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ABSTRACT

Fermentation is an essential step in beer brewuhgn yeast is added to hopped wort, sugars
released from the grain during germination are &m®@d into ethanol and higher alcohols. To
study, simulate and optimise the beer fermentgtiatcess, accurate models of the chemical
system are required for dynamic simulation of kesnponent concentrations. Since the entire
beer production process is a highly complex safehemical reactions with the presence of
over 600 species, many of the specific interactiares not quantitatively understood, a

comprehensive dynamic model is impractical.

This paper presents a computational implementatibra detailed model describing an
industrial beer fermentation process, which is usedsimulate published temperature
manipulations and compare results with those obthiollowing the protocol currently in
place at WEST Beer brewery (Glasgow, Scotland, UK).trade-off between design
objectives has been identified, making determimatiba single optimal scenario challenging.
A Simulated Annealing (SA) algorithm has been depell in order to pursue stochastic
optimisation of the fermentor temperature manipokaprofile, on the basis of generating an
enormous set of plausible manipulations which agi@isuitable operability constraints at an
appropriate level of temporal domain discretisatibine objective function considers ethanol
maximisation as well as batch time minimisation tiwvariable weight allocation), and
explicit constraints on diacetyl and ethyl acetatscentrations. Promising temperature
manipulations have been determined, allowing fdchdime reductions of as high as 15
hours: this represents a substantial decreasedugption cycle time, and is thus expected to
improve annual plant throughput and profitabilitgthout any discernible effect on flavour.

1



1. INTRODUCTION
1.1 FERMENTATION

The production of beer is well documented, withgrsjions that it is one of the world’s
oldest prepared beverages, dating as early asatheNeolithic period (Arnold, 1911). Today
beer is the most widely consumed alcoholic bevemagke world (Rehm et al., 2003) with
the global beer market estimated to be over 5dmiIlUSD in 2015 (Markets, 2013). The
continual growth of the alcohol industry as a whude resulted in an ever-increasing demand
for beer products, with a rapid increase in the @w®infor super premium and craft beer
products observed in the last 5 years. Market cdihmness makes it imperative that
brewers operate their production processes effgtithe ability to improve any stage of
production will have a significant effect on pratiility and the ultimate success or failure of
a brewery.

While many variations of the beer manufacturprgcess exist, industrial production
almost invariably follows the scheme outlined irg.FIL. Beer production is a complex
chemical process: nevertheless, its only preretguisi the use of the same four essential
ingredients: a starch source, yeast, hops and \(&oerthby, 1885).

Beer production requires few raw materials arahy rudimentary processing techniques,
however what is produced is a highly complex migtof chemical species which govern
product quality and flavour. It is the varying comdtions of these compounds which are
responsible for the unique taste of each beer biamgever many are unpleasant at certain
concentrations. Diacetyl (2,3-butanedione) has agent butter-like aroma (lzquierdo-
Ferrero et al., 1997), similar to banana flavouraggnts (Hanke et al., 2010), and is often
produced well above the flavour threshold in breywiDue to their volatility, esters also
contribute significantly to beer aroma; ethyl ateta often used as an indicator of all esters
present, and is described as having the odour ibfvaeish remover. It is essential that
efforts to improve fermentation efficacy are mindéf the degrading effect which these

compounds have on product quality, if present mstantial quantity.

Malting Milling Mashing Lautering Boiling Fermentation Conditioning
. Sweet Bitter Green Mature
[Barley ]—-[ Malt ]—-[ Grist ]—-[ Mash ]—-[ Wort ]—-{ Wort ]—-[ Beer ]——[ Beer ]

Figure 1. Block flow diagram of the beer production process.
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1.2 FERMENTATION

Fermentationis an essential brewing process unit operatiod the focus of this study. Yeast
is introduced once the cooled wort (a sugar richwiong intermediate, Hough et al., 1982)
from the boiling process (Hudson and Birtwistleb@Penters fermentation vessefst¢hing).
The primary chemical reaction pathway is the cosieer of two sugar molecules into one
ethanol and one carbon dioxide molecule, which aspted with biomass growth and
exothermic reaction heat generation. Concurreatlyjde range of species are formed at low
concentrations by a multitude of side reactionsayra which contribute to beer flavour.
Fermentation progression is sensitive to ypashing rate (Guido et al., 2004), dissolved
oxygen content, batch pressure and system temperathich strongly affects yeast growth
and metabolic rate: as long as yeast cells aredawtaged and are kept below %) high
temperature accelerates fermentation. Neverthed¢sanol and volatile flavour component
loss rates are too severe at higher temperatumegled with increased production of
undesirable aromatic compounds and bacterial grewahotion. Therefore, brewers control
temperature inside the fermenter as the batch @ssgs, to accelerate fermentation while
ensuring that yeast is not denatured and that desired by-product species are produced.
Online measurements can be cumbersome: eaclbtzeel or line may have a proprietary
temperature manipulation profile used for everycbato ensure product consistency (Trelea
et al., 2001). Offline measurements to assess fagaten progression are often limited to
wort density or specific gravity. The Plato (specigravity) scale represents equivalent
sucrose concentration: sugar depletion is a useflitator of the extent of fermentation. A
primary concern of the brewing industry is the sgts and implementation of an appropriate
dynamic temperate profile throughout the fermeatatprocess, to ensure high product
quality, eliminate batch variations and ensure #reansistency and customer satisfaction.
Fermentation duration varies by product soudglaigers are fermented at temperatures
around 10 °C, requiring a fermentation time of dlmwveek. Ales are fermented at higher
temperatures (22 °C) and thus require 3-4 days l{@&owand Quain, 2008). Given the
diversity of brewing operations around the worldany vessel types are used for
fermentation. Typically, fermentation tanks areimgto-conical stainless steel vessels. This
shape promotes the circulation of £laubbles to agitate and mix the contents (whichnate

agitated or circulated by any mechanical meanslpitge to maintain a uniform vessel
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temperature. Moreover, it facilitates recovery ettled yeast from the cone, for lager-
producing bottom yeasts. Conversely, ale-produtopgyeasts settle at the free surface of the
vessel and can be skimmed off. Fermentation tayksdlly feature a cooling jacket, used to
control the wort temperature in order to follow threwer’s desired profile. Larger tanks may
include separate cooling mechanisms on the coairwhkylindrical portions, allowing control
of the internal circulation pattern (Boulton & QnaR008).

1.3 SUMMARY & OBJECTIVES

Fermentation is an essential part of beer produgctibe process is time-consuming and
energy-intensive, so the effort to shorten its loraand cost implies enormous potential
savings. The chemical system is highly complex,ahdoncurrent chemical reactions during
fermentation have an extremely significant effetttioe resulting product flavour. Therefore,
efforts to improve process efficiency must expljcitonsider the effect of any process
modification on the product quality. While beerWneg is an established industry, the system
complexity induces a lack of understanding of matthe chemical phenomena taking place,
making it extremely challenging to explicitly pretlthe effect of process alterations on the
required processing time and product composition.

The present study is aimed at beer fermentatiodelling toward recommending process
operation improvements for an industrial partnefz3V Beer (Glasgow, UK). Published
kinetic models have been reviewed and a detailedmyc model has been used to simulate
the WEST fermentation process, enabling compargodynamic model predictions and
current industrial operating practice: improvedrapieg procedures have been systematically
determined toward reducing beer fermentation tirhdeamaintaining high product quality.

2. REVIEW OF PUBLISHED M ODELSAND OPTIMISATION

Computational prediction and performance assessmer# biochemical process toward
process optimisation requires a mathematical moglglesenting species consumption and
production. Given the complexity of the fermentatrocess, and the numerous (over 600)
species present (Vanderhaegen et al., 2006), nteergical interactions are not quantitatively
understood and the construction of a comprehemsimamic process model is thus infeasible.
Reduced-order dynamic fermentation models consideanly the key chemical reaction
pathways, using parameters computed from experaheampaign data.
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The extreme industrial importance of dynamic madglifor high-fidelity simulation and
optimisation of fermentation processes is not cwedi to brewing only. Achieving high
efficiency is vital in producing a wide array ofetlapeutic molecules (especially antibiotics),
SO process intensification is of enormous interpatticularly in the context of continuous
pharmaceutical manufacturing (Gerogiorgis and Bar009; Schaber et al., 2011; Jolliffe
and Gerogiorgis, 2015a, 2015b).

