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Table 2: Differential S-nitrosylation of individual proteins related to abiotic stress.

S-nitrosylated Activity change Cellular
proteins related after localization of Reference
to abiotic stress | S-nitrosylation the protein
AHb1 ND Cytoplasm (Perazzolli et al. 2004)
APX + Cytoplasm (Bai et al. 2011; Begara-Morales ¢
. GAPDH i Cytoplasm (Wawer et al. 2010; Lin et al.
(in vitro only)
0OST1/SnRK2.6 - Cytoplasm (Wang et al. 2015)
PAL - Cytoplasm (Vanzo et al. 2014)
Trx ND Cytoplasm (Lin et al. 2012)
GR */= Cytoplasm & (Bai et al. 2011; Begara-Morales ¢
Chloroplast
Rubisco - Chloroplast (Abat & Deswal 2009)
PrxIl F - Mitochondria (Camejo et al. 2013)
CAT - Peroxisome (Ortega-Galisteo et al. 20
DHAR + Peroxisome (Bai et al. 2011)
GOX - Peroxisome (Ortega-Galisteo et al. 20
MDAR - Peroxisome (Begara-Morales et al. 20
MDH - Peroxisome (Ortega-Galisteo et al. 20

Key: ND, Not Detected; +, increased; -, decreased; =, not changed.



Figure Legends

Figure 1. Regulation of S-nitrosylation. S-nitrosylation is the attachment of an NO group to a
cysteine (Cys) thiol (SH) to form an S-nitrosothiol (SNO). The SNO bond is reversible due to its redox
sensitivity: i.e. ascorbate, reduced metal ions and GSH can reduce SNO to SH. S-nitrosoglutathione
(GSNO), which acts as a stable NO reservoir, can transfer NO to SH group via transnitrosylation.
Turnover of GSNO occurs via the enzyme GSNO reductase (GSNOR), generating oxidized glutathione

(GSSG) and ammonia (NHs).

Figure 2. Regulation of ascorbate-glutathione cycle by S-nitrosylation during salt stress. During salt
stress the ascorbate—glutathione cycle is modulated via S-nitrosylation of APX, MDAR and GR
proteins. MDAR activity is reduced after S-nitrosylation while GR activity is not significantly affected
by this modification. However, APX activity is enhanced by S-nitrosylation. This regulation suggests
that APX works to detoxify hydrogen peroxide while GR supports the regeneration of GSH, thereby
maintaining the antioxidant capability of the ascorbate-glutathione cycle under stress conditions.

APX, ascorbate peroxidase; GR, Glutathione reductase; MDAR, monodehydroascorbate reductase.

Figure 3. Model showing the role of NO and S-nitrosylation during drought stress signalling.
Drought stress triggers ABA accumulation which in turn can induce the production of H,0, leading to
the generation of NO, which results in stomatal closure via the activation of a MAPK pathway. On
the other hand, OST1/SnRK2.6 is a central component that regulates ABA signalling via a
phosphorylation cascade. NO can regulate ABA signaling through S-nitrosylation of OST1/SnRK2.6,

which inhibits its kinase activity, thus acting as a negative regulator of ABA signalling.

Figure 4. S-nitrosylation regulates different nodes of abiotic stress signalling. During abiotic stress,
proteins related to different nodes of stress signalling become targets for
S-nitrosylation/denitrosylation. These proteins include antioxidant proteins, proteins involved in
RNS/ROS, cellular metabolism and also proteins that regulate programmed cell death (PCD). These
proteins change their S-nitrosylation pattern during stress to control cell fate in two ways: either
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stress acclimation or PCD. Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; Trx, thioredoxin; AHb1, haemoglobin 1; APX, ascorbate
peroxidase; GR, Glutathione reductase; DHAR, dehydroascobate reductase; GOX, glycolate oxidase;

Prxll F, peroxiredoxin Il F; MDAR, monodehydroascorbate reductase; CAT, catalase.
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Figure 1. Regulation of S-nitrosylation.

Figure 2. Regulation of ascorbate-glutathione cycle by S-nitrosylation during salt stress.
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Figure 3. Model showing the role of NO and S-nitrosylation during drought stress signalling.
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Figure 4. S-nitrosylation regulates different nodes of abiotic stress signalling.
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