′
i, and the only

line in P3 that intersects all lines of L′
1, . . . , L

′
5 but L′

i is the line Li.

Proof. For any i the lines Li and L′
i are disjoint by construction. The lines L1, . . . , L5

(respectively, the lines L′
1, . . . , L

′
5) are pairwise disjoint by Lemma 3.4.

Since any three pairwise skew lines in P3 are contained in a smooth quadric surface,
and an intersection of two different quadric surfaces in P3 cannot contain three pairwise
skew lines, we see that for any three indices 1 6 i < j < k 6 5 there is a unique quadric
surface Qijk in P3 passing through the lines Li, Lj and Lk. Moreover, the quadric Qijk is
smooth. Note also that the quadric Qijk is not A5-invariant by Lemma 3.3. This implies
that all five lines L1, . . . , L5 are not contained in a quadric.

Therefore, we may assume that the quadric Q123 does not contain the line L4. It is well-
known that in this case either there is a unique line L meeting all four lines L1, . . . , L4,
or there are exactly two lines L and L′ meeting L1, . . . , L4. In the latter case the stabi-
lizer Γ ⊂ A5 of the quadruple L1, . . . , L4 (i.e. the stabilizer of the line L5) preserves the
lines L5, L and L′. On the other hand, the lines L and L′ are different from L5 since L5

meets neither of the lines L1, . . . , L4; moreover, the group Γ ∼= A4 fixes both L and L′.
But Γ cannot fix three different lines in P3 by Corollary 2.1(ii). The contradiction shows
that there is a unique line L meeting L1, . . . , L4. Again we see that L 6= L5, so that
L = L′

5 by Corollary 2.1(ii).
Since the group A5 permutes the lines L1, . . . , L5 transitively, we conclude that the only

line in P3 that intersects all lines of L1, . . . , L5 except Li is the line L′
i. Similarly, we see

that the only line in P3 that intersects all lines of L′
1, . . . , L

′
5 except L′

i is the line Li. In
particular, the lines L1, . . . , L5, L

′
1, . . . , L

′
5 form a double five configuration. �
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Lemma 3.8. Every A5-invariant curve of degree at most three in P3 is a twisted cubic.
Moreover, there are exactly two A5-invariant twisted cubic curves in P3.

Proof. Let C be an A5-invariant curve of degree at most three in P3. Since the
2.A5-representation U4 is irreducible, we conclude that C is a twisted cubic.

By Corollary 2.4(iii), one has

(3.9) Sym2(U4) ∼= V3 ⊕ V′

3 ⊕ V4,

where V3, V
′
3, and V4, are irreducible representations of the group A5 of dimensions 3, 3,

and 4, respectively. Note that V3 and V′
3 are not isomorphic.

Denote by Q and Q′ the linear systems of quadrics in P3 that correspond to V3 and V′
3,

respectively. Since P3 does not contain A5-orbits of lengths less or equal to eight by
Lemma 3.2, we see that the base loci of Q and Q′ contain A5-invariant curves C 1 and C 2,
respectively. The degrees of these curves must be less than four, so that they are twisted
cubic curves. This also implies that the base loci of Q and Q′ are exactly the curves C 1

and C 2, respectively.
Now take an arbitrary A5-invariant twisted cubic curve C in P3. The quadrics in P3 pass-

ing through C define a three-dimensional A5-subrepresentation in Sym2(U4). Moreover,
different A5-invariant twisted cubics give different A5-subrepresentations of Sym2(U4).
Thus, (3.9) implies that C coincides either with C 1 or with C 2. �

Keeping in mind Lemma 3.8, we will denote the two A5-invariant twisted cubic curves
in P3 by C

1 and C
2 throughout this section.

Remark 3.10. The curves C 1 and C 2 are disjoint. Indeed, otherwise, their intersection
would contain at least 12, which is impossible, since a twisted cubic curve is an intersection
of quadrics.

The lines in P3 that are tangent to the curves C 1 and C 2 sweep out quartic surfaces S1

and S2, respectively. These surfaces are A5-invariant. The singular loci of S1 and S2 are
the curves C

1 and C
2, respectively. In particular, the surfaces S1 and S2 are different.

Their singularities along these curves are locally isomorphic to a product of A1 and an
ordinary cusp.

Denote by P the pencil of quartics in P3 generated by S1 and S2.

Lemma 3.11. All A5-invariant quartic surfaces in P3 are contained in the pencil P.

Proof. This follows from Corollary 2.4(v). �

We proceed by describing the base locus of the pencil P. This was done in [4, Re-
mark 2.6], but we reproduce the details here for the convenience of the reader.

Lemma 3.12. The base locus of the pencil P is an irreducible curve B of degree 16. It
has 24 singular points, these points are in a union of two A5-orbits of length 12, and each
of them is an ordinary cusp of the curve B. The curve B contains a unique A5-orbit of
length 20.

Proof. Denote by B the base curve of the pencil P. Let us show that the curves C 1 and
C

2 are not contained in B. Since C
1 is projectively normal, there is an exact sequence of

2.A5-representations

0 → H0(IC 1 ⊗OP3(4)) → H0(OP3(4)) → H0(OC 1 ⊗OP3(4)) → 0,
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where IC 1 is the ideal sheaf of C 1. The 2.A5-representation H
0(OC 1 ⊗ OP3(4)) contains

a one-dimensional subrepresentation corresponding to the unique A5-orbit of length 12
in C 1 ∼= P1. This shows that P contains a surface that does not pass through C 1, so
that C 1 is not contained in B. Similarly, we see that C 2 is not contained in B.

Let ρ : Ŝ1 → S1 be the normalization of the surface S1, and let Ĉ 1 be the preim-
age of the curve C

1 via ρ. Then the action of the group S5, and in particular of its
subgroup A5, lifts to Ŝ1. One has Ŝ1 ∼= P1 × P1, and ρ∗(OS1 ⊗ OP3(1)) is a divisor of

bi-degree (1, 2). This shows that Ĉ 1 is of bi-degree (1, 1). Thus, the action of A5 on Ŝ is
diagonal by [6, Lemma 6.4.3(i)].

Denote by B̂ be the preimage of the curve B via ρ. Then B̂ is a divisor of bi-degree (4, 8).

Hence, the curve B̂ is irreducible by [6, Lemma 6.4.4(i)], so that the curve B is irreducible
as well.

Note that the curve B̂ is singular. Indeed, the intersection S1 ∩ C 2 is an A5-orbit
Σ12 of length 12, because C 2 is not contained in S1. Similarly, we see that the inter-
section S2 ∩ C 1 is also an A5-orbit Σ′

12 of length 12. These A5-orbits Σ12 and Σ′
12 are

different by Remark 3.10. Since B is the scheme theoretic intersection of the surfaces
S1 and S2, it must be singular at every point of Σ12 ∪ Σ′

12. Denote by Σ̂12 and Σ̂′
12 the

preimages via ρ of the A5-orbits Σ12 and Σ′
12, respectively. Then B̂ is singular in every

point of Σ̂′
12.

The curve B̂ is smooth away of Σ̂′
12, because its arithmetic genus is 21, and the sur-

face Ŝ1 does not contain A5-orbits of length less than 12. On the other hand, we have

B̂ ∩ Ĉ
1 = Σ̂12,

because B̂ · C
1 = 12 and Σ̂12 ⊂ B̂. This shows that B is an irreducible curve whose

only singularities are the points of Σ12 ∪ Σ′
12, and each such point is an ordinary cusp

of the curve B. In particular, the genus of the normalization of the curve B is 9.
By [6, Lemma 5.1.5], this implies that B contains a unique A5-orbit of length 20. �

The following classification of A5-invariant quartic surfaces in P3 was obtained
in [4, Theorem 2.4].

