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An accurate understanding of the interplay between random and deterministic processes in generating extreme
events is of critical importance in many fields, from forecasting extreme meteorological events to the catastrophic
failure of materials and in the Earth. Here we investigate the statistics of record-breaking events in the time series
of crackling noise generated by local rupture events during the compressive failure of porous materials. The
events are generated by computer simulations of the uniaxial compression of cylindrical samples in a discrete
element model of sedimentary rocks that closely resemble those of real experiments. The number of records
grows initially as a decelerating power law of the number of events, followed by an acceleration immediately
prior to failure. The distribution of the size and lifetime of records are power laws with relatively low exponents.
We demonstrate the existence of a characteristic record rank k*, which separates the two regimes of the time
evolution. Up to this rank deceleration occurs due to the effect of random disorder. Record breaking then
accelerates towards macroscopic failure, when physical interactions leading to spatial and temporal correlations
dominate the location and timing of local ruptures. The size distribution of records of different ranks has a
universal form independent of the record rank. Subsequences of events that occur between consecutive records
are characterized by a power-law size distribution, with an exponent which decreases as failure is approached.
High-rank records are preceded by smaller events of increasing size and waiting time between consecutive events
and they are followed by a relaxation process. As a reference, surrogate time series are generated by reshuffling
the event times. The record statistics of the uncorrelated surrogates agrees very well with the corresponding
predictions of independent identically distributed random variables, which confirms that temporal and spatial
correlation in the crackling noise is responsible for the observed unique behavior. In principle the results could

be used to improve forecasting of catastrophic failure events, if they can be observed reliably in real time.

DOI: 10.1103/PhysRevE.93.033006

I. INTRODUCTION

The compressive failure of heterogeneous materials pro-
ceeds in a series of individual bursts of energy release asso-
ciated with discrete rupture events. Measuring the generated
acoustic emissions is the primary source of information about
the time evolution of the fracture process [1-7]. The statistical
analysis of the stochastic time series of crackling noise in field
data, laboratory experiments, and in computer simulations has
provided a useful insight into the accumulation of damage and
into the approach of the system to macroscopic failure. The
ultimate challenge of the field is to find statistical signatures,
which could be exploited to forecast the impending catas-
trophic failure [8]. For this purpose the analysis of synthetic
time series of simulated fracture processes is indispensable
since they allow a range of variables to be controlled and
investigated independently, and allow representative sampling
of underlying trends and statistical variability over a large
number of trials [9,10].

Recently, we have introduced a discrete element model of
porous sedimentary rocks, which captures the essential ingre-
dients of the materials’ microstructure and of the dynamics of
breaking [11,12]. The model was used to investigate the com-
pressive failure of cylindrical samples under strain-controlled
conditions. During the failure process we identify individual
rupture events as correlated trails of breaking beams, which
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are generated due to the gradual stress redistribution in the
sample following local failure events [11,12].

In the present paper we investigate the internal structure of
the time series of events by analyzing the statistical features
of record-breaking (RB) events. Records are noise that have a
size greater than any previous events of the series. Recently, the
record statistics of stochastic time series has attracted great at-
tention due to its relevance for climate and earthquake research
[13—16]. Interesting analytic results have been obtained for
the RB statistics of the sequences of independent identically
distributed (IID) random variables for a randomly sampled
stationary process [16—18]. In physics the statistics of records
has been applied to understand correlated processes emerging
in various types of random walks [19-21], superconductors
[22], domain wall dynamics in spin glasses [23], and in chaotic
processes [24]. The record statistics of crackling noise have
also been studied recently in models exhibiting self organized
criticality (SOC) [18] and in a mean-field model of fracture
[25]. For earthquakes record statistics were recently applied
to reveal spatiotemporal clustering of seismicity either by
focusing on the interevent times [16] or using both the spatial
and temporal distance of events [ 14,15]. In our realistic discrete
element model of compressive failure we analyze both the
aggregated statistics of records and the evolution of record
breaking as the sample approaches macroscopic failure. As a
null hypothesis we compare our results to the IID findings and
to the record statistics of a surrogate data set where correlations
are destroyed by randomly reshuffling all of the rupture events
with respect to their origin time. This comparison makes it
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possible to reveal interesting trends and correlations in the
spatial and temporal signature of the crackling noise. We show
significant departures associated with nonstationary processes
associated with increased strain, and reveal new signatures of
impending catastrophic failure in the time series associated
with record-breaking events.

II. RECORD-BREAKING EVENTS

We study the statistics of records in a synthetic time series of
rupture events generated by a discrete element model (DEM).
The model has been developed recently to investigate the
emergence of crackling noise during the compressive failure of
cylindrical samples of porous rocks [11,12]. The rock sample
was reconstructed on the computer by sedimenting spherical
particles with a realistic size distribution. The particles are
coupled by cohesive contacts represented by beam elements,
which break when they are stressed beyond a limit. Strain-
controlled uniaxial compression was realized by clamping a
few particle layers at the bottom and at the top of the sample.
The bottom was fixed, while the top layers were moved at a
constant speed along the cylinder axis. The loading process
was stopped when the force acting on the top layer dropped
down to zero. Due to the subsequent load redistribution
following failure events beams break in cascades analogous
to crackling avalanches in real materials. In Refs. [11,12]
we investigated the dynamics of emergence and statistics
of such crackling noise during the strain-controlled uniaxial
compression of cylindrical samples composed of 20000
particles. The modeling approach proved to be successful in
reproducing several important observed features of crackling
noise in porous materials [1-3,6,7,26].

