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Abstract 

Length and quality of life is important to us all, yet identification of promising drug targets for 
human ageing using genetics has had limited success. Here, we combine six European-ancestry 
genome-wide association studies of human ageing traits—healthspan, father and mother 
lifespan, exceptional longevity, frailty index, and self-rated health—in a principal component 
framework that maximises their shared genetic architecture. The first principal component 
(Ageing-GIP1) captures both length of life and indices of mental and physical wellbeing. We 
identify 27 genomic regions associated with Ageing-GIP1, and provide additional, independent 
evidence for an effect on human ageing for loci near HTT and MAML3 using a study of Finnish 
and Japanese survival. Using proteome-wide two-sample Mendelian randomisation and 
colocalisation, we provide robust evidence for a detrimental effect of blood levels of 
apolipoprotein(a) (LPA) and vascular cell adhesion molecule 1 (VCAM1) on Ageing-GIP1. 
Together, our results demonstrate that combining multiple ageing traits using genetic principal 
components enhances power to detect biological targets for human ageing.  
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Introduction 
Ageing affects us all, from the personal, progressive loss of health to the collective burden of 
chronic age-related disease and frailty on society. In humans, the body undergoes a systemic 
functional decline after reaching adulthood, which manifests itself as age-related disease, 
infirmity and eventually death1. The factors determining the rate of ageing and death are 
complex and interlinked, and include genetics, lifestyle, environmental exposures, and chance. 
 
Quantifying the ageing process is not straightforward. A variety of ageing-related phenotypes 
have been studied as proxies, from chronological measurements such as the length of time from 
birth until occurrence of a major disease (healthspan)2 or death (lifespan)3,4, to cellular 
deterioration measurements such as telomere attrition5 and loss of Y chromosome6,7, to holistic 
measurements such as the frailty index8, encompassing multiple functional impairment 
indicators9. While the genetic component of these ageing-related traits tends to be estimated at 
less than 15%2,8,10, recent progress has been made on characterising this component using large 
genome-wide association studies (GWAS), and combining similar GWAS to increase 
statistical power11,12. 
 
The benefit of combining GWAS of several ageing phenotypes, especially in different 
populations, is the ability to detect biological mechanisms that influence multiple core 
components of ageing, while downweighing population- and trait-specific features. For 
example, a recent multivariate analysis of healthspan, parental lifespan, and longevity GWAS 
found that genetic loci that were not shared between traits often associated with population-
specific, behavioural risk factors such as smoking and skin cancer11. On the other hand, this 
study showed genetic loci shared between traits were associated with biological pathways such 
as cellular homeostasis and haem metabolism11.  
 
However, to date, large ageing-related trait GWAS have only been combined using MANOVA, 
which detects genetic variation that is either shared between multiple traits or strongly 
associated with a single trait13,14. This mixture generates heterogeneous SNP effect sizes, 
complicating the downstream analysis11. An alternative is to perform principal component 
analysis on the genetic covariance between traits and use the component loadings to construct 
new, genetically independent phenotypes (GIPs)15. As their name implies, GIPs capture the 
genetic covariance between phenotypes while being genetically uncorrelated to each other. In 
practice, this means the first principal component (GIP1) maximises the genetic overlap 
between all traits, while each subsequent GIP contains genetic variation distinguishing the traits 
from each other15. 
 
In this study, we cluster 11 large ageing-related trait GWAS by genetic similarity, and explicitly 
quantify their common and unique genetic architecture using the GIP methodology. We then 
characterise this common genetic ageing phenotype, identify robust genomic loci, and highlight 
proteins that may be potential drug targets for improving the length and quality of life. 
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Results 
Ageing-related traits cluster based on genetic correlations 
We gathered publicly available GWAS summary statistics on ageing-related traits measured in 
at least 10,000 European-ancestry individuals. These included self-rated health16, healthspan2, 
father lifespan4, mother lifespan4, exceptional longevity17, frailty index8, perceived age18, 
Hannum epigenetic age acceleration19, Horvath epigenetic age acceleration19, telomere length5, 
and mosaic loss of Y chromosome7 (Supplementary Table 1). A variety of UK and European 
individuals are represented between these studies, from children (aged 10+) to centenarians 
(aged 100+), with birth years spanning the 20th and early 21st century. The largest sample 
consists of UK Biobank participants and their parents (see Supplementary Note for details of 
each GWAS, and Extended Data Fig. 1 for correlations between studies due to sample 
overlap). 
 
Calculating genetic correlations (rg) from summary statistics and performing hierarchical 
clustering based on the magnitude of these correlations, we find the first six traits—mostly 
chronological and holistic measures of ageing—form a cluster of high genetic similarity (|rg| ≥ 
0.5; P < 5x10–15). In contrast, the cellular measures of ageing show low or no correlations with 
other traits (|rg| ≤ 0.3), although the epigenetic age acceleration phenotypes correlate strongly 
with each other (rg = 0.5; 95% CI 0.2–0.8) (Figure 1; Supplementary Data 1). 
 
Testing the six ageing-related traits in the main cluster for correlations with 728 other traits 
from the GWAS-MAP platform21, we find their genetic similarity may largely be explained 
through strong, shared genetic correlations (meta |rg| ≥ 0.5; FDR < 0.05; Phet > 0.05; I2 < 0.50) 
with chest pain, cardiovascular disorders, smoking-related disease, type 2 diabetes, and general 
illness or medication use in UK Biobank (Supplementary Data 2). However, each core ageing 
trait also has several genetic correlations that differ substantially (see Methods) from the other 
ageing-related phenotypes and may reflect population or trait-specific risk factors. For 
example, self-rated health correlates more strongly with physical fitness, body mass index, and 
a noisy work environment; healthspan correlates more strongly with skin and breast cancers; 
father lifespan correlates more strongly with hypertension; mother lifespan uniquely correlates 
with lower childhood height; longevity uniquely lacks a negative correlation with chronic knee 
pain; and frailty correlates more strongly with hearing aid usage, daytime napping, and allergic 
disease (eczema/dermatitis and hayfever/rhinitis) (Supplementary Data 2). 

Ageing-GIPs capture distinct elements of wellbeing 
We combined the six GWAS in the main correlation cluster using the loadings from the 
principal components of the genetic correlation matrix (Figure 2), yielding association 
summary statistics for six Ageing-GIPs (available at https://doi.org/10.7488/ds/2972). As 
expected, High-Definition Likelihood20 estimated Ageing-GIP1 to be the most heritable of the 
Ageing-GIPs (h2SNP = 0.20; SE = 0.005), capturing over 70% of the genetics of healthspan, 
parental lifespan, and longevity, and 90% of the genetics of self-rated health and the inverse of 
frailty (henceforth referred to as “resilience”) (Figure 3). A leave-one-out analysis confirms 
that the GIP analysis is highly robust to the selection of GWAS, with the genetic architecture 

https://doi.org/10.7488/ds/2972
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of Ageing-GIP1 remaining largely the same after excluding any one of the six chronological 
and holistic ageing-related trait GWAS (range rg GIP1 with GIP1-resilience = 0.950 [SE 0.024] 
to rg GIP1 with GIP1-healthspan = 0.996 [0.023]) (Supplementary Table 2). 
 