Lemma 3.13. The pencil P contains two surfaces R1 and R2 with ordinary double sin-
gularities, such that the singular loci of R1 and R2 are A5-orbits of length 10. Every
surface in P3 different from S1, S2, R1 and R2 is smooth.

Proof. Let S be a surface in P that is different from S1 and S2. It follows from Lemma 3.3
that S is irreducible. Assume that S is singular.

We claim that S has isolated singularities. Indeed, suppose that S is singular along
some A5-invariant curve Z. Taking a general plane section of S, we see that the degree
of Z is at most three. Thus, one has either Z = C 1 or Z = C 2 by Lemma 3.8. Since
neither of these curves is contained in the base locus of P by Lemma 3.12, this would
imply that either S = S1 or S = S2. The latter is not the case by assumption.

We see that the singularities of S are isolated. Hence, S contains at most two non-Du
Val singular points by [23, Theorem 1] applied to the minimal resolution of singularities
of the surface S. Since the set of all non-Du Val singular points of the surface S must be
A5-invariant, we see that S has none of them by Lemma 3.2. Thus, all singularities of S
are Du Val.



TWO RATIONAL NODAL QUARTIC THREEFOLDS 11

By [6, Lemma 6.7.3(iii)], the surface S has only ordinary double singularities, the
set Sing(S) consists of one A5-orbit, and

∣∣Sing(S)
∣∣ ∈
{
5, 6, 10, 12, 15

}
.

Since P3 does not contain A5-orbits of lengths 5, 6, and 15 by Lemma 3.2, we see
that Sing(S) is either an A5-orbit of length 10 or an A5-orbit of length 12.

Suppose that the singular locus of S is an A5-orbit Σ12 of length 12. Then S does not
contain other A5-orbits of length 12 by [6, Lemma 6.7.3(iv)]. Since C 1 is not contained
in the base locus of P by Lemma 3.12, and C 1 is contained in S1, we see that C 1 6⊂ S.
Since

S · C 1 = 12

and Σ12 is the only A5-orbit of length at most 12 in C 1 ∼= P1, we have S ∩ C 1 = Σ12.
Thus,

12 = S · C 1
>
∑

P∈Σ12

multP (S) = 2|Σ12| = 24,

which is absurd.
Therefore, we see that the singular locus of S is an A5-orbit Σ12 of length 10. Vice

versa, if an A5-invariant quartic surface passes through an A5-orbit of length 10, then it
is singular by [6, Lemma 6.7.1(ii)]. We know from Lemma 3.2 that there are exactly two
A5-orbits of length 10 in P3, and it follows from Lemma 3.12 that they are not contained
in the base locus of P. Thus there are two surfaces R1 and R2 that are singular exactly
at the points of these two A5-orbits, respectively. The above argument shows that every
surface in P except S1, S2, R1 and R2 is smooth. �

Keeping in mind Lemma 3.13, we will denote by R1 and R2 the two nodal surfaces
contained in the pencil P until the end of this section.

Lemma 3.14. There is a unique A5-invariant quartic surface in P3 that contains the
lines L1, . . . , L5 (respectively, the lines L′

1, . . . , L
′
5). Moreover, this surface is smooth, and

it does not contain the lines L′
1, . . . , L

′
5 (respectively, L1, . . . , L5).

Proof. Put L =
∑5

i=1
Li and L′ =

∑5

i=1
L′
i. Corollary 2.1(ii) implies that the stabilizer in

A5 of a general point of L1 is trivial. Therefore, there exists a surface S ∈ P that contains
all lines L1, . . . , L5. By Lemma 3.12 such surface S is unique.

We claim that S 6= S1. Indeed, all lines contained in S1 are tangent to the curve C 1,
and there are no A5-orbits of length five in C 1 ∼= P1. Similarly, one has S 6= S2.

We claim that S is not one of the two nodal surfaces R1 and R2 contained in the
pencil P. Indeed, suppose that S = R1. Since the singular locus of R1 is an A5-orbit of
length 10 by Lemma 3.13, we see that the lines L1, . . . , L5 are contained in the smooth
locus of R1 by Corollary 3.5. On the other hand, one has L2 = −10 by Lemma 3.4. This
means that rkPic(S)A5 > 2, which is impossible by [6, Lemma 6.7.3(i),(ii)].

We see that the surface S is different from R1. A similar argument shows that S is
different from R2. Hence, S is smooth by Lemma 3.13.

Let us show that S does not contain the lines L′
1, . . . , L

′
5. Suppose that it does. By

Lemma 3.4 one has

L · L = L′ · L′ = −10.
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By [6, Lemma 6.7.1(i)], we have rkPic(S)A5 = 2. Let ΠS be the class of a plane section
of S. Then the determinant of the matrix




L · L L · L′ ΠS · L
L · L′ L′ · L′ ΠS · L′

ΠS · L ΠS · L′ ΠS · ΠS


 =



−10 20 5
20 −10 5
5 5 4




must vanish. This is a contradiction, because it equals 12.
Applying similar arguments, we see that the lines L′

1, . . . , L
′
5 are contained in a

unique A5-invariant quartic surface, this surface is smooth and does not contain the
lines L1, . . . , L5. �

Remark 3.15. One can use the properties of the pencil P to give an alternative proof of
Lemma 3.7. Namely, we know from Lemma 3.14 that there are two (different) smooth
A5-invariant quartic surfaces S and S ′ containing the lines L1, . . . , L5 and L′

1, . . . , L
′
5,

respectively. By Lemma 3.12, the base locus of the pencil P is an irreducible curve B
that contains a unique A5-orbit Σ of length 20. By Corollary 3.5, this implies that Σ is
contained in the union L1 ∪ . . . ∪ L5, because

B · (L1 + . . .+ L5) = 20

on the surface S. Similarly, we see that Σ is contained in L′
1 ∪ . . . ∪ L′

5. These facts
together with Lemma 3.4 easily imply that the lines L1, . . . , L5 and L′

1, . . . , L
′
5 form a

double five configuration.

Now we will obtain some restrictions on low degree A5-invariant curves in P3.

Lemma 3.16. Let C be an irreducible A5-invariant curve in P3 of degree d 6 10. Denote
by g the genus of the normalization of the curve C. Then

g 6
d2

8
+ 1− |Sing(C)|.

Proof. Since U4 is an irreducible 2.A5-representation, the curve C is not contained in a
plane in P3. This implies that a stabilizer in A5 of a general point of the curve C is trivial.
In particular, the A5-orbit of a general point of C has length |A5| = 60.

Let S be a surface in the pencil P that passes through a general point of C. Then the
curve C is contained in S, because otherwise one would have

60 6 |S ∩ C| 6 S · C = 4d 6 40,

which is absurd. Since the assertion of the lemma clearly holds for the twisted cubic
curves C 1 and C 2, we may assume that C is different from these two curves.

Suppose that S = S1. Let us use the notation of the proof of Lemma 3.12. Denote
by Ĉ the preimage of the curve C via ρ. Then Ĉ is a divisor of bi-degree (a, b) for some
non-negative integers a and b such that d = 2a+ b. On the other hand, one has

|Ĉ ∩ Ĉ
1| 6 Ĉ · Ĉ 1 = a + b 6 2a+ b = d 6 10,

which is impossible, since the curve Ĉ 1 ∼= C 1 ∼= P1 does not contain A5-orbits of length
less than 12.

We see that S 6= S1. Similarly, we see that S 6= S2. By Lemma 3.13, either S is a
smooth quartic K3 surface, or S is one of the surfaces R1 and R2. Denote by ΠS a plane
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section of S. Then

det

(
Π2
S ΠS · C

ΠS · C C2

)
= det

(
4 d
d C2

)
= 4C2 − d2 6 0

by the Hodge index theorem.
Suppose that C is contained in the smooth locus of the surface S. Denote by pa(C) the

arithmetic genus of the curve C. Then

C2 = 2pa(C)− 2.

by the adjunction formula. Thus, we get

pa(C) 6
d2

8
+ 1.