2.1 BATCH FERMENTATION KINETIC MODELS

The earliest kinetic model of beer fermentation b@sn published by Engasser et al. (1981),
based on fundamental biochemical pathways and taener in which the evolution of
alcohol and sugars depends on total biomass (yeastentration. Gee and Ramirez (1988)
adapted this work to include temperature effectsab@ expressions. The model considers 3
ordinary differential equations (ODEs) predictingnsumption of glucose, maltose and
maltotriose (assumed to be the limiting nutrienta)Monod kinetics.

Gee and Ramirez (1994) also published a subkséquaper to extend the model and
consider further compounds, while also incorporatia simple feedback inhibition
mechanism on cell growth rate. The model considetstal of twelve species affecting
product flavour, in addition to the five describedthe original growth model (Gee and
Ramirez, 1988), however new parameters are ongdstar isothermal conditions.

De Andrés-Toro et al. (1998) proposed an adtitva kinetic model for beer production
under industrial operating conditions. Unlike thedal of Gee and Ramirez which is based
on sugar uptake rate, this later model relies oedipting yeast evolution in order to
subsequently compute chemical species growth. lésjgonses are considered; ethanol, sugar,
biomass and two flavour-contributing compounds deligl and ethyl acetate). Here, the
single sugar compound represents the sum of alirsygresent in the wort. The suspended
biomass within this model is distinguished intoethdistinct types; active, latent and dead
cells. Latent (lag) cells cannot promote fermentatiover time, they are transformed into
active cells, responsible for consumption of fertable sugars. Active cells duplicate and
grow over time, but a portion of them will die, tt®tand no longer contribute to fermentation.

The fermentation process is distinguished imto observable phases; in the first (lag
phase), the majority of biomass introduced comprist latent yeast cells, so minimal

fermentation takes place as latent cells undergoadion. Once approximately half of the
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suspended cells are activated, the second (fertimntphase) begins: therein, active cell
concentration is sufficient to induce the enzymafiiect, converting the sugar substrate to
ethanol product. An overview of the biomass sch&mgven in Fig. 2a. Evolution of each
cell type is predicted by the respective ODE, whgn@avth rates are Arrhenius temperature
functions of the corresponding species maximum graate. This allows the total suspended
cell (lag, active and dead) population growth todeéined as the rate of active cell growth
minus the rate of dead cells settling. Sugar comgiom is related to active biomass
concentration with its own growth rate: ethanoldarction is predicted similarly, but with an
inhibition factor used to account for its decregsproduction rate with time. Ethyl acetate
production is related to sugar consumption witht@ckiometric factor as in the Gee and
Ramirez model (1994), which however includes exptemperature dependence. Diacetyl
growth modelling is more elaborate: the respedZE includes two terms, one accounting
for its production early in the fermentation prac@sd another representing its consumption

toward partial conversion to 2,3-butanediol duri@gmentation progression.

(b)
16
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Figure 2. (a) Process scheme considered in the kinetic mflmeGeneric industrial temperature profile.

The seven ODEs of the model depend on 10 paeasnehich vary with temperature and
have been modelled using Arrhenius relationshipd parameter values estimated from
experimental data. Isothermal fermentations hawen lsarried out in a lab-scale 3 L vessel at
5 different temperatures in order to obtain onlmeasurements of species concentrations.
Following model parameter estimation, the auth@$gomed a non-isothermal fermentation
in a pilot plant-scale 100 L tank using a genenduistrial temperature profile (Fig. 2b).
Published profile predictions are in good agreenvéth the pilot-plant experimental data;
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the validated model has been successful in predigirocess behaviour in a variety of
operating conditions and in completing relevantimation studies. Moreover, it has
undergone further experimental validation, on thsei® of over 200 fermentation campaigns
carried out over a period of three years (Andréa &b al., 2004).

Trelea at al. (2001) developed a fermentati@aeh based on C{production, using real-
time CQ concentration data obtained with commercially ¢ sensors (Corrieu et al.,
2000). This is deemed an appropriate basis forradetation model, as it has been validated
to represent a reliable indicator of ethanol andsyegroduction and sugar consumption
(Stassi et al., 1987). Three dynamic models toipr&giO, production are considered based
on varying knowledge of the underlying biochemighénomena. The first model is a neutral
network (black box) and is purely statistical, lthsmn experimental data and computed
parameters which are not representative of anyigdlyproperty. The second (empirical)
model is based on posteriori analysis of the form of the experimental profilesorded:
parameter selection and definition occurs afteenbsg the shapes of these curves, however
they have little biological significance. Finallghe third (knowledge-based) model is
developed in order to represent the true kinetithyays, producing a complex model

formulation which is challenging to validate stuuelly as well as computationally.

2.2DYNAMIC MODEL DESCRIPTION

First-principles mathematical modelling for systéimarocess simulation and optimisation is
well established in several (but not all) chemiesdd material process industries: its
importance for ensuring the highest process effmjeand profitability becomes evident
when employed in the context of unconventional i@pibns, such as high-temperature
multiple rector design (Gerogiorgis et al., 200k r&@jiorgis and Ydstie, 2005), fossil fuel
production (Gerogiorgis et al., 2006), polygenemt(Liu et al., 2007), cyclic dynamics
(AKkinlabi et al., 2007) and structured products galopoulos et al., 2013; 2014).

The reduced-order kinetic model of beer fermentaby de Andrés-Toro et al. (1998) has
been selected for industrial fermentation processilation for several reasons:
* Published parameters are derived from a very larggy of experiments, resulting in a
wide temperature range (8-24 °C) which ensuresfidghty and applicability.



e The model includes all prominent by-products whildgrade beer product quality in
terms of taste and aroma, rendering the model bldar assessing performance.
» Predicted profiles indicate the highest fidelityttwexperimental and pilot-plant data in

comparison to other models, due to successful atdid against over 200 fermentations.
A description of this kinetic model correspondshte schematic diagram presented (Fig. 2a).

2.2.1 BIOMASSEVOLUTION
The initial cell culture pitched into the fermentas a specific composition of active, latent
and dead yeast cells, which is defined (de And@®-€t al., 1998) as:

0.02 - X4ce(0) + 0.48 - X14(0) = Xgeqa(0) = 0.5 Xjpe Q)

Following their introduction to the system, geaells are immediately suspended in the
wort, rendering the total suspended cell concdotraat any time equal to the sum of all

respective cell types:

Xsus(t) = Xact(t) + Xlag(t) + Xdeaa(t) (2)

During the fermentation lag phase, yeast eeilldergo conversion into active cells, which

have an enzymatic effect on the sugar substrate:

dXiag

= = =t (T) * Xigg(t) 3)
The specific rate of activatiop,() is highly sensitive to temperature. During thg jdnase,

active cells are not considered to grakeir concentration changes due to cell activation

dxact dxlag
[ 4
dt dt ' b= tiag “)

During the lag phase, cell death is not consigdtethe suspended dead cell concentration is

governed only by the settling rate of cells escgpie suspension toward the tank bottom:

AX goqq(t)
% = —HUsp (T: t) ' Xdead(t)’ t < tlag (5)

The dead cell settling ratggf)) depends on wort density, which is in turn relatedhe

initial sugar concentratiorC ):



tsp,(T) - 0.5-C
Usp = : 2 (6)
0.5-Cs, + Ce(t)

The maximum settling rat@gp ) occurs at the beginning of the process, andsis kighly
to be sensitive to temperature. An Arrhenius eguais used to describe the temperature
dependence of all rate parameter expressions witkeinmodel, where the constants A and B

are estimated on the basis of experimental datdfatent temperatures (Table 1):

Ui, = exp (Al- + %) (7)

Combining Eqg. (2) with the aforementioned rak@ressions for each cell type produces

the overall suspended cell balance for the laggahas

dXsus(t) — _ dXdead(t)

(8)
dt a0 St

Once active cells constitute a significant portof suspended biomass, the lag phase is

completed and the fermentation phase begins. Acellegrowth occurs thereafter; suspended

cell concentration evolves as a function of botfivaccell growth and dead cells settling:

dXSU,S(t)

dt = (T, 0) - Xger (t) — usp (T,t) - Xqeaa ®), t= tiag ©)

The specific growth ratg,() is a nonlinear function of sugar and ethanol eotr@tions:

by (1) (0

e (10)

The rate at which active cell concentration lee@ during the fermentation phase is a

combination of active cell growth, active cell deand latent cell activation:

anCt (11)
dt = .ux(T; t)- Xact(t) - .UDT(T) 'Xact(t) + .UL(T) ' Xlag(t): t= tiag

Throughout the fermentation phase, the evatutb latent cells is governed by Eq. (3),
however the suspended dead cell ODE must incogaratdditional term to account for the
death of active cells:

dX
dd:ad = — psp(T) - Xaeaa(t) + ppr(T) - Xace (), t 2 tiag (12)
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The rate of cell deathuf;) depends on wort temperature, described with ahekius

equation (Table 2).