Apart from the genetic correlations with its component traits, Ageing-GIP1 shows significant 
correlations with 459 out of 729 traits tested (Padj < 0.05, Bonferroni-adjusted for six GIPs and 
729 traits). These suggest that, in addition to length of life, Ageing-GIP1 also captures mental 
and physical wellbeing. For example, among the largest negative Ageing-GIP1 correlations are 
mental illness, taking medications, and diseases of old age (such as cardiometabolic disorders, 
cancers, and osteoarthritis) (rg ≤ –0.5; Padj < 1x10–9). Inversely, fitness and education are among 
the largest positive correlations (rg ≥ 0.5; Padj < 1x10–10). Ageing-GIP1 also shows moderate 
negative correlations with infectious diseases, including N39 (International Classification of 
Diseases 10th Revision) urinary tract infections (rg = –0.66; 95% CI –0.42 to –0.90; Padj = 3x10–

4), coughing on most days (rg = –0.39; –0.30 to –0.49; Padj = 1x10–11), and severe COVID-19 
hospitalisation (i.e. resulting in respiratory support or death) (rg = –0.33; –0.20 to –0.46; Padj = 
0.004).  
 
However, Ageing-GIP1 also retains some strong correlations with socioeconomic factors, such 
as smoking behaviours (e.g. current tobacco smoking rg = –0.50; –0.45 to –0.55; Padj = 4x10–

92) and having a job involving manual or physical work (rg = –0.49; –0.44 to –0.54; Padj = 2x10–

89) (Figure 3; Supplementary Data 3). While such socioeconomic risk factors are partly 
heritable22, they could also reflect social stratification or geographic confounding shared 
between the original six studies used to construct Ageing-GIP123,24. Therefore, as a sensitivity 
analysis, we used the GIP methodology to remove all genetic correlations with UK Biobank 
GWAS of household income and socioeconomic deprivation from the Ageing-GIPs—
recognising this may remove some of the true signal as well (Extended Data Fig. 2). The SNP 
heritability of the adjusted Ageing-GIP1 phenotype is substantially attenuated (h2SNP = 0.09; 
SE = 0.003), and consequently, genetic correlations with all phenotypes are reduced. However, 
most traits which were significant at 5% FDR remain associated with the residual phenotype 
(Extended Data Fig. 3). As expected, the largest reductions in genetic correlations are with 
socioeconomic, education, and smoking/drinking traits, which are reduced by 0.30 or more 
(Supplementary Data 3). 
 
The remaining Ageing-GIPs have much lower heritability (h2SNP < 0.065) and are of less 
interest to this study as they capture genetic variance shared between fewer traits and do so 
with higher degrees of uncertainty. In short, Ageing-GIP2 correlates mainly with non-lethal 
causes of poor self-rated health, such as chronic pain (neck, back, stomach), negative emotions, 
and hearing problems (59 traits, Padj < 0.05); Ageing-GIP3 correlates mainly with measures of 
socioeconomic deprivation and body composition (73 traits); and Ageing-GIP4 captures 
healthspan-specific correlations with cancer and diabetes (7 traits). While Ageing-GIP5 and 
Ageing-GIP6 are underpowered due to their low heritabilities, they appear to distinguish 
parental lifespan from longevity (possibly through educational attainment), and father lifespan 
from mother lifespan (possibly through risk taking and cardiovascular factors), respectively 
(Figure 3).  
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Characterising the genomics of Ageing-GIP1 
Across the genome, 27 loci pass the Bonferroni-adjusted genome-wide significance threshold 
(P < 5x10–8/6) in the Ageing-GIP1 GWAS. The strongest lead SNPs in these loci are rs429358 
(P = 2x10–40) and rs660895 (P = 2x10–22), located nearest to the APOE and HLA-DRB1/DQA1 
genes, respectively (Figure 4; Table 1). Genetic fine-mapping with SuSiE25 highlights three 
independent 95% credible sets of causal variants for the APOE locus: the APOE ε4 and ε2 
alleles at single variant resolution, and a set of three variants intronic or near to APOC1. Three 
other loci have a credible set containing only one variant. These variants are rs9271300 
(intergenic between HLA-DRB1 and HLA-DQA1), rs34811474 (a non-synonymous ANAPC4 
exon variant), and rs2165702 (an intergenic variant near PHB) (Supplementary Table 3; 
Supplementary Data 4).  
 
The majority of lead SNPs are strongly associated with self-rated health and resilience, in line 
with the large loadings of these traits in the construction of Ageing-GIP1 (Figure 4; 
Supplementary Table 4). Seventeen Ageing-GIP1 loci overlap with genome-wide significant 
(P < 5x10–8) loci from the original ageing-related trait GWAS, showing evidence of a shared 
causal variant (coloc PP ≥ 80%) (Supplementary Table 5). For the other loci, the GIP 
framework either increases power (N = 4) or indicates there may be a different causal variant 
(coloc PP < 80%; N = 6) (Supplementary Data 5). 
 
Loci near APOE, HLA-DRB1/DQA1, LPA, and CDKN2B/-AS1 have previously been validated 
using the same trait in an external cohort2–4. For the remaining 23 loci, we measured lead SNP 
effects on participant survival in FinnGen (Release 5; N = 203,244; 6.94% deceased) and 
BioBank Japan (N = 135,983; 24.1% deceased), to provide additional evidence of their 
association with human ageing traits in independent samples. Combining both cohorts to 
achieve adequate power, we find Ageing-GIP1-increasing alleles of lead SNPs near HTT and 
MAML3 have a protective effect on survival in these cohorts (one-sided P < 0.05/23, taking 
into account the 23 loci tested), increasing average lifespan by around 2.53 (95% CI 0.91 to 
4.15; one-sided P = 0.001) and 2.51 (0.79 to 4.23; one-sided P = 0.002) months per allele, 
respectively. While we are underpowered to confirm the remaining 21 loci individually, we 
find that collectively, their Ageing-GIP1-increasing alleles are also associated with increased 
Finnish and Japanese survival (one-sided P = 0.044) (Supplementary Table 6).  
 
Again, we find Ageing-GIP1 genetics are stable when performing a leave-one-out analysis: 
lead SNP effects of most Ageing-GIP1 loci do not change significantly when excluding one of 
the six ageing traits. The exceptions are for previously replicated loci and SLC22A1/A2, where 
exclusion of one of the traits can reduce the Ageing-GIP1 effect size, although loci near HLA-
DRB1/DQA1, LPA, and CDKN2B/-AS1 remain genome-wide significant in all leave-one-out 
scenarios (Supplementary Data 6). Similarly, when completely removing genetic correlations 
with household income and socioeconomic deprivation, we find Ageing-GIP1 effect sizes are 
attenuated but, in all cases, remain associated with the residual trait (P < 0.05/27) (Extended 
Data Fig. 4; Supplementary Data 7). 
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We further looked up all lead Ageing-GIP1 SNPs and close proxies (r2EUR ≥ 0.8) in 
PhenoScanner26 and the GWAS catalog27, excluding associations discovered solely in UK 
Biobank, which showed 24 out of 27 Ageing-GIP1 loci had previously been associated with 
one or more traits at genome-wide significance. Most of these loci were associated with 
cardiometabolic, immune-related, or neuropsychiatric disorders, although several were also 
associated with measures of educational attainment and household income. Of specific interest 
are loci near APOE, HLA-DRB1/DQA1, CDKN2B/-AS1, and ZNF652/PHB, which show 
Ageing-GIP1-increasing alleles are associated with a reduction in multiple diseases but do not 
appear to associate with socioeconomic factors, suggesting these loci largely capture intrinsic 
sources of ageing (Supplementary Data 8). 
 