Figure 1 demonstrates the breaking sequence of a single
simulation of a system of 20000 particles where 1832 events
are obtained up to macroscopic failure in comparison with
data from a real experiment [27]. In the example the breaking
process starts at the deformation & &~ 0.0019 where initially
small events occur with size A = 1. As loading proceeds
larger and larger events are triggered so that the average
events size steadily increases towards failure although A has
strong fluctuations due to the disordered microstructure of the
material.

Record-breaking events are simply events that have a size
A greater than any previous event. RB events are identified by
theirrank k = 1,2, ..., which occurred as the n;th event of the
complete time series with size AX. By definition the first event
n = 1 of the series is a record so that n; = 1 holds. Figure 1
illustrates that RB events form a monotonically increasing sub-
sequence and divide the time series into segments of varying
number of smaller size events. The presence of RB events has a
complex effect on the local structure of the time series in Fig. 1:
the moving average of the event size tends to peak at the time
of record-breaking events, with a precursory increase in the
average events size, followed by a decrease or relaxation after
the record-breaking event. This pattern is more pronounced
close to failure.

To characterize how record breaking evolves during the
loading process, we also consider the size increments §*
and the waiting times my; between consecutive records
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FIG. 1. (a) Sequence of events in a single simulation, i.e., the size
of events A as a function of the strain ¢ where they occurred. Record-
breaking events are highlighted by red bars, while subsequences
between records have randomly assigned colors. The bold continuous
line represents the moving average of event sizes using 30 consecutive
events. For clarity, a relatively small system of 20000 particles was
considered, where n,,, = 1832 event occurred with 10 records. (b)
Record events in a time series of a real fracture experiment performed
under conditions similar to the simulations [27].

defined as
8k = AR AR M

My = Nggq — Ny, 2)

respectively. After analyzing the overall statistics of record
quantities, we focus on the evolution of the sequence of RB
events as the system approaches failure. Finally, we study how
records influence the structure of the time series of crackling
events.

Based on the statistics of extremes it has been shown for
sequences of independent identically distributed (IID) random
variables that the statistics of record-breaking events have
universal features, i.e., several statistical measures of IID
records do not depend on the underlying probability distri-
bution of individual events [17]. The increasing average event
size and decreasing waiting time between consecutive events
in Fig. 1 demonstrate that the time series of crackling noise
accompanying compressive failure is highly nonstationary.
Comparing the results of our analysis to the corresponding
results of IIDs enables us to quantify the competing role
of the structural disorder of the material and of the stress
enhancements around failed regions, which favorably lead
to a stationary sequence of uncorrelated events [3,28-30]
and to an accelerating sequence with spatial and temporal
correlations [3,11,12,29,30], respectively. Additionally, we
generate a surrogate data set by reshuffling the events of the
simulated time series to destroy correlations. For each fracture
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simulation the indices n of events are permutated and then the
same analysis was performed as for the original data. When
it is applicable, the results of the original data, its shuffled
counterpart, and the IID predictions are presented together in
the figures. For the data evaluations the statistical toolbox
of MATLAB was extensively used [31] where a nonlinear
least-square method was used for curve fitting.

In the present study careful parallelization of the computer
code allowed us to substantially increase the system size. Here
simulations were performed with a particle number fluctuating
around 10° such that on the average the diameter of the cylinder
is spanned by about 50 particles while the height to diameter
aspect ratio of the sample is 2.3 [11,12]. For an average particle
size of 200 u (typical reservoir sandstone) the sample diameter
would correspond to 1 cm, which gets near to the typical
small core laboratory sample diameter of 2.5 cm. In a single
simulation we identified np,x = 3500-4000 events. Averages
of all quantities are calculated over 550 simulations.

III. NUMBER OF RECORDS

Since records are major events in the breaking process,
which have a dominating contribution to the accumulating
damage, it is of high interest how the number of records
N, increases with the number of events n. For IIDs it has
been shown that the average number of records (N,) that
occurred until the event number n has been reached grows
logarithmically with n

(Ny) ~k +1Inn+ O(1/n), for n— +oo, (3

independently of the specific form of the probability density
of the random variables [17]. Here « denotes the Euler-
Mascheroni constant k ~ 0.577215665 [17,18]. For crackling
noise accompanying the quasistatic loading of heterogeneous
materials deviations from this behavior can be expected: due to
the increase of the externally imposed strain the failure process
accelerates so that larger events are triggered, which follow
each other after shorter waiting times [11,12]. The complex
redistribution of stress inside the damaged sample gives rise to
the emergence of temporal and spatial correlations of events
in the sequence. As a consequence, the number of records
increases as a power law of the event number