2.2.2 SUGAR CONSUMPTION

The uptake of sugar from wort is proportional ttivecbiomass concentration:

dCs

dt = —us(T,¢) - Xact (1) (13)

The consumption rate:{) has been assumed to follow Michaelis-Menten kisetthe

maximum rate s, at t=0) corresponds to the maximum sugar concentratiaochabeys an

explicit temperature dependence:

ey (1) C5(0)

“ = M 6o o

2.2.3 ALCOHOL PRODUCTION
Ethanol concentration data shows that its produoatide is not constant, so it is necessary to
include an inhibition factorf{) in the formulation:

dCg(t)
dt

= f(O)  ue(T, ) - Xgce (£) (15)

This factor accounts for the ethanol inhibiteféect in the wort, and is defined along with

the specific growth rateuf):

_ . G® 16
f=1"%s. Cs, (19
Uy = He, (T) - C5(1) (17)

ke(T) + Cs(t)

2.2.4 By-PRODUCT PRODUCTION
Ethyl acetate production rate is considered propoat to active cell growth; the

stoichiometric factor¥z,) is an Arrhenius function of system temperature (@&):
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dCgu(t

LD ¥p 1) a1, 0) - Xae ) (18)
The model considers two chemical pathways faceatyl evolution; the first term accounts

for its production rate (proportional to sugar ocemtcation) while the second term represents

its conversion rate to other components (propoalitm ethanol concentration):

dCpy (1)
dt
2.2.5 PARAMETER VALUES

= Upy * Cs(t) * Xqce () — pap - Cpy (t) - Cp(2) (19)

Parameter values required in all modified Arrherteraperature equations defined in Eq. 10
use the ideal gas law constaft=£8.314J K* mol) and are reported fdrin K (Table 1).

Table 1. Experimentally determined Arrhenius constantsHqr (7).

Parameter

Symbol Description A; B;
Usp, Maximum dead cell settling rate 32.82 -10033.28
My, Maximum cell growth rate 10¢.31 —31934.09
Us, Maximum sugar consumption rate 4192 11654.64
Ue, Maximum ethanol production rate 3.27 -12667.24
Upr Specific cell death rate 13C.16 -3831:

U Specific cell activation rate 3C.72 -9501.54
k. =k,  Affinity constant -11¢.63 34203.95
Yea Ethyl acetate production stoichiometric factor 8¢.92 —-26589

The original model (de Andrés-Toro et al., 198i8scribes the specific appearance and
disappearance rates of diacetyl, andu,g respectively) using second-order temperature
polynomials: this description predicts erroneouscsgs profiles, entirely different from those
shown in the paper and reported in all experiergtallies published. Subsequent papers
(Carrillo-Ureta et al., 2001, Xiao et al., 2004 eusxperimentally determined constants for

these growth rates and present profiles in clogezeament with experimental data (Table 3).

Table 2. Experimentally determined diacetyl rates.

Symbol Parameter Description Value Units
Lpy Diacetyl production rate 1.27672107 gthtL
s Diacetyl consumption rate 1.1386410° g htL

While investigating the predictive powertbé various kinetic models, the present study
has discovered that the original de Andrés-Torceticnmodel publication (1998) did not
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produce the ethyl acetate profile presented inpyger. This error has been reproduced by
numerous authors referencing the model, despitepredenting profiles which follow this
mathematical description (Carrillo-Ureta et al.020Xiao et al., 2004). Carrillo-Ureta (1999)
defines an ethyl acetate ODE identical to thateoAddrés-Toro (1998):

dC dcC
fli(t) = Yeu(T) - dst(t) = Ypa(T) - ps(T, t) - Xqce (0) (20)

The factoly, stoichiometrically correlates sugar consumptioettoyl acetate production.

However, inspection of the code presented revdassimulations are considering ethyl
acetate production to be a function of the biomgswth rate fi,) rather than sugar
consumption rateus). The later work by the original author (Andrés-aet al., 2004)
redefines the ODE, confirming that ethyl acetat@svth rate is in fact a function of biomass
growth rate, as later detailed in Eq. (18) alonthwhe complete model description.

2.3 PUBLISHED OPTIMISATION STUDIES

The de Andrés-Toro (1998) kinetic model typicallashbeen the feature of several
optimisation studies, seeking a suitable tempesaprofile for operation. Several authors
have proposed different optimisation strategieswihique objective functions, publishing
the fermentation temperature profile they haverdgteed as most favourable.

Carrillo-Ureta et al. (2001) used an evolut@ligorithm in order to determine such an
optimal profile; the procedure is based on the natselection principal, employing historical
simulations to predict new conditions toward aclmgwreater performance. Their objective
function considers the final concentration of etilaas well as both flavour-degrading species
diacetyl and ethyl acetate), and penalises higlpésature gradients which are undesirable
due to operational adjustment limitations relatedcooling jacket maximum capacity and
operability. The evolutionary algorithm has sucbdbs generated the same profile
maximising the objective function irrespective loé tinitial profile considered, showing that a
global optimum has been reached. However, it higlalyable despite the gradient penalty
within the objective function, hence impracticat fodustrial use (Fig. 3a). By averaging the
original profile over 40-hour intervals, the auth@roduced a manipulation protocol which is
more suitable for industrial implementation (Figh).3 Genetic algorithms constitute a
powerful stochastic methodology which is succe$sused for multi-objective optimisation

of numerous biological processes (Lee et al., 28d1gh et al., 2009; Taras et al., 2011).
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Xiao et al. (2004) also used the de Andrés-Tmael to compute their own optimal
temperature profile. The authors developed a sstith@nt colony system) algorithm to

(@) (b)
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Figure 3. Optimal temperature profiles: Carrillo-Ureta et(@001): (a) as determined, (b) smoothed;
Xiao et al., (2004): (c) as determined, (d) smodthe

arrive at the optimal solution: this powerful hetig tool can be used to determine the most
suitable path through a graph, based on the belmagfoactual ant colonies. The algorithm
relies on moving randomly across the domain, dateny the value of the objective function
continuously while progressing. This data (repréegnthe pheromone which ants leave)
gives an indication of how desirable a path denidias been, thus rendering subsequent
passes less random and more closely following thst mesirable historical routes. The
procedure is carried out iteratively until pathsotigh the domain converge on the optimal
solution, the equivalent of an ant colony havingrid the quickest route to a food source.
The objective function in this work resembles osedupreviously (Carrillo-Ureta et al., 2001)
but without considering batch time minimisation,tee optimisation procedure requires the

target domain, and thus time to simulate fermematio be a priori defined. The profile
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produced (Fig. 3c) is prohibitively varying for imstrial application, so a similar averaging

procedure has been used to generate a smoothedafdinen optimal manipulation (Fig. 3d).

() (b)
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8 8

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
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Figure 4. De Andrés-Toro et al. (2004) optimal temperatudifes: (a) improved control, (b) minimum time.