Aggregating SNP association statistics across the genome into gene scores using the Pathway 
Scoring Algorithm (PASCAL)28, we find high scoring genes for Ageing-GIP1 
(Supplementary Data 9) appear overrepresented in the haem metabolism hallmark gene set, 
as well as 300 gene ontology pathways (FDR 5%), regardless of adjustment for socioeconomic 
correlations. These gene ontology pathways cluster into 20 groups, related to neuronal 
development, organisation, and function; transcriptional regulation; chemical homeostasis; 
cellular growth, differentiation, and apoptosis; proteolysis; protein phosphorylation; 
intracellular signalling and transport; immune system development; the muscle system; and 
lipoprotein metabolism (Supplementary Data 10). Similarly, Ageing-GIP1 heritability 
appears to be enriched in genomic regions containing histone marks associated with the central 
nervous system (Supplementary Table 7). 

Causal inference of blood protein levels on Ageing-GIP1 
Mendelian randomisation (MR) uses genetic variation as instrumental variables to estimate the 
casual effect of exposures of interest on an outcome29. We used a set of well-validated blood 
protein quantitative trait loci (pQTL) for 857 proteins30 as genetic instruments in a two-sample 
MR29 and colocalisation31 framework to infer putative causal links between protein levels and 
Ageing-GIP1 (Supplementary Data 11). We find robust evidence for a detrimental effect on 
Ageing-GIP1 (FDR < 5%) for the levels of four proteins in blood (Table 2), with pQTL 
instruments passing sensitivity and causal directionality tests, and additionally colocalising 
with the Ageing-GIP1 signal (see Methods). Three of these proteins—apolipoprotein(a) (LPA), 
olfactomedin-1 (OLFM1), and LDL receptor related protein 12 (LRP12)—were instrumented 
by a cis-pQTL and were encoded by genes that appeared significantly enriched in the gene 
score analysis. The remaining protein, vascular cell adhesion molecule 1 (VCAM1), was 
instrumented by a trans-pQTL shared with beta-2-microglobulin (B2M); however, only 
VCAM1 protein levels colocalised with the signal at this locus (Supplementary Data 11). 
When performing the same MR analysis on Ageing-GIP1 adjusted for household income and 
socioeconomic deprivation, protein effects remained significant (Extended Data Fig. 5). 
 
Among the discovered proteins, LPA shows the most significant effect on Ageing-GIP1 (PMR 

= 2x10–8), with an increase of one standard deviation in genetically predicted blood protein 
levels causing a decrease of 0.035 (95% CI 0.025–0.045) standard deviations in Ageing-GIP1. 
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This significance appears to be driven by a consistent detrimental effect across all six Ageing-
GIP1 component traits (βMR range 0.013 to 0.035; all nominal P < 0.05) (Figure 5). For a sense 
of scale, when performing the same MR analysis on the unstandardised parental lifespan 
GWAS, this equates to a loss of approximately 7 months of life (95% CI 5 months to 9 months) 
per standard deviation increase in LPA blood levels (Supplementary Table 8). The effects of 
the remaining proteins on Ageing-GIP1 are larger in magnitude but appear unequally 
distributed across Ageing-GIP1 component traits. We estimate a decrease of one standard 
deviation in genetically predicted VCAM1 blood protein levels is associated with an increase 
of approximately 18 months of life (13 months to 23 months); however, comparing VCAM1 
effects on standardised Ageing-GIP1 components, we find its effect to be largest on mid-to-
late life ageing traits (lifespan, longevity, resilience) compared to early-life ageing traits 
(healthspan). Similarly, the effects of OLFM1 and LRP12 appear mostly mediated through 
late-life ageing traits (resilience and/or longevity). (Figure 5).  
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Discussion 
We combined European-ancestry GWAS of healthspan, father lifespan, mother lifespan, 
longevity, frailty, and self-rated health using a framework which maximised power to detect 
associations with their shared genetic component while down-weighing trait-specific genetic 
associations. The resulting Ageing-GIP1 trait captured the genetics underlying physical and 
mental wellbeing, and showed strong inverse genetic correlations with cardiovascular, 
inflammatory, and neuropsychiatric disease traits. We highlight 27 loci with genome-wide 
significant effects on Ageing-GIP1, including two novel loci near HTT and MAML3 that 
showed directionally consistent evidence of an effect on survival in two additional, independent 
samples. Across the genome, we found genes enriched for association with Ageing-GIP1 to be 
overrepresented in haem metabolism and pathways related to (among others) neurogenesis, 
homeostasis, proteolysis, immunity, and the muscle system in human ageing. Lastly, we 
performed MR of predicted blood protein levels on Ageing-GIP1, which revealed the levels of 
LPA, VCAM1, OLFM1, and LRP12 proteins may be detrimental to multiple indices of healthy 
ageing. 
 
LPA is a glycoprotein making up the main component of large lipoprotein(a) particles. It is a 
well-known risk factor for atherosclerotic disease32 and a target of ongoing clinical trials with 
regard to cardiovascular outcomes33. A recent MR study used 27 genetic instruments for LPA 
and found a link between genetically elevated LPA levels and reduced healthspan and parental 
lifespan34, in line with our results. Our analysis suggested the detrimental effect of LPA may 
apply to ageing more generally, and stringent colocalisation and reverse MR tests provided 
additional evidence for causality. Interestingly, human endothelial cell culture experiments 
show addition of LPA increases cell surface expression of VCAM136 and can increase 
endothelial cell contraction and permeability37.  
 
VCAM1 is a cell adhesion glycoprotein localised predominantly on endothelial cell surfaces 
and its expression is upregulated in response to inflammatory signals, which mediates adhesion 
and transduction of leukocytes across endothelial walls38. The link we established between 
VCAM1 and human ageing relied on a trans-pQTL instrument shared with B2M and is 
therefore more susceptible to horizontal pleiotropy. That is, the genetic variant may influence 
VCAM1 levels indirectly, and its effect on human ageing traits could be caused by factors 
independent of VCAM1 levels. However, only VCAM1 colocalised with the pQTL signal, and 
experimental evidence from mouse studies suggests the effect of VCAM1 on ageing is likely 
to be causal. Specifically, VCAM1 levels in blood are known to increase with age in both 
humans and mice39 and treatment with anti-VCAM1 antibodies or an inducible deletion of 
Vcam1 improves cognitive performance of aged mice39. Of note, similar results have been 
found for B2M abundance and mouse knockouts40, and as such, identification of robust genetic 
instruments for B2M levels is also warranted.  
 
We were unable to robustly assess colocalisation and reverse causality for the LRP12 and 
OLFM1 signals as genome-wide association summary statistics were not available, so the 
effects of these proteins on human ageing should be interpreted with additional caution. LRP12 
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belongs to the LDL receptor superfamily and may play a role in brain development41 and both 
tumour proliferation and suppression, depending on the tissue42,43. Similarly, OLFM1 is a 
glycoprotein involved in neuronal development and maintenance44 which has also been shown 
to suppress colorectal tumour metastasis45. In mouse models, Olfm1-knockouts showed 
reduced cerebral infarction and fertility46. However, it is unclear if reduction of LRP12 or 
OLFM1 blood levels will have a beneficial effect in humans. 
 
Importantly, our MR analysis was restricted to blood pQTL, precluding detection of causal 
effects of protein levels in other tissues. While it is likely that there are proteins with tissue-
specific effects on ageing, particularly in the brain, the samples needed for detection of such 
pQTL are less readily available and therefore more difficult to study at scale (although progress 
is being made47). Still, the blood may be a particularly suitable tissue to identify ageing-related 
proteins. Connecting the circulatory systems of two mice of different ages has been shown to 
accelerate signs of ageing in the brain, muscle, and liver of the young mouse and reverse similar 
signs in the old mouse48,49. Likewise, the detrimental cognitive effect of injecting old blood in 
mice is counteracted when anti-VCAM1 antibodies are concomitantly injected39. As such, the 
blood currently remains one of the most promising tissues to detect ageing-related proteins. 
 