Since g 6 pa(C)− |Sing(C)|, this implies the assertion of the lemma.
To complete the proof, we may assume that C contains a singular point of the surface S.

By Lemma 3.13, this means that either S = R1 or S = R2. The singularities of the
surface S are ordinary double points, and its singular locus is an A5-orbit of length 10.
In particular, the curve C contains the whole singular locus of S. By [6, Theorem 6.7.1],
one has Pic(S)A5 ∼= Z. Since Π2

S = 4 and the self-intersection of any Cartier divisor on
the surface S is even, we see that the group Pic(S)A5 is generated by ΠS.

Suppose that C is a Cartier divisor on S. Then either C ∼ ΠS or C ∼ 2ΠS, be-
cause d 6 10. Since the restriction map

H0
(
OP3(n)

)
→ H0

(
OS(nΠS)

)

is an isomorphism for n 6 3, we conclude that there is an A5-invariant quadric in P3.
This is not the case by Lemma 3.3.

Therefore, we see that C is not a Cartier divisor on S. Since S has only ordinary double
points, the divisor 2C is Cartier. Thus

2C ∼ lΠS,

for some odd positive integer l. Since

2d = 2C · ΠS = lΠS · ΠS = 4l,

we see that l = d
2
. In particular, d is even and l 6 5.

Let θ : S̃ → S be the minimal resolution of singularities of the surface S. Denote by
C̃ the proper transform of the curve C on the surface S̃, and denote by Θ1, . . . ,Θ10 the
exceptional curves of θ. Then

2C̃ ∼ θ∗(lΠS)−m

10∑

i=1

Θi,

for some positive integer m. Moreover, m is odd, because C is not a Cartier divisor. We
have

4C̃2 = Π2

Sl
2 − 20m2 = 4l2 − 20m2,

which implies that C̃2 = l2 − 5m2. Since C̃2 is even, m is odd and l 6 5, we see that
either l = 3 or l = 5.

Denote by pa(C̃) the arithmetic genus of the curve C̃. Then

l2 − 5m2 = C̃2 = 2pa(C̃)− 2.
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by the adjunction formula. In particular, we have

25− 5m2 > l2 − 5m2 > −2,

so that l ∈ {3, 5} and m = 1. The latter means that C is smooth at every point of
Sing(S), so that

|Sing(C̃)| = |Sing(C)|.
If l = d

2
= 3, then pa(C̃) = 3. This gives

g 6 pa(C̃)− |Sing(C̃)| = 3− |Sing(C)| 6 d2

8
+ 1− |Sing(C)|.

Similarly, if l = d
2
= 5, then pa(C̃) = 11. This gives

g 6 pa(C̃)− |Sing(C̃)| = 11− |Sing(C)| 6 d2

8
+ 1− |Sing(C)|.

�

Recall from [6, Lemma 5.4.1] that there exists a unique smooth irreducible curve of
genus 4 with a faithful action of the group A5. This curve is known as the Bring’s curve. Its
canonical model is a complete intersection of a quadric and a cubic in a three-dimensional
projective space. However, this sextic curve does not appear in our P3 = P(U4) by

Lemma 3.17. Let C be a smooth irreducible A5-invariant curve in P3 of degree d 6 6
and genus g. Then g 6= 4.

Proof. Suppose that g = 4. Denote by ΠC the plane section of the curve C. Then

h0(OC(ΠC)) = d− 3 + h0(OC(KC − ΠC))

by the Riemann–Roch theorem. Since C is not contained in a plane, this implies
that ΠC ∼ KC . Therefore, the projective space P3 is identified with a projectivization
of an A5-representation H0(OC(KC))

∨, i.e. of a representation of the group 2.A5 where
the center of 2.A5 acts trivially. The latter is not the case by construction of U4. �

Lemma 3.18. Let C be an irreducible smooth A5-invariant curve in P3 of degree d = 10
and genus g. Then g 6= 10.

Proof. Suppose that g = 10. By Lemma 3.12, the base locus of the pencil P is an
irreducible curve B of degree 16. In particular, there exists a surface S ∈ P that does not
contain C. Thus, the intersection S ∩ C is an A5-invariant set that consists of

C · S = 4d = 40

points (counted with multiplicities). On the other hand, by [6, Lemma 5.1.5], any A5-orbit
in C has length 12, 30, or 60. �

4. Large subgroups of S6

In this section we collect some auxiliary results about the groups S6, A6 and S5. We
start with recalling some general properties of the group A6.

Remark 4.1 (see e. g. [8, p. 4]). Let Γ be a proper subgroup of A6 such that the index of Γ
is at most 15. Then Γ is isomorphic either to A5, or to F36, or to S4. In particular, if A6

acts transitively on the set of r < 15 elements, then either r = 6 or r = 10.
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We will need the following result about possible actions of the group A6 on curves of
small genera (cf. [5, Theorem 2.18] and [6, Lemma 5.1.5]).

Lemma 4.2. Suppose that C is a smooth irreducible curve of genus g 6 15 with a non-
trivial action of the group A6. Then g = 10.

Proof. Let Ω ⊂ C be an A6-orbit. Then a stabilizer of a point in Ω is a cyclic subgroup
of A6, which implies that

|Ω| ∈
{
72, 90, 120, 180, 360

}
.

From the classification of finite subgroups of Aut(P1) ∼= PGL2(C) we know that g 6= 0.
Also, it follows from the non-solvability of the group A6 that g 6= 1.

Put C̄ = C/A6. Then C̄ is a smooth curve. Let ḡ be the genus of the curve C̄. The
Riemann–Hurwitz formula gives

2g − 2 = 360
(
2ḡ − 2

)
+ 180a180 + 240a120 + 270a90 + 288a72,

where ak is the number of A6-orbits in C of length k.
Since ak > 0 and 2 6 g 6 15, one has ḡ = 0. Thus, we obtain

2g − 2 = −720 + 180a180 + 240a120 + 270a90 + 288a72.

Going through the values 2 6 g 6 15, and solving this equation case by case we see that
the only possibility is g = 10. �

We proceed by recalling some general properties of the group S5.

Remark 4.3 (see e. g. [8, p. 2]). Let Γ be a proper subgroup of S5 such that the index of Γ
is less than 12. Then Γ is isomorphic either to A5, or to S4, or to F20, or to A4, or to D12.
In particular, if S5 acts transitively on the set of r < 12 elements, then r ∈ {2, 5, 6, 10}.
Lemma 4.4. The group S5 cannot act faithfully on a smooth irreducible curve of genus 5.

Proof. Suppose that C is a curve of genus 5 with a faithful action of S5. Considering the
action of the subgroup A5 ⊂ S5 on C and applying [6, Lemma 5.4.3], we see that C is
hyperelliptic. This gives a natural homomorphism

θ : S5 → Aut(P1) ∼= PGL2(C)

whose kernel is either trivial or isomorphic to µ2. Thus θ is injective, which gives a
contradiction. �

Now we will prove some auxiliary facts about actions of the groups S6, A6 and S5 on
the four-dimensional projective space.

Remark 4.5. The group S6 has exactly four irreducible five-dimensional representations
(see e. g. [8, p. 5]). Starting from one of them, one more can be obtained by a twist
by an outer automorphism of S6, and two remaining ones are obtained from these two
by a tensor product with the sign representation. Although these four representations
are not isomorphic, the images of S6 in PGL5(C) under them are the same. Every
irreducible five-dimensional representation of S6 restricts to an irreducible representation
of the subgroup A6 ⊂ S6, and restricts to an irreducible representation of the some
of the subgroups S5 ⊂ S6. The group A6 has exactly two irreducible five-dimensional
representations, each of them arising this way (see e. g. [8, p. 5]). Similarly, the group
S5 has exactly two irreducible five-dimensional representations, each of them arising this
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way (see e. g. [8, p. 2]). Note also that every five-dimensional representation of a group
A6 or S5 that does not contain one-dimensional subrepresentations is irreducible.