De Andrés-Toro et al. (2004) also performed timabjective optimisation using the
original kinetic model. An evolutionary algorithnsiilar to that of Carrillo-Ureta et al.,
2001) is used, where each gene can represent ablatiime interval between discrete
temperature points. The objective function usedsitiers 8 goals: three high-priority targets
are treated as system constraints, ensuring etisanokntration is above (while diacetyl and
ethyl acetate concentrations are below) specifecels. The five lower-priority targets
consider contamination risk (bacterial formationhagh temperature), temperature profile
smoothness, batch time as well as instantaneouslbvwaand heat flow smoothness. The last
two aspects are used to improve process contrigr (work has not considered implications
of temperature and heat flow profiles on coolanhded). Assigning different weights to the
respective targets within the objective functioelgs different temperature profiles which
address unique goals: this strategy can thus aelf@vmproved process control as a result of

improved heat smoothness (Fig. 4a), and (b) rethiakbatch fermentation time (Fig. 4b).

3. KINETIC MODEL SIMULATIONS

To perform computational simulations of an indadtfermentation process and determine
manipulations capable of operational improvemeiitss necessary that both the reduced-
order kinetic model is suitably descriptive of tpeocess and that the experimentally

determined model parameters are appropriatelygptitre scenario under consideration.

14



3.1 COMPUTATIONAL IMPLEMENTATION
To compute the dynamic profiles of all chemical@eg considered in the kinetic model a
MATLAB ® algorithm has been developed. A function file corgall ODEs (Egs. 4-22) as
well as functions for each temperature-dependeranpater. A script file is used to input all
initial conditions as well as the temperature malapon profile, and the simulation
execution follows. The MATLAB ode45function numerically solves the nonlinear dynamic
fermentation model along the entire predefined s$ipa@, which must be suitably long to
ensure that fermentation is complete. The contisl&0-hour time span is split into 1000
intervals, recording concentration data every 1Butas, a higher resolution than that used
for experimental measurements. An algorithm idthato the function file in order to
compute from the input temperature profile the egponding instantaneous temperature,
allowing all model parameters to be recalculategbat iteration.

The assumed biomass and sugar concentratiessrgrin the wort prior to fermentation
are given in Table 3 with all other initial spec@mcentrations equal to zero. Uniform initial
conditions are considered in all dynamic simulaitmensure that the only factor influencing

beer fermentation performance is the temperaturgpukation profile employed.

Table 3. Initial conditions for dynamic simulation of befermentation.

Symbol Description Value Unit
Xine Total biomass inoculum concentration (pitchingyate 4 gL?
Cs Sugar concentration 130 gL?!

3.2 CODE VALIDATION

To validate the computational code constructedbfeer fermentation modelling against de
Andrés-Toro’s kinetic model (1998), literature tesmgture profiles have been used as code
inputs, allowing comparison of species profilesdwted to those presented by the respective
profile authors. The smoothed optimal profiles (Fdp, 4d) from Xiao et al. (2004) and
Carrillo-Ureta (2001) have been used, in both céisesode produces profiles with excellent
agreement with the literature. Remarkably, Xiacakt(2004) have omitted ethyl acetate

profiles, possibly due to the initial error in debing the respective rate equation, Eq. (20).
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3.3DYNAMIC SIMULATION OF INDUSTRIAL FERMENTATION

The industrial partner (WEST Beer) has providechigue temperature manipulation for their

fermentation process, depicted in Fig. 5a which besn used to simulate concentration

profiles of the key chemical species considerethenmodel, with results shown in Fig. 5(b-

d), along with results for an isothermal simulatein13°C. Dynamic species concentrations

for both prescribed temperature manipulations essabite observation of some significant

performance differences. Solid lines in all plapresent the industrial manipulation profile,

while dashed lines indicate isothermal operation.
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Figure 5. Model species concentration predictions for indakfermentation operation.

Substrate and product dynamic responses (BiginBlicate that both temperature profiles

promote similar behaviour, with the heightened terafure of the industrial manipulation

resulting in greater fermentation efficiency witigter ethanol production. The industrial
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profile does however accelerate cell death follgntine active cell maxima (Fig. 5¢) which
results in a fermentation taking a greater timeutoto completion. The lag phase is shown be
of shorter duration in the isothermal case, duethi® heightened initial temperature,
contributing to the total length of the fermentatiprocess. A significant difference is
observed between the predicted dynamic profildsygbroduct production (Fig. 5d): diacetyl
production is greater for the industrial profil@wever so is its consumption resulting in the
isothermal case showing over three times greatatyat concentration. Conversely, the ethyl
acetate generated by industrial operation is tagligh as the isothermal case, as a result of

the elevated temperature throughout.

3.4 NUMERICAL PROFILE ASSESSMENT
While inspection of species production and consionpplots provides an insight into the
performance of the fermentation process, it is maeful to identify precise simulation
values which represent adequate performance imidgafFermentation time is indicative of
potential plant profitability: as this is the mdshe-consuming stage in beer production and
the governing factor in the total batch cycle, able reduction can have a significant
influence on brewery production capacity. Two diéf& methods can be used to analyse
fermentation time via the kinetic model, by eitmonitoring ethanol production or sugar
consumption time. Different operational scenariol result in the production of a range of
final ethanol concentrations, so it is incorrect donsider fermentation complete when
reaching a target value. Consequently, rather tbeording the entire time taken to produce a
predefined target concentration, the process sleasimulated for a duration longer than that
necessary for fermentation, recording this maximfural ethanol concentration. The time
taken to produce 99.5% of this maximum value has theen considered as the fermentation
time required to generate the ethanol concentratiguard against a 0.5% increase inducing
an excessively increased batch duration. Whileetlws values (maximum concentration and
batch time) represent fermentation extent and tegeirement, they are of little use alone. In
case of rapid fermentation where little alcohgbieduced with much sugar left unfermented,
only the desirable case of high final ethanol cotration in minimal time is to be considered.
A more suitable indicator of fermentation tinee arguably sugar consumption, as it
encompasses both the extent and the speed of featioen Beer will inevitably have some

residual unreacted sugar present, so simply rewgrthe time taken to reduce the sugar
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concentration to a specified level is a valuable eredible monitor of the process. Care must
be taken as this time does not correlate with theuat of ethanol produced, because the later
varies for equal levels of sugar consumption unliféerent operational conditions. The most
appropriate procedure which has been used in thdy$s to consider all of: 1) maximum
ethanol concentration after a time exceeding tlegessary for fermentation, 2) the time to
approach this maximum, and 3) the time to consunspexified percentage of the initial
sugar concentration. Furthermore, product qualitystmbe considered by recording the
concentrations of both aromatic by-products as smoine process is complete.

Establishing numerical criteria in order to esss the performance of all temperature
profiles simulated allows for systematic evaluatemd comparison of numerous policies
presented in the literature. The maximum poterdgtabnol concentration is recorded after
simulating the process for 160 hours, as this edcéee time necessary for practical primary
fermentation in a lager production process. Ethgmotuction time is taken as the time to
reach 99.5% of this maximum, representing a redidaitch cycle metric. Sugar consumption
time is defined as the time taken to reduce comagon to 0.65 g L' or below, a value
representing 0.5% of the initial wort sugar concaidn (Table 3) and a typical residual
composition after primary fermentation. By-prodaoncentrations are recorded at the point
corresponding to the ethanol production time. Dyicagimulation of the fermentation
process has been performed using temperature niamgpuprofiles reported in the literature;
results for each of the defined performance indisatare presented below (Table 4). In
certain cases, the temperature profile does nditée the desired consumption of sugars; in

these cases, the sugar concentratiar=&t60 hours is presented in parentheses.

Table 4. Fermentation performance of several dynamic teatpeg manipulation profiles.