Haem metabolism and iron levels were previously hypothesised to play role in human ageing11, 
and here we identify the same pathway using new methods and additional data. Interestingly, 
both the haem pathway and the proteins we uncovered using MR are strongly linked to vascular 
and endothelial damage50. Across the genome we also found an enrichment for brain tissues 
and pathways related to neuronal integrity. Given endothelial cells are central to both the 
cardiovascular system and the blood-brain barrier51,52, and endothelial function declines with 
age53, progressive endothelial dysfunction may manifest itself as an age-related disease. 
Indeed, recent findings suggest the detrimental effects of the APOE ε4 allele—the largest 
genetic determinant of human ageing—are mediated by an accelerated breakdown of the blood-
brain barrier, independently from amyloid-β and tau accumulation54. We therefore speculate 
that molecules involved in maintaining or repairing endothelial integrity may be key to 
avoiding both age-related cardiovascular injury and neurodegeneration, and recommend 
further research into this area. 
 
Our study demonstrates that GIP analysis of genetically correlated GWAS can increase power 
to detect shared genetic architecture and can identify genetic loci that would have been missed 
by any individual GWAS. For example, regions near AFF3, MAML3, USP28/HTR3B, and 
MIR6074 only reached genome-wide significance in the combined analysis, and validation of 
MAML3 in an external survival cohort suggests these findings may hold across populations and 
ageing measurements. In addition, USP28 within the USP28/HTR3B locus resembles CDKN2A 
within the well-known CDKN2B/-AS1 locus, as both have been implicated in cellular 
proliferation55,56 and senescence57,58. In fact, shRNA knockdown of USP28 in vitro results in 
decreased CDKN2A expression57. However, additional validation and functional investigation 
of Ageing-GIP1 loci are warranted. 
 



 11 

A secondary advantage of the GIP method is the high stability of the resultant Ageing-GIP1 
GWAS, which appears largely robust to the selection of component traits. Nevertheless, we 
note our analysis focused on chronological and disease measures of ageing and did not include 
the cellular measures of ageing due to their modest genetic correlations and lack of power. 
Whether Ageing-GIP1 loci and pathways accurately reflect the ageing process overall or only 
capture specific domains of ageing is unknown. Inclusion of future ageing-related GWAS 
performed on biobank-scale samples should provide insight into how well Ageing-GIP1 
captures human ageing.  
 
An important limitation of the Ageing-GIP1 GWAS, and GWAS of ageing-related traits more 
generally, is the potential confounding of ageing genetics with social stratification. 
Socioeconomic factors exhibiting geographical clustering can induce gene-environment 
correlations that could inflate trait heritability and may bias results, especially for UK Biobank 
studies24. In our study, we found genetic correlations of the six ageing-related GWAS with 
socioeconomic deprivation were moderately high (up to 61% for self-rated health). This 
confounding can be inadvertently propagated and even amplified in the shared genetic 
component captured by Ageing-GIP1. Indeed, when explicitly removing genetic correlations 
with two UK Biobank GWAS of socioeconomic factors, Ageing-GIP1 heritability is halved. 
After adjustment, genetic correlations with mental and physical health traits are also somewhat 
reduced, although the overall patterns remain stable. Similarly, effect sizes of blood protein 
levels and Ageing-GIP1 loci—including loci which have been confidently linked to ageing-
related traits previously—were only slightly reduced after adjustment. 
 
The shift of these effect sizes after adjustment was almost equal for all SNPs and MR signals. 
Together with the highly decreased heritability and stable genetic correlations, this suggests 
the adjustment removed the unspecific polygenic background induced by UK Biobank 
microstructure and social confounding. We therefore consider this procedure a suitable 
approach for confounder correction, although it may be somewhat conservative for also 
removing the genetic background of the adjusting traits that may genuinely be associated with 
ageing. An alternative solution to the confounding problem could be the inclusion of a more 
ancestrally diverse set of ageing-related GWAS from a larger variety of populations.  
 
Despite these limitations, modelling the shared genetic component of human ageing proxies 
has allowed us to down-weigh non-biological features and propose pathways and proteins 
which may causally influence the human ageing process. We share the full Ageing-GIP1 
summary statistics without restrictions59 to encourage further MR analysis using other 
biomarkers, and accelerate the discovery of drug targets able to prolong mental and physical 
wellbeing throughout life.  
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Methods 

Data sources 
We searched PubMed and Google Scholar in April 2020 for GWAS of ageing measures, 
including only studies for which we could obtain autosomal genome-wide summary statistics 
measured in at least 10,000 European-ancestry individuals. If multiple studies were performed 
on similar traits, we kept the study with the largest sample size. GWAS meeting inclusion 
criteria included extreme longevity17 (survival past 90th percentile), father and mother 
lifespan4, healthspan60, self-reported health16, frailty index8, epigenetic age acceleration19, 
telomere length5, mosaic loss of Y chromosome7, and perceived age18. As the self-reported 
health GWAS used the first release of UK Biobank data (N ~ 150,000), we looked up the same 
phenotype in the Neale Lab GWAS collection (N ~ 500,000), which had a larger sample size 
but was otherwise measured identically61. The original derivation of each set of summary 
statistics is briefly described in the Supplementary Note. 
 
For each set of summary statistics, we discarded poorly imputed (INFO < 40%), rare (MAF < 
0.5%), or poorly measured SNPs (N individuals < 1% of total). The remaining SNPs were 
aligned to genome build GRCh37 and harmonised to match UK Biobank SNP IDs (discarding 
any duplicates). We then estimated the phenotypic variance of the trait (residuals) from a 
selection of independent SNPs provided by the MultiABEL R package13 using Equation 1 from 
Winkler et al.62: 
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �2𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉�β��� (Equation 1) 
 
Where 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) is the phenotypic variance, p and q are the major and minor allele frequencies, 
N is the total sample size (cases + controls, if applicable), and 𝑉𝑉𝑉𝑉𝑉𝑉�β�� is the variance of the 
effect size estimate. If N differed by SNP, we calculated the phenotypic variance separately for 
quintiles of N and took the mean estimate. SNP statistics were then standardised by dividing 
effect sizes and standard errors by �𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌). 

Estimation of genetic and non-genetic correlations 
The High-definition likelihood (HDL) R package20 v1.3.4  was used to calculate SNP 
heritabilities of ageing-related GWAS and their genetic correlations with each other, using the 
default European-ancestry LD reference panel and non-MHC SNPs with MAF ≥ 0.01. All 
GWAS had ≥ 99.9% of the SNPs in this reference panel, except for the Hannum epigenetic age 
acceleration GWAS which had 96.29%. Pearson correlations between GWAS due to 
phenotypic similarity and sample overlap were calculated from Z scores of independent SNPs 
provided by the MultiABEL R package13 that were non-significant in both studies (|Z| < 1.96). 
The number of SNPs used for this calculation is reported in Supplementary Data 1. 
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LD-score regression (LDSC)63 v1.0.0 was used to calculate genetic correlations between 
selected GWAS summary statistics from the GWAS-MAP platform21 and the ageing-related 
GWAS and Ageing-GIP summary statistics used in our study, where the longer computation 
time of the HDL software would have been impractical. The GWAS-MAP platform contains 
summary statistics for 1,329,912 complex traits and gene expression levels and 3,642 binary 
traits, derived from UK Biobank61,64 and large European-ancestry consortia (e.g. MAGIC, 
CARDIoGRAM, SSGAC, GIANT) (for an up-to-date list of phenotypes, see 
https://phelige.com/)65. We included GWAS with ≥1 million SNPs, measured in ≥10,000 
individuals (if continuous) or ≥2,000 cases and controls (if binary). We further excluded the 
healthspan and self-rated health GWAS from the GWAS-MAP platform to avoid duplication, 
after which 728 traits remained. Out of specific interest66, we also calculated the genetic 
correlation between Ageing-GIPs and a case-control GWAS of COVID-19 hospitalisation, 
with cases defined as laboratory-confirmed COVID-19 patients experiencing a severe outcome 
and controls defined as the rest of the population (A2_ALL excluding 23andMe; Release 4)67. 
GWAS with counterintuitive effect directions were reversed (e.g. satisfaction traits are coded 
from high to low in UK Biobank), and each set of GWAS summary statistics was filtered prior 
to analysis by excluding SNPs in the Major Histocompatibility Complex, SNPs with MAF < 
1% and, if measured, SNPs with INFO < 90%. A full list of 729 GWAS and references can be 
found in Supplementary Data 3. P values were adjusted for multiple testing using Bonferroni 
correction (729 traits and 6 GIPs).   
 