Let V5 be an irreducible five-dimensional representation of the group S6.
Put P4 = P(V5). Keeping in mind Remark 4.5, we see that the image of the corresponding
homomorphism S6 to PGL5(C) is the same for any choice of V5, and thus the S6-orbits
and S6-invariant hypersurfaces in P4 do not depend on V5 either.

Remark 4.5 implies that there are six linear forms x0, . . . , x5 on P4 that are permuted
by the group S6 (cf. Sections 1 and 2). Indeed, up to a twist by an outer automorphoism
of S6 and a tensor product with the sign representation, V5 is a subrepresentation of the
six-dimensional representation W of S6, so that one can take restricitions of the natural
coordinates in W to be these linear forms. Let Q be the three-dimensional quadric in P4

given by equation

(4.6) x20 + x21 + x22 + x23 + x24 + x25 = 0.

The quadric Q is smooth and S6-invariant. Note also that equation (1.1) makes sense in
our P4.

We will use the notation introduced above until the end of the paper.

Lemma 4.7. Let Γ be either the group S6, or its subgroup A6, or a subgroup S5 of S6

such that V5 is an irreducible representation of Γ. Then the only Γ-invariant quadric
threefold in P4 is the quadric Q. Similarly, every (reduced) Γ-invariant quartic threefold
in P4 is given by equation (1.1) for some t ∈ C.

Proof. Apply Corollary 2.5. �

By a small abuse of notation we will refer to the points in P4 using xi as if they were ho-
mogeneous coordinates, i.e. a point in P4 will be encoded by a ratio of six linear forms xi.
As in Section 1, let Σ6 and Σ10 are the S6-orbits of the points [−5 : 1 : 1 : 1 : 1 : 1]
and [−1 : −1 : −1 : 1 : 1 : 1], respectively. Looking at equation (4.6), we obtain

Corollary 4.8. The quadric Q does not contain the S6-orbits Σ6 and Σ10.

Now we will have a look at the action of the group A6 on P4. Note that V5 is an
irreducible A6-representation by Remark 4.5.

Lemma 4.9. There are no A6-orbits of length less than six in P4. Moreover, the only
A6-orbit of length six in P4 is Σ6.

Proof. The only subgroup of A6 of index less than six is A6 itself (cf. Remark 4.1), so that
the first assertion of the lemma follows from irreducibility of the A6-representation V5.
Also, the only subgroups of A6 of index six are Ast

5 and Anst
5 , so that the second assertion

of the lemma also follows from Corollary 2.3. �

Lemma 4.10. Let X be an A6-invariant quartic threefold in P4 that contains an A6-orbit
of length at most six. Then X = X 7

10

.

Proof. By Lemma 4.7, one has X = Xt for some t ∈ C, and by Lemma 4.9 the A6-orbit
Σ6 is contained in Xt. Since Σ6 is not contained in the quadric Q by Corollary 4.8, we see
that there is a unique t ∈ C such that Σ6 is contained in a quartic given by equation (1.1).
Therefore, we conclude that t = 7

10
. �
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Now we will make a couple of observations about the action of the group S5 on P4.
We choose S5 to be a subgroup of S6 such that V5 is an irreducible S5-representation
(cf. Remark 4.5 and Corollary 2.3).

Lemma 4.11. Let P ∈ P4 be a point such that its stabilizer in S5 contains a subgroup
isomorphic to D12. Then the S5-orbit of P is Σ10.

Proof. By Corollary 2.3(iii), the point in P4 fixed by a subgroup D12 ⊂ S5 is unique. On
the other hand, it is straightforward to check that a stabilizer in S5 of a point of Σ10

contains a subgroup isomorphic to D12. It remains to notice that the latter stabilizer is
actually isomorphic to D12, since the only subgroups of S5 that contain D12 are D12 and
S5 itself, while S5 has no fixed points on P4. �

Lemma 4.12. Let X be an S5-invariant quartic threefold in P4 that contains Σ10.
Then X = X 1

6

.

Proof. By Lemma 4.7, one has X = Xt for some t ∈ C. Since Σ10 is not contained in the
quadric Q by Corollary 4.8, we see that there is a unique t ∈ C such that Σ10 is contained
in a quartic given by equation (1.1). Therefore, we conclude that t = 1

6
. �

5. Rationality of the quartic threefold X 7

10

In this section we will construct an explicit A6-equivariant birational map P3 99K X 7

10

.

Implicitly, the construction of this map first appeared in the proof of [5, Theorem 1.20].
Here we will present a much simplified proof of its existence.

We identify P3 with the projectivization P(U4), where U4 is the restriction of the four-
dimensional irreducible representation of the group 2.S6 introduced in Section 2 to the
subgroup 2.A6. By Corollary 2.1(i), the 2.A6-representation U4 is irreducible.

Lemma 5.1. There are no A6-invariant surfaces of odd degree in P3, and no A6-invariant
pencils of surfaces of odd degree in P3. Moreover, there are no A6-invariant quadric and
quartic surfaces in P3.

Proof. Recall that the only one-dimensional representation of the group 2.A6 is the trivial
representation. Therefore, any A6-invariant surface of odd degree d in P3 gives rise to
a trivial 2.A6-subrepresentation in Rd = Symd(U4). On the other hand, the non-trivial
central element z of 2.A6 acts on Rd by a scalar matrix with diagonal entries equal to −1,
which shows that Rd does not contain trivial 2.A6-representations. Also, since the only
two-dimensional representation of 2.A6 is the sum of two trivial representations, this
implies that there are no A6-invariant pencils of surfaces of odd degree in P3.

The last assertion of the lemma follows from Corollary 2.4(i),(ii). �

Lemma 5.2. Let Ω be an A6-orbit in P3. Then |Ω| > 16.

Proof. Lemma 5.1 implies that there are no A6-orbits of odd length in P3. Thus, if Ω is an
A6-orbit in P3 of length at most 15, then by Remark 4.1 a stabilizer of its general point is
isomorphic either to A5 or to F36. Both of these cases are impossible by Corollary 2.1. �

Actually, the minimal degree of an A6-invariant surface in P3 equals 8
(see [5, Lemma 3.7]), and the minimal length of an A6-orbit in P3 equals 36
(see [5, Lemma 3.8]), but we will not need this here.
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Lemma 5.3 (cf. [5, Lemma 4.26]). Let C be a smooth irreducible A6-invariant curve of
degree 9 and genus g in P3. Then g 6= 10.

Proof. Suppose that g = 10. Then it follows from [13, Example 6.4.3] that either C is
contained in a unique quadric surface in P3, or C is a complete intersection of two cubic
surfaces in P3. The former case is impossible, since there are no A6-invariant quadrics
in P3 by Lemma 5.1. The latter case is impossible, because there are no A6-invariant
pencils of cubic surfaces in P3 by Lemma 5.1. �

Recall that the group A6 contains six standard subgroups isomorphic to A5 and six non-
standard subgroups isomorphic to A5 (see the conventions made in Section 2). Denote the
former ones by H ′

1, . . . , H
′
6, and denote the latter ones by H1, . . . , H6. By Corollary 2.1(ii),

each group H ′
i leaves invariant two lines L1

i and L2
i in P3. Note that each group Hi

permutes transitively the lines L1
1, . . . , L

1
6 (respectively, L2

1, . . . , L
2
6).

Put L1 = L1
1 + . . . + L1

6 and L2 = L2
1 + . . . + L2

6. Then the curves L1 and L2 are
A6-invariant, and the curve L1 + L2 is S6-invariant.

Lemma 5.4. The lines L1
1, . . . , L

1
6 (respectively, the lines L

2
1, . . . , L

2
6) are pairwise disjoint.