Profile: Author (Year)  Figure Max. ethanol Ethanol  Sugar DA EA

(this concentration productior consumption concentration concentration

work) (gLh time (hrs) time (hrs) (ppm) (ppm)
Carrillo-Ureta (2001) Fig. 4b 58.6 106 111 0.14 8.0
Xiao (2004) Fig. 4d 58.8 116 122 0.10 1.16
de Andrés-Toro (2004) Fig. 5b 57.8 58 59 1.08 163
Isothermal (11 °C) - 50.5 115 117 0.20 0.11
Isothermal (13 °C) - 56.8 102 105 0.21 0.57
Isothermal (15 °C) - 60.6 104 (6.07 )L 0.20 2.95
Generic industrial Fig. 3b 56.1 178 (12.2°9L 0.04 1.65
Actual Industrial Fig. 6a 59.0 121 130 0.06 1.16
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Table 4 indicates that the generic industeahperature manipulation profile reported in
literature (Fig. 3b) does not ensure an effectimankntation: not consuming an adequate
amount of sugars from the wort and producing aedaagnount of ethyl acetate, it is
representative of established industrial practigeittdoes not appear to be optimal.

The profile presented by the original authae &hdrés-Toro, 2004) indeed produces very
short fermentation times in line with its designagobut due to the significant aromatic
compound production it is not suitable for indwtuse. Further optimisation studies based
on this model have produced promising results {[Ratdreta et al., 2001; Xiao et al., 2004).
The advantages in each study appear in differe@sadepending on the respective objective
function, highlighting that is extremely difficulto quantitatively prescribe the relative
importance of different variables in a real biocleah process to represent the objective
function with a single mathematical expression.

When considering the three isothermal dynanmukations performed, one expects that a
higher temperature leads to increased ethanol ptiaduand reduced fermentation time,
coupled with increased by-product production, whlndeed observed (Table 4). What is
not evident, however, is that residual sugar commagan actually increases with fermentation
temperature, despite final ethanol concentrati@nesing: this is a result of the conversion
efficiency improving, while the higher rate of yeasll death reduces sugar consumption.

Comparing the actual industrial manipulationH®87) to the other profiles simulated
reveals that the industrial protocol produces a pamatively high ethanol but a very low
diacetyl concentration. Processing time is of thragest of all profiles simulated, indicating
there is strong incentive for optimisation. Thesealso scope for reducing the moderately
high ethyl acetate concentration (higher in theustdal case compared to several simulated
alternatives) and probably above the thresholdufmtesirable flavour contribution. These
results clearly indicate that the choice of impotsadperature profile which a brewery elects
to implement has an extremely strong influence dnaapects of beer fermentation

performance, so it must be addressed by systematielling and process optimisation.

3.5IMPLICATIONS OF SMOOTHING
Published temperature profiles from optimisationdsts are computed by minimising the
respective objective function, which often inclu@eterm which penalises abrupt temperature

changes, because such rapid manipulations arediifigult to accurately implement in a
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biochemical process. Computed manipulation profdes often still impractical, so it is
necessary to smooth the profile toward facilitaimdustrial implementation (Fig. 6a).
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Figure 6. Effectof smoothing on fermentatio(a) profilesfrom Carrillo-Ureta et al(2001),(b)-(d): thiswork.

The literature cited does not analyse the implcegtiof this secondary smoothing procedure
on process performance: smoothing is generallyiethrout by averaging the computed
temperature profile over large time intervals. Ho@-implementable computed profiles have
simulated within this study in order to assess ithpact of smoothing on fermentation
performance: Figs. 6-7 illustrate the resultingiatawsn of dynamic species concentration

profiles, and key result parameters are summaiisédble 5.

Table 5. Performance implications of profile smoothing.

Profile author Figure Temperatur Max. ethanol Ethanol  Sugar DA EA
(this  input concentration productior consumption concentrationconcentration
work) profile (g LY time (hrs) time (hrs) (ppm) (ppm)
Carrillo-Ureta Fia. 6 computed 59.0 106 112 0.13 1.35
et al. (2001) 9 smoothed 58.6 106 111 0.14 1.08
Xiao et al. Fig. 7 computed 58.5 125 136 0.05 1.35
(2004) 9- 7 smoothed 58.8 116 122 0.10 1.16

20



Manipulation profiles are simulated exactlypablished by the respective authors: in each
case solid lines depict operation of the optimalfigg, while dashed lines are the authors’
own smoothed result. While Figs. 6-7 show that Egseconcentration evolution is influenced
by smoothing, Table 5 data indicates that the efiésmoothing on process performance is
minimal: in general, smoothed model predictionslyimg improved plant performance.

Carrillo-Ureta’s manipulation (2001) has led @aosmall penalty in maximum ethanol
production: depending on the fermentation time mmeén increase in batch time can also be
observed. A small increase (0.01 ppm) in final diglicconcentration is accompanied by a
large (20%) reduction in ethyl acetate concentrasifter profile smoothing. Xiao et al. (2004)
have obtained clear improvements in all variabfeexr amoothing, producing more ethanol in
a shorter time: while diacetyl production has dedblit is still low relative to other
manipulations simulated (Table 4). This is partéelyl surprising, given that the computed
profile must have produced an objective functiothvei more desirable value than that of the
smoothed scenario, otherwise their algorithm wdialde already arrived at that optimum.
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This suggests component weights in the authorgabilve function may not have accurately
represented the importance of all different outfartables, thus ascribing more importance to
reducing diacetyl concentration than to processimg or ethanol production. Furthermore, it
is possible that the authors’ objective functiomsidered by-product concentrations at the
end of the simulation, rather than at the pointwfgmentation is complete which is of more
value for assessment of fermentation performance.

4. PROCESSOPTIMISATION BY DYNAMIC SIMULATION

A comprehensive review of published fermentatidarditure yields numerous temperature
manipulation profiles which are presented as optithase have been evaluated by dynamic
simulation (Table 5), indicating that while manytbém have relative merits, it is extremely
challenging to quantify which performs best, givére competing targets for process
improvement. A more rigorous exploration of potahtilynamic temperature manipulations
has been performed in this study toward determiifiagd how the WEST Beer process can
benefit from modification of the current temperatumanipulation profile. Enhancing

profitability is highly important and only achievabif a novel operating procedure can be

demonstrated to reduce batch cycle time, thus alfpyant throughput to be increased.

4.1 METHODOLOGY

To assess the potential for process improvemerasrient plant operation at WEST Brewery,
an algorithm has been developed to rapidly genesktesible temperature manipulations
which adhere to realistic operability constraintsaasuitable level of temporal domain
discretisation. The systematic stochastic investgaof potential improvements relies on
generating a vast number of potentially suitablenpgerature profiles and simulating
fermentation for each dynamic manipulation. Plgfttihe entire set of different performance
indicators obtained from each dynamic simulatiamnglwith those known from the current
industrial manipulation can thereafter reveal thdire performance envelope towards
pinpointing which precise process improvementdeasible.

To generate new manipulations, the temperadoreain must be rigorously discretised.
The domain limits have been defined by Eqgs. (22):(the time span is such that any profile
producing reasonable performance will be run to mletron, while avoiding unreasonable
computational load for all profiles which imply a&opibitively long batch time. The lower
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temperature limit excludes scenarios in which tystesn lacks enough energy to promote cell
growth; the upper limit ensures bacteria which aresent above this temperature cannot
thrive, while also preventing the temperature fr@aching a level at which undesirably high

by-product concentrations are known to be produced.

0 <t <160 (hours) (21)
9<T<16(°C) (22)

An extremely large number of paths within thigte domain exists, so discretisation is
necessary in order to obtain a manageable finite B@mperature control of industrial
fermentation vessels is extremely challenging, mitvee complex flow patterns in fermentors:
consequently, attempting to manipulate the tempegab a finer level 1 °C is not practical.
The temperature range considered has thus beeretdied per degree, with 8 values
considered in total, between which the temperatsreaken to vary linearly. For a
manipulation profile to be implementable, the terapge must not change abruptly with
time, to avoid imposing unrealistic demands ondibeaing system. To accommodate this, the
fermentation time span is broken down into 20-himtervals, so 9 values are considered
along the time axis, thus producing temperaturélpsowhich all consist of 8 linear segments.
This discretised grid will produce®3otal unique paths, a value too vast for exhaastiv
numerical dynamic simulation. Many of these pathe a&vidently not industrially
implementable, so it is necessary to select andlateonly technically promising cases.