The same software was used to calculate pairwise correlations between GWAS-MAP statistics, 
which allowed traits to be clustered based on the magnitude of their genetic similarity. For 
computational tractability, we only included GWAS that showed large and significant effects 
on Ageing-GIP1 (|rg| > 0.25; P < 0.05/729/6). Clusters were identified hierarchically by 
maximising the Bayesian information criterion using the mclust R package68 v5.4.1, up to a 
maximum of 100 clusters. 

Identification of shared and unique genetic correlations 
For each selected GWAS-MAP phenotype, genetic correlations with ageing-related traits were 
meta-analysed using fixed-effect inverse-variance weighting, with heterogeneity quantified by 
the Cochran’s Q and I2 statistics, implemented in the meta R package69 v4.15-1. GWAS-MAP 
phenotypes which were significantly correlated with all six ageing-related GWAS at FDR 5% 
and lacking substantial heterogeneity (Phet > 0.05 and I2 < 50%) were considered to be shared. 
For GWAS-MAP phenotypes with evidence of heterogeneity, we performed a leave-one-out 
sensitivity analysis to assess which ageing-related trait(s) contributed most to this 
heterogeneity. If heterogeneity could be completely removed by excluding a single GWAS (I2 
= 0%), and exclusion of any other GWAS did not substantially reduce heterogeneity (I2 ≥ 50%), 
the ageing-related trait outlier was considered to have a unique genetic correlation with the 
GWAS-MAP phenotype. 

https://phelige.com/


 14 

Genetically independent phenotype analysis of ageing GWAS 
Principal component loadings for six Ageing-GIP were estimated from the genetic covariance 
matrix of the six chronological and holistic ageing GWAS, analogous to a principal component 
analysis of phenotypic correlations. Specifically, eigenvectors from the genetic covariance 
matrix were transformed into loadings by dividing them by the square root of the phenotypic 
variance of the GIP. This phenotypic GIP variance was calculated as follows: 
 

Var(𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖) = ∑[(𝑎𝑎𝑖𝑖 ⊗ 𝑎𝑎𝑖𝑖) ∘ 𝛴𝛴𝑝𝑝ℎ] (Equation 2) 
 
Where ai is the eigenvector of the i-th Ageing-GIP, and Σph is the phenotypic variance-
covariance matrix of the core ageing traits. As GWAS were standardised, Σph is equivalent to 
the phenotypic correlation matrix, with off-diagonal correlations estimated from the correlation 
observed between independent null Z statistics (described above). 
 
The six chronological and holistic ageing GWAS statistics were then combined on a SNP-by-
SNP basis using the principal component loadings to construct genome-wide summary 
statistics for the six Ageing-GIPs. GIP effect estimates were calculated by summing effect 
estimates from the individual ageing-related trait GWAS, each multiplied by their 
corresponding loading, and standardised by the expected GIP variance (Equation 2). Standard 
errors of the GIP effect estimate were calculated by performing the equivalent calculation using 
variance arithmetic, also taking into account the phenotypic covariance between GWAS to 
adjust for sample overlap: 
 

SE�𝛽̂𝛽� = �∑[(𝑎𝑎𝑖𝑖 ⊗ 𝑎𝑎𝑖𝑖) ∘ 𝜮𝜮𝒑𝒑𝒑𝒑 ∘ (SE(𝑩𝑩) ⊗ SE(𝑩𝑩))]  (Equation 3) 

 
Where SE(B) is the vector of SNP standard errors of the core ageing trait effect estimates. 
Effective sample sizes were then estimated based on the median Z statistic and allele 
frequencies, i.e. solving Equation 1 for N. Full technical details of the GIP method are 
described in the Supplementary Note.  
 
Ageing-GIP summary statistics were calculated for the 7,324,133 SNPs shared between QC’d 
GWAS statistics, of which 5,353,660 were common (MAF ≥ 5%) and 1,970,474 were rare 
(MAF < 5%). Finally, standard errors of each Ageing-GIP GWAS were adjusted to account for 
the LD-score regression intercept, which ranged from 0.99 (GIP1) to 1.03 (GIP4).  
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Adjusting for genetic correlations with socioeconomic factors 
UK Biobank GWAS summary statistics for household income and Townsend deprivation index 
were downloaded from the Neale Lab GWAS collection61 and subjected to the same SNP filters 
used for ageing-related trait quality control. Genetic correlations between GWAS of Ageing-
GIPs and the two socioeconomic GWAS were calculated using the HDL R package20 v1.3.4. 
As before, phenotypic correlations were estimated from the correlation between independent 
null Z statistics.  
 
For each Ageing-GIP, adjustment loadings were then calculated as: 
 

𝑎𝑎𝑖𝑖 = {1,−𝛽𝛽1,−𝛽𝛽2} 
 
Where 𝛽𝛽 refers to 𝛽𝛽 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑿𝑿)−1 × 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺𝐺𝐺𝐺𝐺,𝑿𝑿). Here, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑿𝑿) is the genetic covariance 
matrix of UK Biobank GWAS of household income and Townsend deprivation index, and 
𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺𝐺𝐺𝐺𝐺,𝑿𝑿) is the genetic covariance matrix between the Ageing-GIP and the two GWAS. 
 
These loadings were used as weights in the linear combination framework to calculate new 
Ageing-GIP summary statistics, which—by definition—were uncorrelated to the UK Biobank 
GWAS of household income and Townsend deprivation index. Lastly, standard errors were 
adjusted to account for the LD-score regression intercept, which ranged from 0.99 (GIP3) to 
1.02 (GIP1). 

Characterisation of genome-wide significant Ageing-GIP1 loci 
Genome-wide significant loci were defined as 500 kb regions centred on a lead genome-wide 
significant SNP (P < 5x10–8/6) in linkage equilibrium (r2 < 0.1) with other lead locus SNPs. 
LD between SNPs was calculated using a random 10k subset of unrelated, genomically British 
individuals from UK Biobank70.The susieR R package25 v.0.11.8 was used to perform genetic 
fine-mapping of the association signals within each Ageing-GIP1 locus, allowing for up to 10 
causal variants. We report posterior inclusion probabilities for SNPs within 95% credible sets. 
Positional annotations of credible set SNPs were retrieved using ANNOVAR71 v.2019Oct24. 
 
SNPs within each 500kb locus were looked up in the six ageing-related trait GWAS used to 
construct the Ageing-GIPs. Any region containing a SNP associated with an ageing-related 
trait at genome-wide significance (P < 5x10–8) was tested for colocalisation between the trait 
and the Ageing-GIP1 signal. For this, we used the coloc R package31 v4.0-4 with its default 
parameters, denoting a posterior colocalisation probability (PP) of 80% as evidence of a shared 
GWAS signal. 