Moreover, the curves L1 and L2 are disjoint.

Proof. We use an argument similar to one in the proof of Lemma 3.4. Suppose that some of
the lines L1

1, . . . , L
1
6 have a common point. Since the action of A6 on the set {L1

1, . . . , L
1
6}

is doubly transitive, this implies that any two of the lines L1
1, . . . , L

1
6 have a common

point. Therefore, either all lines L1
1, . . . , L

1
6 are coplanar, or all of them pass through one

point. Both of these cases are impossible since U4 is an irreducible 2.A6-representation
(see Corollary 2.1(i)). Therefore, the lines L1

1, . . . , L
1
6 are pairwise disjoint. A similar

argument applies to the lines L2
1, . . . , L

2
6.

Suppose that some of the lines L1
1, . . . , L

1
6, say, L

1
1, intersects some of the lines L2

1, . . . , L
2
6.

Since the lines L1
1 and L

1
2 are disjoint by construction, we may assume that L1

1 intersects L
2
2.

Since the stabilizer H ′
1 ⊂ A6 of L1

1 acts transitively on the lines L2
2, . . . , L

2
6, we conclude

that all five lines L2
2, . . . , L

2
6 intersect L1

1. Therefore, the line L1
1 contains a subset of

at most five points that is invariant with respect to the group H ′
1
∼= A5, which is a

contradiction. Thus, L1 and L2 are disjoint. �

Lemma 5.5. Let C be an A6-invariant curve in P3 of degree d 6 10. Then either C = L1

or C = L2.

Proof. Suppose first that C is reducible. We may assume that A6 permutes the irreducible
components of C transitively. Thus, C has either 6 or 10 irreducible components by
Remark 4.1, and these irreducible components are lines. By Remark 4.1 and Corollary 2.1
the latter case is impossible, and in the former case one has either C = L1 or C = L2.

Therefore, we assume that the curve C is irreducible. Let g be the genus of the nor-
malization of the curve C. We have

(5.6) g 6
d2

8
+ 1− |Sing(C)| 6 13− |Sing(C)|

by Lemma 3.16. This implies that the curve C is smooth, because P3 does not contain
A6-orbits of length less than 16 by Lemma 5.2.

If d 6 8, then (5.6) gives g 6 9. This is impossible by Lemma 4.2
If d = 9, then (5.6) gives g 6 11, so that g = 10 by Lemma 4.2. This is impossible by

Lemma 5.3.
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Therefore, we see that d = 10. Thus, (5.6) gives g 6 13, so that g = 10 by Lemma 4.2.
The latter is impossible by Lemma 3.18. �

Denote by M the linear system on P3 consisting of all quartic surfaces passing through
the lines L1

1, . . . , L
1
6. Then M is not empty. In fact, its dimension is at least four by

parameter count. Moreover, the linear system M does not have base components by
Lemma 5.1.

Lemma 5.7. The base locus of M does not contain curves except the lines L1
1, . . . , L

1
6.

Moreover, a general surface in M is smooth at a general point of each of the
lines L1

1, . . . , L
1
6.

Proof. Denote by Z the union of the curves that are contained in the base locus of M
and are different from the lines L1

1, . . . , L
1
6. Then Z is a (possibly empty) A6-invariant

curve. Denote its degree by d. Pick two general surfaces M1 and M2 in M. Then

M1 ·M2 = Z +mL1 +∆,

where m is a positive integer, and ∆ is an effective one-cycle on P3 that contains none
of the lines L1

1, . . . , L
1
6. Note that ∆ may contain irreducible components of the curve Z.

Let Π be a plane in P3. Then

16 = Π ·M1 ·M2 = Π · Z +mΠ · L1 +Π ·∆ = d+ 6m+Π ·∆ 6 d+ 6m,

which implies that m 6 2 and d 6 10. By Lemma 5.5, we have d = 0, so that Z is empty.
Since

2 > m > multL1

i

(
M1

)
multL1

i

(
M2

)
,

we see that a general surface in M is smooth at a general point of L1
i . �

Let α : U → P3 be a blow up along the lines L1
1, . . . , L

1
6. Then −K3

U = 4, and the
action of A6 lifts to U . Denote by E1, . . . , E6 the α-exceptional surfaces that are mapped
to L1

1, . . . , L
1
6, respectively.

Lemma 5.8. The action of the stabilizer H ′
i
∼= A5 in A6 of the line L1

i on the sur-
face Ei ∼= P1 × P1 is twisted diagonal, i.e., Ei is identified with P(U2)× P(U′

2), where U2

and U′
2 are different two-dimensional irreducible representations of the group 2.A5.

Proof. This follows from Corollary 2.1(ii). �

Let us denote by MU the proper transform of the linear system M on the threefold U .
Then MU ∼ −KU by Lemma 5.7.

Lemma 5.9. The linear system MU is base point free.

Proof. Let us first show that MU is free from base curves. Suppose that the base locus
of the linear system MU contains some curves. Then each of these curves is contained
in some of the α-exceptional surfaces by Lemma 5.7. Denote by Z the union of all such
curves that are contained in E1. Then Z is an H ′

1-invariant curve. For some non-negative
integers a and b, one has

Z ∼ as+ bl,

where s is a section of the natural projection E1 → L1
1 such that s2 = 0 on E1, and l is a

fiber of this projection. On the other hand, we have

MU |E1
∼ −KU |E1

∼ s+ 3l.
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This gives a 6 1 and b 6 3. Since the action of H ′
1 on the surface E1 is twisted diagonal

by Lemma 5.8, the latter is impossible by [6, Lemma 6.4.2(i)] and [6, Lemma 6.4.11(o)].
We see that MU is free from base curves. Since MU ∼ −KU , the linear system MU

cannot have more than −K3
U = 4 base points. By Lemma 5.2, this implies that MU is

base point free. �

Corollary 5.10. The base locus of the linear system M consists of the lines L1
1, . . . , L

1
6.

By Lemma 5.9, the divisor −KU is nef. Since −K3
U = 4, it is also big. Thus, we have

h1
(
OU

(
−KU

))
= h2

(
OU

(
−KU

))
= 0

by the Kawamata–Viehweg vanishing theorem (see [17]). Hence, the Riemann–Roch for-
mula gives

(5.11) h0(OU (−KU)) = 5.

In particular, we see that | −KU | = MU .

Lemma 5.12. The A6-representation H
0(OU (−KU)) is irreducible.

Proof. By Lemma 5.1, there are no A6-invariant quartic surfaces in P3. This implies
that H0(OU (−KU)) does not contain one-dimensional subrepresentations. Hence it is
irreducible by Remark 4.5. �

Lemma 5.9 together with (5.11) implies that there is an A6-equivariant commutative
diagram

(5.13) U
α

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ β

  ❆
❆❆

❆❆
❆❆

❆

P3

φ
//❴❴❴❴❴❴❴ P4,

where φ is a rational map given by M, and β is a morphism given by the anticanonical
linear system |−KU |. By Lemma 5.12 the projective space P4 in (5.13) is a projectivization
of an irreducible A6-representation.

Recall from Lemma 3.8 that P3 contains exactly two H1-invariant twisted cubic
curves C 1

1 and C 2
1 .

Lemma 5.14. The curve L1 intersects exactly one curve among C 1
1 and C 2

1 . Moreover,
each line among L1

1, . . . , L
1
6 contains two points of this intersection. Similarly, the curve L2

intersects exactly one curve among C
1
1 and C

2
1 , and this curve is different from the one

that intersects L1.