Constraints must be applied in order to redheenumber of paths, removing those which
evidently produce poor performance and induce arecessary computational burden. An
investigation has been performed in order to idgrgppropriate profile constraints, which
must reduce the total number of profiles (paths) tnanageable level, selecting those likely
to produce good performance while also allowingasonable range of different paths to be
considered so that the effect of various operatingditions can be assessed. A set of
different rules for profile constraints has beewealeped conceptually. Rule A states that
temperature may only increase to any level withendomain limits or remain constant when

progressing to the nest discretised point in time.

Rule A: T(the1) = T(ty) (23)
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In rules B and C, the temperature is alloweditioer remain constant, increase or decrease
when progressing to the next time point. Rules &¥s= 1°C and rule C considers = 2°C
to limit the temperature change between each interval; e.g. in the latter a variation of 0, 1 and

2 °C in both directions is considered at every tatep:
Rules B and C: T(ty) —X < T(tpe1) < T(tp)+X (24)

One more set of rules have been consideredhioh the constraint is split in time such
that the temperature may only increase uj ttegrees for the first half of the process, and
then only decrease up Xodegrees between successive time steps for thedéadf of the
fermentation. Rule D selecks= 1 °C, rules E imposeé= 1 °C and F considexs= 3 °C.

This early increase and later decrease repredenferm generally employed in fermentation.

Rules D, E,F:  T(t) < T(tw) < T(ta)+X, fort <2 (25)

T(ty) =X < T(thsrs) < T(ty), for ¢ > e (26)

The number of paths generated when followirghes these constraints is listed in Table
10, for increasing levels of time domain discréi@a Rule A produces a low number of
paths, but limiting temperature evolution such tihatan only increase is highly restrictive
because cases which include a later decrease petatare (as often shown in literature) are
excluded. Rules B and C are much less restriciisgemperature increase or decrease at any
point is permitted. However, the number of pathedpced increases explosively as the
allowable AT between time points increases. This is clear iblerd, where increasing the
allowable temperature variability from 1 °C (B)2@C (C) drastically influences the number
of profiles, with the gap growing dramatically & tpermitted temperature change is further

increased. Rules D, E and F show a much less sempeet on the number of paths when

Table 10. Number of unique profiles for various constraiuies and increasing time domain resolution.

Rule X (°C) Eq. Number of time points: 4 5 6 7 9
number(s) tseep (Brs): 53.33 40 32 26.67 20
A (25) 120 330 792 1.7-10°  6.4-103
B 1 (26) Number 62 176 502 1.4-105  1.2-10*
C 2 (26) of unique 512 4.1-10% 3.3-104 2.6-10° 1.7-108
D 1 (27), (28) manipulation 29 55 106 201 730
E 2 (27), (28) profiles: 59 157 434 1.1-105  7.8-10°
F 3 (27), (28) 94 305 1.1-103 3.2-10% 2.7-10%
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increasingAT, while still including typical fermentation cases)d has been found to be the
most suitable of all novel constraints we have tpexl. To allow a greater range of
potentially suitable paths to be simulated, Eq5-48) are modified to remove the permitted
temperature step limit, allowing any level of temgiare variation between time points while
still following the same multi-region constraintleuas seen in Egs. (27-28). This double
constraint states that all levels of temperaturerease within the domain limits are
considered for every time step before the midpant all levels of decrease are considered
for every step after the midpoint. Accordingly,aade set of potentially applicable profiles

has been obtained for the fermentation process.

tmax
Applied constraint: T(tne1) 2 T(ty), fort <-—=%= (27)

T(tn) =T(tnser), fore > e (28)

4.2 SIMULATION RESULTS

The temperature and time limits, discretisatiorelend constraints considered in the present
study produce 175,252 unique temperature prof8eaulating dynamic species evolution for
the entire set of manipulations requires 3 houotdl CPU time. Key performance indicator
data from all dynamic simulations are plotted aachpared to the actual industrial operating
profile point (WEST) represented by the circulardomarker on the scatter plots (Figs. 8-9).
Fig. 8a illustrates all final concentrations ethanol, diacetyl and ethyl acetate after
fermentation for 160 hours, for every single sceEnasimulated, providing a three-
dimensional indicator of product quality. Fig. 8tegents a measure of process performance
by correlating fermentation efficiency (measured fagximum ethanol production) and
fermentation time (measured by the time to prodd®&% of that value). Here the desirable
region is the upper left corner of the figure, esgamting maximum ethanol concentration in
minimum time. Fig. 8(c-d) similarly show producedomatic compound concentrations
against fermentation time, which is now measurethkeytime to almost entirely consume the
initial wort sugar concentration. While measurirggnfientation time by sugar consumption
and ethanol production do yield marginally differéimes, their strong correlation renders
either of the two as a reliable indicator of pracpsrformance, providing ethanol production

and sugar consumption are both adequately higmgUsiigar consumption as an indicator
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removes cases where undesirably high residual stayarentration remains in the product,
which consequently do not feature in Fig. 8(c-dFigy. 9.
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The process lag phase length is also considerezhch simulation in order to determine if
it has a strong effect on the total batch time.sTliig. 9a presents the length of the lag phase
vs. batch time, while Fig. 9b shows the effecthef lag phase length on the maximum active
cell concentration observed within the yeast celtur

Figs. 9(c-d) present the active cell populategainst batch time: Fig. 9c compares
fermentation time to maximum active cell populatiamile Fig. 9d considers the final active
yeast cell concentration after fermentation is cletep the latter is of high industrial interest,
as it is desirable to recover the yeast towardgusiim subsequent fermentation batches.

All fermentation performance indicators suggbsit the WEST Beer operational profile
(Fig. 5) has reasonably high performance, bettanth large portion of the simulated
alternatives. It is also evident there is signific@otential to improve any single variable,
however often not without compromising on anotlagét parameter. Thus, Fig. 8a shows

the relationship between final product concentretiot can be seen that the greatest ethanol
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production also corresponds to the highest prodocf aromatic by-products, well
exceeding acceptable levels. It also indicates thasmall sacrifice in final ethanol
concentration can lead to large reductions in tbecentrations of aromatic compounds
present. Moreover, Fig. 8b shows that it is possibl both increase ethanol production and
reduce processing time relative to the industriahipulation (upper left quadrant data points).
However, the implications on all other design Males must be considered; the most
desirable simulation according to Fig. 8b is thgarpleftmost point on the graph, which
corresponds to isothermal operatiorfat 7:ax but also to very high by-product production
and sugars remaining unconsumed. It is more beakf retain or marginally reduce the
current ethanol production in order to reduce bétolke while not impairing product quality.
Furthermore, Fig. 8c illustrates that a redwucin batch time is correlated with an increase
in diacetyl in the beer product. The current indakfplant manipulation is producing a low
ethyl acetate concentration given the batch time (130 hours), close to the Pareto front of
this plot, which follows the minimum concentratitmundary for any fermentation time.

Diacetyl concentration is the most challenging afale to reduce without suffering a
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detrimental effect on other process parametersaissit is well below the levels produced
by most fermentations, it is possible to allow tiftaconcentration to increase within
acceptable limits in order to achieve a processovgment in terms of batch cycle time.

Conversely, Fig. 8d shows that such a highllefea correlation between ethyl acetate
concentration production and batch time does nst.eQimulation data points are spread out
widely, however it is clear that longer batch timesn coincide with higher aromatic
compound levels, while shortest batch times comedpo the lowest concentrations. The
current industrial manipulation produces approxehatthe average ethyl acetate
concentration for all fermentations of this duratio

No apparent trend between the length of thepla@se and the total fermentation time is
observed (Fig. 9a). The industrial manipulatiorresponds to the average lag phase duration
(t= 130 hours) this batch duration. The lag phasetduradoes influence the maximum
concentration of active yeast cells which are poediuFig. 9b): a shorter duration for this lag
phase leads to an increased maximum cell conciemtrat

Also, Fig. 9c reveals that the maximum celh@entration is not closely related to the
batch fermentation time, highlighting that thisnet an essential parameter for evaluating
process performance. The average concentratioctiveacells is of higher importance, given
that a short-lived high maximum does not influefeanentation rate for a long period of
time. It is desirable to ensure there is an aaelepopulation when fermentation is complete:
Fig. 9d illustrates that while the points are hyghpread, the overall trend indicates that rapid
fermentations facilitate a higher concentratioractive cells at the end of the process. This is
extremely significant in case of successfully radgdatch time, because material costs for
fresh yeast can be reduced in addition to impropiagt throughput.