Association of loci with Finnish and Japanese survival 
Loci were considered to be previously replicated if they had been associated at genome-wide 
significance with one of the core ageing traits and also had evidence of an effect in an 
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independent cohort on the same trait (P < 0.05). We attempted to find additional evidence for 
an effect on ageing for the Ageing-GIP1 loci which had not been previously replicated.  
 
Effects were first looked up in a GWAS of survival of FinnGen study participants72. This study 
associated SNPs across the genome with the survival of 218,396 Finnish-ancestry individuals 
(203,244 censored, 15,152 deceased) using Genetic Analysis of Time-to-Event phenotypes 
(GATE) v0.40. SNP effects were log hazard ratios, calculated from a mixed effect frailty model 
which adjusted for sex, genotyping batch, birth year, and the first ten genomic PCs as fixed 
effects, and cryptic relatedness using the genetic relatedness matrix as random effects.  
 
Analogously, the same SNPs (if polymorphic) were regressed against the survival of 135,983 
unrelated, Japanese-ancestry individuals (97,365 censored, 30,976 deceased) from Biobank 
Japan73,74. In this analysis, a fixed effect Cox proportional hazards model was fitted using the 
survival R package v2.41: 

 
ℎ(𝑡𝑡) = ℎ0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝑿𝑿1𝛽𝛽1 + 𝑿𝑿2𝛽𝛽2 + ⋯+ 𝑿𝑿𝑛𝑛𝛽𝛽𝑛𝑛 + 𝑮𝑮𝑮𝑮)(Equation 4) 

 
Where h(t) is the hazard at time t, given the subject is alive at time t; h0(t) is the baseline hazard 
at time t; X1, X2, …, Xn are the vectors of covariates with fixed effects β1, β2, …, βn; and ɣ is 
the effect of the vector of SNP dosages G. Covariates were sex, disease status, and the first 20 
PCs, where disease status refers to one of 47 common diseases in Japan used to recruit the 
individuals. Each SNP was tested in a separate model.  
 
The SNP effects from both studies were converted from log hazard ratios to approximate years 
of life by inverting the sign and multiplying the effect estimate and standard errors by ten3. For 
each SNP, a combined effect was calculated by meta-analysing the cohort-specific effects in a 
fixed-effect framework (weighted using inverse variance), implemented in the meta R 
package69 v4.15-1. One-sided P values were adjusted for multiple testing of 23 loci using 
Bonferroni correction. The collective effect of the 21 remaining loci was calculated using a 
random-effect framework, to allow for heterogeneity in effect size estimates.  
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Ageing-GIP1 leave-one-out sensitivity analyses 
Leave-one-out sensitivity analyses were performed for Ageing-GIP1, where one at a time, a 
core ageing trait was excluded and Ageing-GIP1 loadings and summary statistics were 
recalculated using the remaining five traits. Genetic and non-genetic correlations were 
calculated between the original Ageing-GIP1 and each leave-one-out GIP using HDL inference 
and null SNP Z statistics, as described above. 
 
To test for heterogeneity in genome-wide significant Ageing-GIP1 loci, we estimated the 
difference between the lead SNP effect in Ageing-GIP1 and the effect in the leave-one-out 
GIP1 GWAS, taking into account null correlations between traits. The standard error of the 
difference in effects was calculated as follows: 
 

SE�β�1 − β�2� = �𝑆𝑆𝑆𝑆�β�1�
2

+ 𝑆𝑆𝑆𝑆�β�2�
2
− 2𝑟𝑟 ∗ 𝑆𝑆𝑆𝑆�β�1� ∗ 𝑆𝑆𝑆𝑆�β�2� (Equation 5) 

 
Where is SE(β1) and SE(β2) are the standard errors of the SNP for Ageing-GIP1 and the leave-
one-out GIP1, respectively, and r is the non-genetic correlation between GWAS. Statistical 
significance of the difference was assessed using a Wald test and adjusted for multiple testing 
of 27 loci using Bonferroni correction. 

Lookup of known SNP associations 
Lead SNP and close proxies (r2EUR ≥ 0.8) of the Ageing-GIP1 loci were looked up in 
PhenoScanner26 and the GWAS catalog27 (accessed 3 December 2020), keeping only the traits 
with genome-wide significance (P < 5x10–8). Triallelic SNPs and associations with treatments 
or medications were discarded, before converting associations with the lack of a phenotype 
into the phenotype itself by inverting the sign (e.g. “Qualifications: none” to “Qualifications”). 
We then further grouped the traits based on similarities in trait names, keeping the strongest 
association in the group. This grouping was done by partial matching of trait names—verified 
manually—and keeping the shortest name. For example, “Melanoma”, “Malignant melanoma”, 
and “Malignant melanoma of skin” were grouped and renamed to “Melanoma”. 

Tissue enrichment 
Stratified LD-score regression v1.0.0 was used to stratify Ageing-GIP1 SNPs into categories 
and test whether the proportion of SNP heritability in a category exceeded that expected from 
the proportion of SNPs in the category63. We kept only HapMap3 SNPs, excluding the MHC 
region and SNPs with MAF < 0.05, and used the 1000 Genomes Phase 3 LD score reference 
as weights. Categories tested included the 10 groups summarising 220 cell-type specific 
annotations from Finucane et al. 63, adjusting for the baseline model (v1.2). 
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Gene and pathway enrichment 
PASCAL28 was used to aggregate Ageing-GIP1 SNP-level P values (with and without 
adjustment for socioeconomic correlations) into gene scores and test these scores for 
enrichment against predefined gene sets. Gene sets were Hallmark (C1) and Gene Ontology 
Biological Process (C5.BP) sets from version 7.2 of the Molecular Signatures Database75.  
 
Ageing-GIP1 summary statistics were first aligned to the 1000 Genomes SNP build (matching 
the PASCAL LD reference), before being tested with default PASCAL parameters, which 
includes discarding SNPs with MAF < 5% and SNPs in the MHC region. Gene results passing 
a 5% FDR threshold were considered significant. For each pathway in the C1 and C5.BP 
datasets, PASCAL calculated two measures of significance based on chi-squared and 
permutation statistics. We separately adjusted C1 and C5.BP for multiple testing and 
considered a pathway with both chi-squared and permutation statistics passing a 5% FDR 
threshold to be significant.  
 
Significant C5.BP pathways (with and without adjustment for socioeconomic correlations) 
were clustered based on their Jaccard similarity coefficient (i.e. size of the intersection of genes 
divided by the size of the union of genes). The mclust R package68 v5.4.1 was used to maximise 
the Bayesian information criterion of the Jaccard similarity matrix to identify the optimal 
number of clusters (up to a maximum of 100). We used the number of clusters selected by the 
majority of mclust models to group the pathways. 

Mendelian randomisation of blood protein levels 
Genetic instruments for blood protein levels (pQTL) were retrieved from Zheng et al.30. We 
included all Tier 1 instruments: cis- and trans-pQTL shown to influence five or fewer proteins 
(specificity) with no evidence of heterogeneity in effect sizes between multiple protein 
expression studies (consistency). A total of 857 proteins had non-palindromic SNP instruments 
(898 total pQTL) present in the Ageing-GIP1 summary statistics. Two-sample MR of blood 
protein levels as exposures and Ageing-GIP1 as outcome was performed using the 
TwoSampleMR R package29 v0.5.5. If multiple pQTL instruments were available for a protein, 
heterogeneity and MR-Egger sensitivity tests were also performed. This analysis was repeated 
with the six standardised Ageing-GIP1 component traits as outcome, as well as the 
unstandardised, combined parental lifespan GWAS from Timmers et al.4 to provide an intuitive 
measure of the effect. The MR effects and standard errors from the latter were multiplied by 
10 to convert them from units of negative log hazard ratio to approximate years of life3. 
 