Proof. By Remark 3.1, the stabilizer in H1 of the curve L1
1 is isomorphic to D10, and

thus it has an orbit of length 2 on L1
1. Thus, the curve L1 contains an H1-orbit Σ1

12 of
length 12 by Lemma 3.2. Similarly, the curve L2 contains an H1-orbit Σ

2
12 of length 12.

By Lemma 5.4, one has Σ1
12 6= Σ2

12. Moreover, Σ1
12 and Σ2

12 are the only H1-orbits in P3

of length 12 by Lemma 3.2. Since C 1
1 and C 2

1 are disjoint by Remark 3.10, and each of
them contains an H1-orbit of length 12, we see that either Σ1

12 ⊂ C
1
1 and Σ2

12 ⊂ C
2
1 , or

Σ2
12 ⊂ C 1

1 and Σ1
12 ⊂ C 2

1 . Since a line cannot have more than two common points with a
twisted cubic, this also implies the last assertion of the lemma. �
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Without loss of generality, we may assume that the curve L1 intersects C 1
1 , and the

curve L2 intersects C 2
1 . Let C 1

1 , . . . ,C
1
6 be the A6-orbit of the curve C 1

1 , and let C 2
1 , . . . ,C

2
6

be the A6-orbit of the curve C 2
1 . By Lemma 3.8, the curves C 1

i and C 2
i are the only twisted

cubic curves in P3 that are Hi-invariant. By Lemma 5.14, we have

Corollary 5.15. Every twisted cubic curve C 1
i intersects each line among L1

1, . . . , L
1
6 by

two points. Similarly, every twisted cubic curve C
2
i intersects each line among L2

1, . . . , L
2
6

by two points.

Denote by C̃ 1
1 , . . . , C̃

1
6 the proper transforms on U of the curves C 1

1 , . . . ,C
1
6 , respectively.

Lemma 5.16. One has −KU · C̃ 1
1 = . . . = −KU · C̃ 1

6 = 0.

Proof. This follows from Corollary 5.15. �

We see that each curve C̃ 1
i is contracted by β to a point. Since the A6-orbit of C̃ 1

1

consists of six curves, we also obtain the following.

Corollary 5.17. The image of the morphism β contains an A6-orbit of length at most
six.

Since −K3
U = 4, the image of β is either an A6-invariant quartic threefold or an A6-

invariant quadric threefold. Using results of [24], one can show that the latter case is
impossible. However, this immediately follows from Corollary 5.17. Indeed, an A6-orbit
of length at most six cannot be contained in the A6-invariant quadric by Corollary 4.8
and Lemma 4.9.

Corollary 5.18. The morphism β is birational onto its image, and its image is a quartic
threefold.

Now Lemma 4.10 implies that the image of β is the quartic X 7

10

. This proves

Corollary 5.19. The threefold X 7

10

is rational.

Let us conclude this section by recalling two related results proved in [5, §4]. The
commutative diagram (5.13) can be extended to an A6-equivariant commutative diagram

(5.20) U
ρ

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

α

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎ γ

  ❆
❆❆

❆❆
❆❆

❆❆
U

α

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

γ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

X 7

10

σ // X 7

10

P3

ψ
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

φ

77♦♦♦♦♦♦♦♦
P3.

φ

ggP P P P P P P P

Here σ is an automorphism of the quartic threefold X 7

10

given by an odd permutation in

S6 acting on P4, cf. Remark 4.5. The birational map ρ is a composition of Atiyah flops
in 36 curves contracted by γ, and the birational map ψ is not regular.

The diagram (5.20) is a so-called A6-Sarkisov link. The subgroup A6 ⊂ Aut(P3) to-
gether with ψ ∈ BirA6(P3) generates a subgroup isomorphic to S6. Moreover, the sub-
group

AutA6(P3) ⊂ BirA6(P3)
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is also isomorphic toS6. By [5, Theorem 1.24], the whole group BirA6(P3) is a free product
of these two copies of S6 amalgamated over the original A6.

6. Rationality of the quartic threefold X 1

6

In this section we will construct an explicit S5-equivariant birational map P3 99K X 1

6

.

We identify P3 with the projectivization P(U4), where U4 is the restriction of the four-
dimensional irreducible representation of the group 2.S6 introduced in Section 2 to a
subgroup 2.Snst

5 , and denote the latter subgroup simply by 2.S5. By Corollary 2.1(i), the
2.S5-representation U4 is irreducible.

Lemma 6.1. Let Ω be an S5-orbit in P3. Then |Ω| > 12.

Proof. Apply Remark 4.3 together with Corollary 2.1. �

Lemma 6.2. Let C be an S5-invariant curve in P3 of degree d. Then d > 6.

Proof. Suppose that d 6 5. To start with, assume that C is reducible and denote by r the
number of its irreducible components. We may assume that S5 permutes the irreducible
components of C transitively. Thus, either r = 2 or r = 5 by Remark 4.3. If r = 5, the
irreducible components of C are lines, so that this case is impossible by Remark 4.3 and
Corollary 2.1(i). Hence, we have r = 2, and the stabilizer of each of the two irreducible
components C1 and C2 of C is the subgroup A5 ⊂ S5. Moreover, in this case one has

deg(C1) = deg(C2) 6 2,

which is impossible by Lemma 3.8.
Therefore, we assume that the curve C is irreducible. Let g be the genus of the nor-

malization of the curve C. Then

g 6
d2

8
+ 1− |Sing(C)|

by Lemma 3.16, so that g 6 5− |Sing(C)|. This implies that C is smooth, because there
are no S5-orbits of length less than 12 by Lemma 6.1.

Since S5 does not act faithfully on P1, we see that g 6= 0. Thus, either g = 4 or g = 5
by [6, Lemma 5.1.5]. The former case is impossible by Lemma 3.17, while the latter case
is impossible by Lemma 4.4. �

Recall from Section 3 that the subgroup A4 ⊂ A5 ⊂ S5 fixes two disjoint lines L1

and L′
1. As before, we consider the A5-orbit L1, . . . , L5 of the line L1 and the A5-orbit

L′
1, . . . , L

′
5 of the line L′

1. By Lemma 3.7 the lines L1, . . . , L5, L
′
1, . . . , L

′
5 form a double

five configuration (see Definition 3.6). Corollary 2.1(i) implies that the S5-orbit of the
line L1 is L1, . . . , L5, L

′
1, . . . , L

′
5.

Remark 6.3. Any subgroup F20 ⊂ S5 permutes the ten lines L1, . . . , L5, L
′
1, . . . , L

′
5 tran-

sitively. Indeed, let c ∈ F20 be an element of order five. Then c is not contained in a
stabilizer of the line L1, so that the orbit of L1 with respect to the group Γ ∼= µ5 generated
by c is L1, . . . , L5. Similarly, the Γ-orbit of the line L′

1 is L′
1, . . . , L

′
5. Also, the group F20

is not contained in A5, so that the F20-orbit of L1 contains some of the lines L′
1, . . . , L

′
5,

and thus contains all the ten lines L1, . . . , L5, L
′
1, . . . , L

′
5.
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Let M be the linear system on P3 consisting of all quartic surfaces passing through all
lines L1, . . . , L5 and L

′
1, . . . , L

′
5. Then M is not empty. In fact, Lemma 3.7 and parameter

count imply that its dimension is at least four. Moreover, the linear system M does not
have base components by Lemma 3.3.

Lemma 6.4. The base locus of M does not contain curves that are different from the
lines L1, . . . , L5, L

′
1, . . . , L

′
5. Moreover, general surface in M is smooth in a general point

of each of these lines. Furthermore, two general surfaces in M intersect transversally at
a general point of each of these lines.