Simulation results have been analysed to et@lwhich cases reduce fermentation time
with acceptable effect on product quality. The tifoesugar consumption of the preferable
industrial manipulation (case A) is 130 hours (Eab). A 10-hour reduction of fermentation
time would have a significant impact on brewery duction capacity, so all simulated
profiles which produce a batch time under 120 hoaust be considered as potentially viable
process improvements. Hence, of the profiles sitadla2759 take 120 hours or less to
consume 99.5% of the initial sugars. Many of thdiffer only after fermentation completion

(120 hours), so only 826 potentially suitable gesfican improve the first 120-hour period.
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Table 6. Proposed fermentation process improvements.

Parameter Units Existing manipulation Operational improvements (Figur e 10)
A B C
Fermentation time hrs 129.5 159 11£.0 1195
Ethanol concentration gl 59.0 589 58.0 58.9
EA concentration ppm 1.16 .19 0.99 128
DY concentration ppm 0.06 .00 0.16 0.09

Three promising process improvement cases aghlighted in Table 6, with the
corresponding profiles illustrated in Fig. 10. Ansaerable batch time reduction is
demonstrated in each case, with minimal impact rmadyct quality. Options A and C show
similar performance, a 10-hour reduction in fermaéinh time, with a small (0.1 g1
reduction in ethanol produced and a marginal irsgean both aromatic compound
concentrations. Option B is more preferable if arengignificant decrease in ethanol
concentration is permitted: a decrease of I'gan reduce batch time by 15 hours, while also
reducing the product ethyl acetate concentratioov®r 15%. Diacetyl concentration is also
increased, however it remains comparatively low garad to other manipulations considered
(Table 4). Depending on a brewer’s particular poddargets, numerous dynamic simulations
performed in this study represent clear and mebRi@ocess improvements, which can be
attained by tolerating small sacrifices in areassadered as process targets of lower priority.

A B C

16, 16 16
S 1 © 14 O 14
0 \ g ﬂ °
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8 8
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Figure 10. Dynamic temperature manipulation profiles prodgaitear and measurable process improvements.

4.3 OPTIMAL TEMPERATURE PROFILE DETERMINATION

The attainable envelope of product final concerunat (Fig. 8) compiled from the entire data
set of simulation results clearly illustrates tmatmerous plausible manipulations promise

superior performance (hence process improvemems) current industrial practice. The

29



precise determination of the most suitable and @degous temperature manipulations is
hence the next essential step for achieving thefbasible performance (optimal operation).
Therefore, two computational procedures have besfopned. First, Simulated Annealing

(SA) has been implemented so as to determine thmalptemperature manipulation profile

in a rapid and efficient manner. Secondly, theqranaince of each of the 175,000 profiles has
been quantified for a range of objective functiogights by exhaustive evaluation, in order to
validate stochastic optimisation (SA) optimal résuls well as investigate the sensitivity of

optima with respect to the arbitrary objective flime component weight value allocations.

4.3.1 SIMULATED ANNEALING (SA)

Simulated Annealing (SA) is a valuable approach dpproximating a global optimum
(Kirkpatrick et al., 1983), requiring significantliess CPU time compared to exhaustive
techniques. The metaheuristic for approximate dlopéimization is applicable to the large
search space here, and has been applied to biadlengtwork processes for parameter
estimation previously (Gonzalez et al., 2007). Thenputational procedure is analogous to
the thermal annealing of solids, in which the mateis heated and then cooled slowly,
allowing atoms to reach a minimal energy statesitmulated (much like in material thermal)
annealing, the current candidate solution (systéste)s may move to another of worse
objective function value (akin to a higher enertgtes), particularly in the early stages of the
process.This occurs so that early local minima or maxima ba escaped in the search for
the globally optimal solution: as the SA temperatisr gradually reduced, the corresponding
probability of accepting a worse solution is redlice

An objective (cost) function is essential to defineorder to quantify and compare the
performance of fermentation temperature profiles:principle, it can account for final
product concentrations (ethanol, diacetyl and edlogtate) and batch time as terminal payoffs,
while energy consumption is not considered as aingnpayoff, in accordance to most
previous studies and the model (de Andrés-Torol.et1898) employedThe objective
function we have formulated only considers findlagtol concentration maximisation and

batch time minimisation, and is given by Eq. (2&)erein,W; andW, are the respective

weights of the two componen@) is the inverse batch time (normalised by diviswaith

the maximum value recorded) afiglis the ethanol concentration (normalised in the esam
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way). In doing so the normalised ethanol conceioina€; ranges from 0.68 whefy, = 42 g

L to 1 whenC; = 61.3 g L}, similarly the normalised inverse batch tir@e), ranges from

0.62 to 1 when tis 99 hrs and 160 hrs respectiyyproduct species (diacetyl and ethyl
acetate) final concentrations are considered asti@nts, since they must be kept below
threshold values in the final product, and are giveEqgs. (30-31); further reductions below
these limits are welcome but not essential, as tieeyot induce any discernible effect on

flavour (resulting product quality improvements rwahbe quantified).

__ T
Imax =Wg-Cg + We- (?) (29)
s.t. (CEA)t=tfinal < 2 ppm (30)
(CDY)t=tfinal S 01 ppm (31)

A novel SA algorithm has been developed, baeaedpublished MATLAE code
(Optimization Techniques in Engineering, 2015)st#y, the data set produced via exhaustive
simulation is compared to the tolerable by-produeits, Eqgs. (30-31), and all cases in which
the latter are exceeded are removed (feasible megientification). Secondly, an ethanol
concentration is initially assumed, and the comesiing production (batch) time is retrieved:
the objective function value corresponding to tbgpective temperature profile can then be

computed using Eq. (29). The SA algorithm theroie# the flow diagram given in Fig. 11.

Guess Solution

Randomly generated
Current Solution design

Candidate Solution

Replace current If (Random number < Boltzmann Prob)
with candidate

l Reject

Candidate

Generate probability of
acceptance

Figure 11. Simulated annealing flow diagram (Optimization fieiques in Engineering, 2015).

A new potential ethanol concentration is generdigdtepping randomly from the current

value. The corresponding batch time is recordedtl@abjective function value is computed
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again: if the latter shows improvement, it replaitescurrent solution. If the solution is worse,
it may still replace the existing solution if a damly generated number is less than the
Boltzmann probability, Eq. (32) whereE is the energy displacement (difference in objectiv

function values for successive iteratiorig),is the is the Boltzmann constant and T is the SA

temperature (not to be confused with fermentatonperature):

kT

P = exp( ) (32)

This procedure has been performed for a wide rahgéjective function component weights
(Eq. 29), for several starting points (initial gses): the optimal point determined is
independent of the starting point selected, pravithat a suitable cooling rate is used. The
number of iterations required and the approprigéeting SA temperature depend on the
accuracy of the initial guess. A wide variationcomponent weights have been used, but only
three cases are illustrated (Fig. 12): for eacthein, three different starting points (A, B, C)
are considered and all three SA trajectories aariyl shown to converge to the same optimal
point (which depends on weight allocation), allziquite variable performance (iterations).
The figure depicts the entire set of simulatiorsults as to allow the SA trajectories to be

readily visualised, however the data is not annehepart of the procedure.
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Figure 12. Exhaustive optimisation results for varying J-fuoctcomponent weights.

Furthermore, a remarkable observation is tvailé dependent on weight allocation %
< 10%), the optimal temperature profile remainsntaml (and independent of weight
allocation) for all cases whekl; > 10%; this trend is significant, because it ilaties that the

optimal manipulation displays almost no sensitivity the arbitrary balance of objective
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function terms. A minimal reduction of ethanol centration (Fig. 12, first column) can
therefore facilitate a considerable batch time céida, while also ensuring that Egs. (30-31)
constraints are satisfied. The temperature prpfigsented (Fig. 12, second and third columns)
can thus be conclusively determined as the optireallt for the fermentation process
considered, excluding the unrealistic case of extr¢and virtually exclusive) importance of
ethanol concentration onlWe > 10%), in which batch duration is disregardéd € 10%).