Ageing-GIP1 MR results passing a 5% FDR threshold and sensitivity tests (PHet > 0.05 and 
PEgger > 0.05; if applicable) were taken forward for follow-up colocalisation tests to rule out 
LD linkage. For proteins for which we had access to genome-wide summary statistics (e.g. 
LPA, B2M, and VCAM1), we used the coloc R package31 v4.0-4 to perform colocalisation 
analysis using the default parameters, and denoted PP ≥ 80% as evidence of a shared signal. 
For instruments without summary statistics, we performed an LD check as described in Zheng 
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et al.30, which involved checking whether any of the 30 strongest Ageing-GIP1 SNPs in a 1 
Mb region centred on each pQTL were in high LD (r2EUR ≥ 0.8) with that pQTL. 
 
Finally, proteins passing sensitivity and colocalisation tests were subjected to a reverse-
causality test using MR-Steiger76, and, if genome-wide summary statistics were available, a bi-
directional MR analysis, both implemented in TwoSampleMR. For the bi-directional MR, we 
used up to 27 genome-wide significant lead SNPs from Ageing-GIP1 (shared between GWAS 
and replacing missing or palindromic SNPs with the next most significant SNP) as instruments 
and the protein expression statistics as outcome. Proteins significant for the MR-Steiger test (P 
< 0.05) and showing no evidence of reverse causality in the bi-directional MR (P > 0.05) (if 
applicable) were considered to have robust causal effects on Ageing-GIP1. 

Ethical oversight 
Biobank Japan participants provided written informed consent and survival study protocols 
were approved by Biobank Japan Project ethical review boards from the Institute of Medical 
Sciences, the University of Tokyo, and the RIKEN Center for Integrative Medical Sciences. 
All other data was publicly available and approved by ethical committees as described in their 
respective publications. See Supplementary Note for FinnGen ethical approval. 

Statistics and reproducibility 
The statistical methods used to analyse the data are described fully in the Methods subsections 
above, with basic data processing done using R version 3.6.0 unless specified otherwise. We 
used the independent FinnGen and Biobank Japan cohorts to successfully replicate two of the 
23 new ageing-related loci. Predetermination of study sample size, randomisation of 
experiments, and blinding of investigators to experiments were not applicable for our type of 
study. 

Data availability 
Ageing-related trait GWAS summary statistics can be retrieved or requested from study authors 
at http://www.nealelab.is/uk-biobank/ (self-rated health; field 2178), 
https://www.longevitygenomics.org/downloads (longevity), and the following DOI: 
10.5281/zenodo.1302861 (healthspan), 10.6084/m9.figshare.9204998.v3 (frailty index), 
10.5523/bris.21crwsnj4xwjm2g4qi8chathha (perceived age), 10.7488/ds/2463 (parental 
lifespan), 10.7488/ds/2631 (epigenetic age acceleration), 10.1016/j.ajhg.2020.02.006 
(telomere length), 10.1038/ng.3821 (mLOY). Summary statistics for Ageing-GIP1 calculated 
in this study have been deposited in the Edinburgh DataShare repository, available without 
restrictions at https://doi.org/10.7488/ds/2972. Summary statistics of the GWAS-MAP 
phenotypes used to calculate phenome-wide genetic correlations are available from GeneAtlas 
(http://geneatlas.roslin.ed.ac.uk/), NealeLab (http://www.nealelab.is/uk-biobank/), or their 
respective publications. The COVID-19 GWAS summary statistics have been made available 
by the COVID-19 Host Genetics Initiative at https://www.covid19hg.org/results/. GWAS 

https://www.nature.com/articles/s43587-021-00108-5#Sec7
http://www.nealelab.is/uk-biobank/
https://doi.org/10.1038/ng.3821
https://doi.org/10.7488/ds/2972
http://geneatlas.roslin.ed.ac.uk/
http://www.nealelab.is/uk-biobank/
https://www.covid19hg.org/results/
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catalog and PhenoScanner associations can be found at https://www.ebi.ac.uk/gwas/ and 
http://www.phenoscanner.medschl.cam.ac.uk/, respectively. Curated gene sets (hallmark and 
gene ontology) are available from the Molecular Signatures Database (https://www.gsea-
msigdb.org/). Source data for figures in this study are available in the supplementary 
documents and upon request from the corresponding author. 

Code availability 
HDL: https://github.com/zhenin/HDL/ 
LDSC: https://github.com/bulik/ldsc/ 
SuSiE: https://stephenslab.github.io/susieR/ 
ANNOVAR: https://annovar.openbioinformatics.org/ 
PASCAL: https://www2.unil.ch/cbg/index.php?title=Pascal 
TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/ 
 
This code can be accessed without restrictions.  

https://www.ebi.ac.uk/gwas/
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
https://github.com/zhenin/HDL/
https://github.com/bulik/ldsc/
https://stephenslab.github.io/susieR/
https://www2.unil.ch/cbg/index.php?title=Pascal
https://mrcieu.github.io/TwoSampleMR/
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Tables 
Nearest gene(s) rsID Chr Position A1 Freq1 β1 (SE) P Het 

NEGR1 rs2815748 1 72816147 G 0.20 0.028 (0.004) 7x10–10  

PHTF1 rs1230682 1 114293526 A 0.63 0.023 (0.004) 4x10–10  

AFF3 rs7609078 2 100490363 A 0.37 0.023 (0.004) 3x10–10  

TRAIP rs2271961 3 49878113 T 0.50 0.027 (0.004) 8x10–14  

ADD1 rs16843603 4 2928577 C 0.28 0.025 (0.004) 1x10–10  

HTT rs362273 4 3227419 G 0.32 0.024 (0.004) 4x10–10  

ANAPC4 rs34811474 4 25408838 A 0.23 0.025 (0.004) 3x10–9  

4q13.2 rs10434248 4 67842921 A 0.57 0.021 (0.004) 8x10–9  

MAML3 rs56172573 4 140919381 C 0.38 0.021 (0.004) 7x10–9  

C6orf47/GPANK1 rs805262 6 31628733 C 0.52 0.027 (0.004) 1x10–12  

HLA-DRB1/DQA1 rs660895 6 32577380 A 0.79 0.043 (0.004) 1x10–22 * 

SLC22A1/A2 rs9456508 6 160598596 T 0.98 0.082 (0.012) 4x10–11 ** 

LPA rs118039278 6 160985526 G 0.92 0.045 (0.007) 1x10–11 *** 

MAD1L1/SNORA114 rs11764780 7 2020904 C 0.19 0.029 (0.005) 3x10–10  

FOXP2 rs12705966 7 114248851 G 0.34 0.023 (0.004) 7x10–10  

CSMD3 rs560719 8 113032374 T 0.50 0.021 (0.004) 5x10–9  

CDKN2B/-AS1 rs9632885 9 22072638 G 0.52 0.025 (0.004) 5x10–12 ** 

CTSF rs2924807 11 66341005 G 0.50 0.021 (0.004) 5x10–9  

CCDC90B/DLG2 rs2512690 11 83145469 C 0.34 0.023 (0.004) 7x10–10  

TTC12/ANKK1 rs2186800 11 113242860 A 0.54 0.022 (0.004) 2x10–9  



 23 

USP28/HTR3B rs61907878 11 113751052 C 0.90 0.037 (0.006) 1x10–9  

MIR6074 rs7306710 12 66376091 T 0.48 0.023 (0.004) 4x10–10  

12q21.31 rs6539846 12 84811217 A 0.49 0.022 (0.004) 8x10–10  

LINC01065 rs8002970 13 53924489 C 0.45 0.024 (0.004) 6x10–11  

ZNF652/PHB rs28394864 17 47450775 G 0.54 0.021 (0.004) 6x10–9  

APOE rs429358 19 45411941 T 0.84 0.066 (0.005) 2x10–40 *** 

ZFP64 rs67442863 20 51031131 T 0.18 0.029 (0.005) 6x10–10  
 
Table 1: Twenty-seven independent genomic loci are associated with the first genetic principal component 
of ageing-related trait GWAS (Ageing-GIP1). Loci were defined as 500 kb regions centred on a lead genome-
wide significant SNP (P < 5x10–8/6) in linkage equilibrium (r2