Proof. Denote by Z the union of all curves that are contained in the base locus of the
linear system M and are different from the lines L1, . . . , L5, L

′
1, . . . , L

′
5. Then Z is a

(possibly empty) S5-invariant curve. Denote its degree by d. Pick two general surfaces
M1 and M2 in M. Then

M1 ·M2 = Z +m
5∑

i=1

Li +m
5∑

i=1

L′

i +∆,

where m is a positive integer, and ∆ is an effective one-cycle on P3 that contains none of
the lines L1, . . . , L5 and L′

1, . . . , L
′
5. Note that ∆ may contain irreducible components of

the curve Z. Note also that ∆ 6= 0, because M is not a pencil.
Let Π be a plane in P3. Then

16 = Π · Z +m

5∑

i=1

Π · Li +m

5∑

i=1

Π · L′

i +Π ·∆ = d+ 10m+Π ·∆ > d+ 10m,

which implies that m = 1 and d 6 5. By Lemma 6.2, we have d = 0, so that Z is empty.
Since

1 > m > multLi

(
M1 ·M2

)
> multLi

(
M1

)
multLi

(
M2

)
,

we see that a general surface in M is smooth at a general point of Li, and two general
surfaces in M intersect transversally at a general point of Li. Similarly, we see that a
general surface in M is smooth at a general point of L′

i, and two general surfaces in M
intersect transversally at a general point of L′

i. �

Let g : W → P3 be a blow up along the lines L1, . . . , L5, and let g′ : W ′ → P3 be a blow

up along the lines L′
1, . . . , L

′
5, Denote by L̃′

1, . . . , L̃
′
5 (respectively, L̃1, . . . , L̃5) the proper

transforms of the lines L′
1, . . . , L

′
5 on the threefold W (respectively, on the threefold W ′).

Let h : V →W be a blow up along the curves L̃′
1, . . . , L̃

′
5, and let h′ : V ′ →W ′ be a blow

up along the curves L̃1, . . . , L̃5. Finally, let α : U → P3 be a blow up of the (singular)
curve that is a union of all lines L1, . . . , L5, L

′
1, . . . , L

′
5. Then U has twenty nodes by

Lemma 3.7, and there exists a commutative diagram

V
τ //❴❴❴❴❴❴❴❴

h

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

υ
  ❇

❇❇
❇❇

❇❇
❇ V ′

h′

!!❈
❈❈

❈❈
❈❈

❈

υ′}}④④
④④
④④
④④

W

g
''PP

PPP
PPP

PPP
PPP

P U

α
��

W ′

g′
vv♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

P3,
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where υ and υ′ are small resolutions of singularities of the threefold U , and τ is a compo-
sition of twenty Atiyah flops.

Remark 6.5. By construction, the action of group A5 lifts to the threefolds W , W ′, V ,
V ′, and U . Similarly, the action of the group S5 lifts to the threefold U , but this action
does not lift to W and W ′. On the threefolds V and V ′, the group S5 acts biregularly
outside of the curves flopped by τ and τ−1, respectively.

Denote by E1, . . . , E5 the g-exceptional surfaces that are mapped to L1, . . . , L5, re-
spectively. Similarly, denote by E ′

1, . . . , E
′
5 the g′-exceptional surfaces that are mapped

to L′
1, . . . , L

′
5, respectively. Then all surfaces E1, . . . , E5, E

′
1, . . . , E

′
5 are isomorphic

to P1 × P1.
Denote by Ê ′

1, . . . , Ê
′
5 the h-exceptional surfaces that are mapped to the

curves L̃′
1, . . . , L̃

′
5, respectively. Similarly, denote by Ě1, . . . , Ě5 the h′-exceptional sur-

faces that are mapped to the curves L̃1, . . . , L̃5, respectively. Denote by Ê1, . . . , Ê5

the proper transforms on V of the surfaces E1, . . . , E5, respectively. Finally, denote by
Ě ′

1, . . . , Ě
′
5 the proper transforms on V ′ of the surfaces E ′

1, . . . , E
′
5, respectively. Then

τ maps the surfaces Ê1, . . . , Ê5 to the surfaces Ě1, . . . , Ě5, respectively, and it maps the
surfaces Ê ′

1, . . . , Ê
′
5 to the surfaces Ě ′

1, . . . , Ě
′
5, respectively.

Denote by MW , MV , MW ′, MV ′ , and MU the proper transforms of the linear sys-
tem M on the threefolds W , V , W ′, V ′, and U , respectively. Then it follows from
Lemma 6.4 that

MW ∼ −KW , MV ∼ −KV , MW ′ ∼ −KW ′, MV ′ ∼ −KV ′ ,

and MU ∼ −KU .

Lemma 6.6. The base locus of the linear system MW does not contain curves that are
different from the curves L̃′

1, . . . , L̃
′
5. Similarly, the base locus of MW ′ does not contain

curves that are different from the curves L̃1, . . . , L̃5.

Proof. It is enough to prove the first assertion of the lemma. Suppose that the base
locus of the linear system MW contains an irreducible curve Z that is different from the
curves L̃′

1, . . . , L̃
′
5. Then Z is contained in one of the surfaces E1, . . . , E5 by Lemma 6.4.

By Lemma 6.4, the curve Z is a fiber of some of the natural projections Ei → Li,
because otherwise two general surfaces in MW would be tangent in a general point of Li.

In particular, the only curves in the base locus of the linear systemMW are L̃′
i and possibly

some fibers of the projections Ei → Li. This shows that −KW is nef. Indeed, −KW has
positive intersections with the fibers of the projections Ei → Li, it has trivial intersection

with all curves L̃′
1, . . . , L̃

′
5, and −KW ∼ MW has non-negative intersection with any other

curve.
Let Z1 = Z,Z2, . . . , Zr be the A5-orbit of the curve Z. Then r > 20 by Corollary 3.5.

Pick two general surfaces M1 and M2 in the linear system MW . By Lemma 6.4, one has

M1 ·M2 =

5∑

i=1

L̃′

i +m

r∑

i=1

Zi +∆
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for some positive integer m and some effective one-cycle ∆ whose support contains none

of the curves L̃′
1, . . . , L̃

′
5 and Z1, . . . , Zr. Hence

14 = −K3
W = −KW ·M1 ·M2 = −KW ·

( 5∑

i=1

L̃′

i +m

r∑

i=1

Zi +∆
)
=

= −5KW · L̃′

1 −mrKW · Z −KW ·∆ = mr −KW ·∆ > mr > r > 20,

which is absurd. �

Lemma 6.7. The linear system MV is base point free.

Proof. It is enough to show that MV is free from base curves. Indeed, if the base locus
of the linear system MV does not contain base curves, then MV cannot have more
than −K3

V = 4 base points, because MV ∼ −KV . On the other hand, V does not contain
S5-orbits of length less than 12, because there are no S5-orbits of such length on P3 by
Lemma 6.1.

Suppose that the base locus of the linear system MV contains an irreducible curve Z.
If Z is not contained in any of the surfaces Ê ′

1, . . . , Ê
′
5, then the curve h(Z) is a base

curve of the linear system MW and h(Z) is different from the curves L̃′
1, . . . , L̃

′
5. This is

impossible by Lemma 6.6. Similarly, if Z is not contained in any of the surfaces Ê1, . . . , Ê5,
then the curve h′ ◦ τ(Z) is a base curve of the linear system MW ′ that is different from

the curves L̃1, . . . , L̃5. This is again impossible by Lemma 6.6. Thus, Z is contained in
one of the surfaces Ê1, . . . , Ê5, and in one of the surfaces Ê ′

1, . . . , Ê
′
5. In particular, the

curves flopped by τ are not contained in the base locus of MV .
Without loss of generality, we may assume that Z = Ê1 ∩ Ê ′

2. Let C be the curve

flopped by τ that is contained in Ê1 and intersects Ê ′
2. Then C intersects Z by one point.

On the other hand, we have −KV · C = 0. Since MV ∼ −KV , this implies that C is
disjoint from a general surface in MV . This is impossible, because C ∩ Z 6= ∅, while Z
is contained in the base locus of the linear system MV . �

Corollary 6.8. The linear systems MV ′, and MU are also base point free.