A larger number of SA iterations are requiredew the initial point lies far from the
optimal result; also, a higher initial SA temperatis required in these cases so that local
maxima can be overcome. In the first cade € 99%,We = 1%), the solution lies closer to
the starting points, so a lower initial SA temperatand fewer iterations were required.
Conversely, the other two weight allocation cassuired a higher initial temperature, in
order to prevent convergence entrapment in a logailmum and attain the global solution.
Fig. 12 (second and third columns) indicates that3A algorithm passed through the point
corresponding to optimal operation in the firstecddt = 99%, We = 1%), as the latter
constitutes a local (but not global) maximum foe thther two cases. Table 7 shows the
required parameters to consistently reach the @ptsolution for any starting point in each
case. Objective function values and convergencedspee illustrated in Fig.13 for the second
case \\: = 90%,We = 10%). CPU time reported corresponds to MATLABR 28/Windows 7
64GB running on an Intel Core i7-4700MQ @2.40 GHithw6 GB installed RAM.

Table 7. Simulated annealing parameters required for mrlwtonvergence.

Eqg. (29) weights Tinitia  Pinitia~ Tiina Pina  lterations Simulations CPUtime  Jyax

W, =99%, W= 1% 0.621 0.2 0.10870.0001 10 103 586 s 0.97
W, =90%, W=10% 9.491 0.9 0.10870.0001 30 364 1571s 0.92
W, =10%, W=90% 9.491 0.9 0.10870.0001 30 324 1128 s 0.92
0.95 |
0.9r B
,ﬁu/
X 0.85F b
# /AN
081/ S A= 1
7 —Start point A: [EtOH] =45 g L™
0.75 Start point B: [EtOH] =50 g L™
Start point C: [EtOH] = 55 g L™
0‘7 | | | 1 1

5 10 15 20 25 30
Iterations

Figure 13. Simulated annealing objective function per itemnafimm 3 initial points \{ = 90%,We = 10%).
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4.3.2 EXHAUSTIVE EVALUATION

The exhaustive evaluation of all (175,000) candidaimperature manipulation profiles has
been pursued in order to validate the Simulatedeahng (SA) algorithm constructed and
results obtained: the same objective function girertg. (29) has been used in order to

calculate J values for every single temperaturélpraising the same component weights.
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Figure 14. Exhaustive optimisation results for varying J-fuoctcomponent weights.
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Figure 14 illustrates the top 10% (red points) &émel optimal (green point) product quality
combinations achieved, respectively, superimposedhe entire attainable envelope (blue
points). The optimal points identified are pregysitlose determined via simulated annealing,
which is however a lot more efficient as it perfermnly a minute fraction of objective
function evaluations.

Both simulated annealing (SA) and exhaustive evi@oaEE) approaches arrive at the
same temperature profiles to maximise the objedtinetion of Eq. (29) and satisfy the the
constraints of Eqs. (30-31). For the vast majodtyobjective function weight allocation
values, the optimal temperature profile determinegnains the same (Fig. 15); its
performance is compared to the current industiEST Beer) manipulation in Table 8. The
batch time reduction achieved is spectacular (12.3¥d it is accompanied by a small
desirable increase in final ethanol concentratiwhile both by-product concentrations do

increase marginally as well, they are well belolerable thresholds and do not affect flavour.

16 Table 8. Optimal fermentation profile performance.

&

~— Parameter Units Existing New profile

g 14 manipulation  (Figure 14)

© Fermentation time hrs 129.5 1853

212 Ethanol concentration gl 59.0 591

E EA concentration ppm 1.16 35
10— a—s DY concentration ppm 0.06 .09

0 40 80 120

Figure 15. Optimal temperature profile.

5. CONCLUSIONS

Promising fermentation process improvements arblyidesirable in beer production, as a
reduction in batch time for fermentation directigirislates into higher plant throughput and
profitability. Beer production appears to be a damgrocess, requiring only four ingredients
and a sequence of established processing stepsevdowit is a very complex chemical
system with a vast number of reactions, many otilaire still not quantitatively understood.
Predicting the effect of operational modificatiaesnot straightforward: historical efforts to
improve productivity are based on empirical apphes¢ but varying experimental conditions
and observing their effects is a laborious, coatig inefficient procedure. Recent research
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studies have considered all key species and reheslitable reduced-order dynamic models
toward dynamic simulation, optimisation and contbthe fermentation process.

This paper employs a widely validated beer taration model (de Andrés-Toro et al.,
1998) which has been implemented in order to ptegiecies concentration evolution for any
set of initial and operating (temperature profdé®nditions; the code has been successfully
validated computationally against profiles previgysublished by other research groups. A
range of operating temperature profiles publishrethe literature have been simulated, and
their performance has been assessed using severatitgtive indicators of fermentation
performance (final concentrations of ethanol anomeatic by-products, batch production
time). The trade-off between product quality antthbdime is evident: results clearly show
that aromatic by-product concentrations can be aediuduring longer fermentation. This
balance of operational objectives makes the detertioin of a single optimal temperature a
very challenging problem: the latter depends orhdaewer’s target product composition,
and arbitrary target variable weighting appearsufar but also questionable methodology.

A simulation-based optimisation procedure hesnbdeveloped, facilitating the comparison
of over 175,000 unique scenarios against the cuirgtustrial temperature manipulation.
Each scenario represents a unique temperaturdeprgénerated using suitable constraints
which are representative of manipulations thatirdeed applicable to the real process. This
procedure also ensures that the degree of domaanetisation only produces temperature
profiles which are implementable, without the ndéeda secondary smoothing process. A
small sacrifice in ethyl acetate concentration dttevel not exceeding the acceptable beer
flavour threshold) allows for a considerable reductof batch time, while maintaining the
ethanol and diacetyl concentration levels clos¢httse achieved in the industrial (WEST
Beer) process. Three unique novel manipulationg lh@en identified, each with the potential
to drastically reduce batch time (by up to 15 hpuvgth no discernible impact on beer
flavour and quality.

A simulated annealing (SA) algorithm has also béewveloped in order to rapidly investigate
the entire solution space and determine the optiemaperature manipulation profile which
maximises a weighted objective function considetgh ethanol maximisation and batch
time minimisation, subject to explicit by-produdnstraints; several weight assignment cases
have been solved and presented, indicating linmgedlt sensitivity to weight value allocation.
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A novel temperature profile (with a conspicuous timep peak) has been discovered,
indicating that this non-trivial manipulation caeduce fermentation time by 16 hours, but
also increase ethanol concentration and maintaiprbgluct concentrations below threshold
values. Experimental validation of these extrengglgouraging model predictions against the
industrial (WEST Beer) process has been adviseésaential, in order to quantify and

evaluate attainable benefits, but also assessrtpact of underlying modelling assumptions

(especially with respect to vessel temperatureidigion and yeast biochemical behaviour).
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NOMENCLATURE

Symbol

Description Units

Initial condition -

Arrhenius constant (speciés K
Arrhenius constant (speciés K
Concentration (specig$ gL?
Active biomass concentration gL
Dead biomass concentration gL
Inoculated biomass concentration gL
Latent biomass concentration gL
Suspended biomass concentration L
Ethyl acetate production stoichiometric factor 4 L
Ethanol affinity constant gt
Sugar affinity constant gt
Biomass affinity constant gL
Length of fermentation lag phase h
Diacetyl consumption rate Tt L
Specific cell death rate h
Diacetyl growth rate ghtL
Ethanol production rate h
Specific cell activation rate h
Sugar consumption rate h
Specific dead cell settling rate 1h
Specific cell growth rate h
Discrete time points -
Discrete temperature points -
Fermenter temperature K
Fermenter top pressure bar
Fermentation inhibition factor gL
time h
Carbon dioxide -
Diacetyl -
Ethanol -
Ethyl Acetate -
Sugar -
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