EUR < 0.1) with other lead locus SNPs. Nearest 
gene(s)—Closest genes upstream/downstream to the lead SNP (within 250 kb), or if none, the closest cytogenetic 
band. rsID—The lead SNP within the locus. Chr—Chromosome. Position—Base-pair position (GRCh37). A1—
Effect allele, associated with higher GIP1. Freq1—Allele frequency of the effect allele in UK Biobank. β1—
Effect estimate (and standard error) of the A1 allele on Ageing-GIP1 in standard deviation units. P—Two-sided 
nominal P value from Wald test. Het—Evidence of heterogeneity: asterisks indicate Ageing-GIP1 effect size 
changes significantly when leaving out one of the core ageing traits from GIP1 calculation (* all but one leave-
one-out effects are the same, ** all but two effects are the same, *** three or fewer effects are the same). 
 
 

Exposure βMR (SE) P FDR Psteiger Preverse Coloc PP LD check 

LPA -0.035 (0.005) 2x10–11 2x10–8 6x10–274 0.556 100% Pass 

VCAM1 -0.095 (0.019) 7x10–7 2x10–4 9x10–12 0.063 99% Pass 

OLFM1 -0.111 (0.024) 3x10–6 6x10–4 1x10–7 - - Pass 

LRP12 -0.078 (0.021) 2x10–4 0.033 4x10–10 - - Pass 

 
Table 2: Mendelian randomisation of genetically predicted blood levels of four proteins suggests they have 
a causal detrimental effect on Ageing-GIP1. In bold are exposures passing all quality checks, including reverse 
MR and coloc which required access to genome-wide summary statistics. βMR—MR effect with standard error in 
parentheses. P—Two-sided nominal Wald test P value for the MR effect. FDR—FDR-adjusted P value taking 
into account the 857 proteins tested. Psteiger—Two-sided nominal Wald test P value for the MR Steiger test 
assessing if the exposure-outcome pair has the correct causal direction. Preverse—Two-sided nominal Wald test P 
value for the MR effect of Ageing-GIP1 on the exposure, i.e. evidence of reverse causality. Coloc PP—Posterior 
probability of colocalisation estimated by coloc. LD check—A secondary check for colocalisation, which requires 
at least one of the 30 strongest Ageing-GIP1 SNPs within 500 kb of the pQTL to be in strong LD (r2

EUR ≥ 0.8) 
with the pQTL itself. LPA—apolipoprotein(a). VCAM1—vascular cell adhesion molecule 1. OLFM1—
olfactomedin 1. LRP12— LDL receptor related protein 12. 
 

Figure Legends 
Figure 1: There are strong genetic correlations between measures of the length and quality of life. Diagonal 
values show the observed-scale SNP heritability of each ageing-related phenotype and off-diagonal circles show 
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the genetic correlation among traits, with both values calculated using High-Definition Likelihood20. Blank 
squares did not pass multiple testing corrections (FDR 5%). The bottom dendrogram shows the hierarchical 
relationship between traits, based on the magnitude of their genetic correlations. The black box highlights the first 
cluster of ageing-related phenotypes used in follow-up analyses. EAA—Epigenetic Age Acceleration. mLOY—
mosaic Loss of Y chromosome. 
 
Figure 2: Principal component loadings used to create the genetically independent phenotypes for human 
ageing. GIP—Genetically independent phenotype. Resilience—Inverse of frailty index. Error bars represent 95% 
confidence intervals of the loading estimate, inferred using 1000 rounds of Monte Carlo simulations (see 
Supplementary Note for details). 
 
Figure 3: Phenome-wide genetic correlations show Ageing-GIP1 captures both physical and mental 
wellbeing. a) Table showing the estimated sample size (Nest) and SNP heritability (h2

SNP) of each Ageing-GIP 
GWAS, with standard errors in parentheses. b) Genetic correlations between Ageing-GIP GWAS and the six 
ageing-related trait GWAS used to construct them. Blank values failed to pass nominal significance (P ≥ 0.05). c) 
GWAS of 402 phenotypes measured in European-ancestry individuals from the GWAS-MAP platform have 
strong and significant associations with GIP1 (P < 1.5x10–5 and |rg| > 0.25). These 402 traits are summarised here 
in 25 groups, based on hierarchical clustering of the magnitude of pairwise genetic correlations. Each group is 
manually annotated with a label describing the traits within the cluster, and displays the values of the most 
informative trait (i.e. the trait with the highest total Z score across Ageing-GIPs). Values failing to pass nominal 
significance (P ≥ 0.05) are greyed out. The dendrogram displayed here shows the hierarchical relationship between 
the most informative trait in each cluster. See Supplementary Data 3 for the full list of correlations. Genetic 
correlation P values are derived from a two-sided Wald test with one degree of freedom. 
 
Figure 4: Twenty-seven independent genomic loci are associated with the shared genetic component of 
ageing-related GWAS. a) Manhattan plot showing associations of SNPs across the genome with Ageing-GIP1, 
with the y-axis showing the strength of the association and the x-axis the genomic position of the SNP. The line 
represents the Bonferroni-adjusted genome-wide significance threshold of 5x10–8/6. The lead SNP of each 
independent locus is marked with a cross and annotated with the nearest (upstream) gene, or the cytogenetic band 
if there are no genes within 250 kb. The y-axis has been capped at P = 1x10–20. Loci which exceed this cap and 
are represented as triangles: APOE (P = 1.5x10–40) and HLA-DRB1 (P = 1.4x10–22). b) Significance of the 
association of each lead SNP with the ageing-related trait GWAS used to construct Ageing-GIP1. Bonf-GWS: 
Bonferroni-adjusted genome-wide significant (P < 5x10–8/6). GWS: Genome-wide significant (P < 5x10–8). 
Bonferroni: P < 0.05 adjusted for 6 traits and 27 SNPs (P < 3x10–4). Nominal: P < 0.05. NS: Not significant. P 
values are derived from a two-sided Wald test with one degree of freedom. 
 
Figure 5: MR of blood protein expression levels on ageing-related GWAS. Exposures which showed causal 
evidence of an effect on Ageing-GIP1 were tested for association with each of the ageing-related traits used to 
construct Ageing-GIP1. The x-axis shows the MR effect estimate, with lines representing 95% confidence 
intervals of the mean, as estimated by TwoSampleMR3. The sample sizes of exposure GWAS were 6,861 for 
LPA; 3,301 for VCAM1; and 3,200 for OLFM1 and LRP12. LPA—apolipoprotein(a). VCAM1—vascular cell 
adhesion molecule 1. OLFM1—olfactomedin 1. LRP12— LDL receptor related protein 12. 
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