Proof. Recall that MV ∼ −KV . Thus, the general surface of MV is disjoint from all
curves flopped by τ , because MV is base point free by Lemma 6.7. �

Corollary 6.9. The base locus of M consists of the lines L1, . . . , L5, L
′
1, . . . , L

′
5.

By Lemma 6.7 and Corollary 6.8, the divisors −KV , −KV ′ , and −KU are nef. Since

−K3

V = −K3

V ′ = −K3

U = 4,

these divisors are also big. Thus, the Kawamata–Viehweg vanishing theorem and the
Riemann–Roch formula give

(6.10) h0
(
OV

(
−KV

))
= h0

(
OV ′

(
−KV ′

))
= h0

(
OU

(
−KU

))
= 4.

In particular, one has | −KV | = MV , | −K ′
V | = MV ′, and | −KU | = MU .

Lemma 6.11. The S5-representation H
0(OU (−KU)) is irreducible.

Proof. By Lemma 3.14, there are no S5-invariant quartic surfaces in P3 that pass through
the ten lines L1, . . . , L5, L

′
1, . . . , L

′
5. This implies that H0(OU(−KU )) does not contain

one-dimensional subrepresentations. Hence it is irreducible by Remark 4.5. �
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Lemma 6.7 together with (6.10) implies that there is an S5-equivariant commutative
diagram

(6.12) U
α

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ β

  ❆
❆❆

❆❆
❆❆

❆

P3

φ
//❴❴❴❴❴❴❴ P4,

where φ is a rational map given by M, and β is a morphism given by the anticanonical
linear system |−KU |. By Lemma 6.11 the projective space P4 in (6.12) is a projectivization
of an irreducible S5-representation.

For 1 6 i < j 6 5, let Λij be the intersection line of the plane spanned by Li and L
′
j with

the plane spanned by L′
i and Lj . Note that the stabilizer of Λij in S5 contains a subgroup

isomorphic to D12. Actually, this implies that the stabilizer of Λij in S5 is isomorphic
to D12, since D12 is a maximal proper subgroup in S5 (see Remark 4.3) and there are no

S5-invariant lines in P3 by Corollary 2.1(i). Denote by Λ̂ij the proper transform of the
line Λij on the threefold V , and denote by Λij its proper transform on U . Then

−KV · Λ̂ij = 0.

Since υ is a small birational morphism, we also obtain −KU · Λij = 0.
We see that each curve Λij is contracted by β to a point. Note that the stabilizer of

Λij in S5 is isomorphic to D12. Since −K3
U = 4, the image of β is either an S5-invariant

quartic threefold or an S5-invariant quadric threefold. Applying Corollary 4.8 together
with Lemma 4.11, we obtain the following.

Corollary 6.13. The morphism β is birational on its image, and its image is a quartic
threefold.

Now Lemmas 4.11 and 4.12 imply that the image of β is the quartic X 1

6

. This proves

Corollary 6.14. The threefold X 1

6

is rational.

Remark 6.15. An alternative approach to the rationality of the quartic threefold X 1

6

was

suggested in [16]. Unfortunately, its implementation seems to contradict the existence
of the commutative diagram (6.12). Indeed, the paper [16] studies the action of the
subgroup F20 ⊂ S6 on the threefold X 1

6

. Since all such subgroups in S6 are conjugate, one

may identify F20 with a subgroup of our S5. By Remark 6.3, the group F20 permutes the
ten lines L1, . . . , L5, L

′
1, . . . , L

′
5 transitively. This means that γ is an F20Q-factorialization

of the quartic threefold X 1

6

. Thus, the application of F20-Minimal Model Program to U

must give the birational map α : U → P3. However, [16, Lemma 2.10], [16, Lemma 2.12]
and [16, Lemma 2.13] exclude this possibility.

Ten curves Λij are mapped by γ to ten singular points of the threefold X 1

6

. Twenty

singular points of U are mapped by γ to another twenty singular points of X 1

6

. Let us

describe the curves in U that are contracted by γ to the remaining ten singular points of
the threefold X 1

6

. To do this, we need

Lemma 6.16. Let ℓ1, ℓ2, ℓ3 and ℓ4 be pairwise skew lines in P3. Suppose that there is a
unique line ℓ ⊂ P3 that intersects ℓ1, ℓ2, ℓ3 and ℓ4. Let π : Y → P3 be a blow up of the
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line ℓ, and E ∼= P1 × P1 be the exceptional divisor of π. Denote by ℓ̃1, ℓ̃2, ℓ̃3 and ℓ̃4 the
proper transforms on Y of the lines ℓ1, ℓ2, ℓ3 and ℓ4, respectively. Then there exists a
unique curve C ⊂ E of bi-degree (1, 1) that intersects the curves ℓ̃1, ℓ̃2, ℓ̃3 and ℓ̃4.

Proof. The lines ℓ1, ℓ2, and ℓ3 are contained in a unique quadric surface S ⊂ P3. Note
that S is smooth, because ℓ1, ℓ2, and ℓ3 are disjoint. Furthermore, the line ℓ is contained
in S, because ℓ intersects the lines ℓ1, ℓ2, and ℓ3 by assumption. Moreover, the line ℓ4
is tangent to S, since otherwise there would be either two or infinitely many lines in P3

that intersect ℓ1, ℓ2, ℓ3 and ℓ4. Denote by S̃ the proper transform on Y of the quadric
surface S. Then S̃ contains the curves ℓ̃1, ℓ̃2, and ℓ̃3. Moreover, S̃ intersects the curve ℓ̃4.
Thus S̃|E is the required curve C. �

By Lemmas 3.7 and 6.16, each surface Ei ∼= P1 × P1 contains a unique smooth rational
curve Ci of bi-degree (1, 1) that passes through all four points of the intersection of Ei
with the curves L̃′

1, . . . , L̃
′
5 (recall that Ei ∩ L̃′

i = ∅). Similarly, each surface E ′
i
∼= P1 ×P1

contains a unique smooth rational curve C ′
i of bi-degree (1, 1) that passes through all

four points of the intersection of E ′
i with the curves L̃1, . . . , L̃5. Denote by Ĉ1, . . . , Ĉ5 the

proper transforms on the threefold V of the curves C1, . . . , C5, respectively. Similarly,
denote by Č ′

1, . . . , Č
′
5 the proper transforms on the threefold V ′ of the curves C ′

1, . . . , C
′
5,

respectively. Then

−KV · Ĉi = −KV ′ · Č ′

i = 0.

This implies that the proper transforms of the curves Ĉ1, . . . , Ĉ5 on the threefold V ′ are
(−2)-curves on the surfaces Ě1, . . . , Ě5, respectively. Similarly, the proper transforms

of the curves Č ′
1, . . . , Č

′
5 on the threefold V are (−2)-curves on the surfaces Ê ′

1, . . . , Ê
′
5,

respectively. Thus, all surfaces Ê ′
1, . . . , Ê

′
5, Ě1, . . . , Ě5 are isomorphic to the Hirzebruch

surface F2.
Denote by C1, . . . , C5, C

′

1, . . . , C
′

5 the images of the curves Ĉ1, . . . , Ĉ5, Č
′
1, . . . , Č

′
5 on the

threefold U , respectively. Then

−KU · C i = −KU · C ′

i = 0,

because −KV · Ĉi = −KV ′ · Č ′
i = 0, and υ and υ′ are small birational morphisms. Thus,

the ten curves C1, . . . , C5, C
′

1, . . . , C
′

5 are contracted by the morphism β to ten singular
points of X 1

6

.

It would be interesting to extend the commutative diagram (6.12) to an S5-Sarkisov
link similar to the A6-Sarkisov link (5.20).
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