(Nn) ~ n%, “4)

over a broad range of n (see Fig. 2). The value of the exponent
was obtained numerically o = 0.33 £ 0.03. This value of
o indicates that the number of record-breaking events also
increases at a decelerating rate, albeit with a different form to
that of Eq. (3). Deviations from the power law can be observed
at the very beginning of the loading process and in the close
vicinity of macroscopic failure. The upturn of the (N, ) curve
in Fig. 2 for the highest event indices n shows that as failure is
approached the rate of record breaking accelerates (the local
slope increases). This acceleration generally occurs when the
record number N, exceeds 7. The inset of Fig. 2 presents (N,,)
on a semilogarithmic plot. Strong deviation can be observed
from a straight line which confirms that the functional form is
not logarithmic. The corresponding curve of the shuffled data
is also presented in the inset, which has a perfect agreement
with the analytical IID result Eq. (3). From Fig. 2 (inset) the
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FIG. 2. Average number of records (N,) occurred until the nth
event as a function of n on a double logarithmic plot. Power-law
behavior is obtained over a broad range of n. The straight line
represents a power law of exponent 0.33. The inset presents the same
quantity (N, ) on a semilogarithmic plot. For comparison the shuffled
data set is also included where a logarithmic dependence is found.

null hypothesis of sampling from a parent IID distribution can
be rejected. Instead we have a decelerating transient response
of a power-law form.

To characterize the sample-to-sample variation of the
number of records N, we calculated the standard deviation

(N ). )

For IIDs the analytic solution gives again an asymptotic
logarithmic increase with n as [17,18]

Var(Ny) = (N —

2
Var(N,) = « +Inn — % +O(/n), for n— +oo, (6)
so that the relative variance Var(¥,)/(N,) monotonically
increases and tends to 1 for sufficiently large n. Figure 3 shows
that the very beginning of our fracture process, up to about
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FIG. 3. Standard deviation of the number of records Var(N,)
occurred until the nth event divided by the average record number
(N,) on a double logarithmic plot. The red (dashed) and the
blue (dashed-dotted) lines represent the corresponding result of the
shuffled data set and a power law of exponent 1/3, respectively.
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FIG. 4. Probability distribution of the total number of records
p(N*") that occurred up to failure for the original and surrogate
data sets. The continuous lines represent the Gaussian distributions
obtained with the mean and standard deviation calculated directly
from the data.

n = 10 events, is consistent with the IID behavior. However,
after a short intermediate decreasing regime the curve sets to a
faster increase, which has a nearly power-law functional form.
In Fig. 3 a power law of the same exponent as for the average
record number in Fig. 2 is drawn to guide the eye. The result
of the shuffled data is again consistent with the IID solution.

The probability distribution of the number of records p(N,)
that occurred up to a fixed number n of events has been found
to have a Gaussian functional form for IIDs in the limit of
large n values [17,18]. Figure 4 shows that in our fracture
process the distribution p(N'") of the total number of records
N that occurred up to failure is similar to a Gaussian with an
average (N'°") = 18.1 and standard deviation Var(N/*") = 3.1.
The highest and lowest number of records we identified in
single simulations were 10 and 26, respectively, with the most
probable value 18. In the shuffled event series large-size events
can occur anywhere, which results in a significantly lower
number of records (N'*) = 8.4 with a standard deviation
Var(N') = 2.5. The continuous lines in Fig. 4 represent
Gaussian distributions obtained by inserting the corresponding
values of (N,°") and Var(N,°") for the two data sets. Both for the
simulated and surrogate data reasonable agreement is obtained
with the Gaussian distribution.

IV. DISTRIBUTION OF RECORD SIZES

Recently, we have shown that the size distribution of
events p(A) accumulating all events up to failure during
the compression process has a power-law functional form
followed by an exponential cutoff

p(A) ~ A5 exp [—(A/A¥)]. (7)

In Refs. [11,12] the exponent £ was obtained numerically
as & =2.15 for samples comprising 20000 particles. In
the present study 10° particles are used, which gives the same
exponent for p(A), however, with a broader power-law regime
in Fig. 5. Thus, there is no evidence of scale dependence in the
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FIG. 5. Probability distribution p(A) of the event size A con-
sidering all events up to failure. The size distribution of records
p(A,) is presented both for the original and surrogate data sets. In
all cases the bold lines represent best fits with Eq. (7) obtained with
the parameter values: £ = 2.15, ¢ = 1.0 and A* = 1810 for p(A),
& =1.0,c, =0.9and A7 = 1052 for p(A,),and &’ = 0.8, ¢, = 0.9
and A} = 1270 for for shuffled series.

power-lay exponent, only an increase in the characteristic size
A*, and hence in the bandwidth of the power-law behavior.

Records form a subset of events of the complete series
containing solely the largest events that occurred up to a given
event index. Figure 5 shows that the distribution of the size of
records p(A,) has the same functional form Eq. (7) as the size
distribution of all events p(A), however, the exponent &, of the
power-law regime is significantly lower & = 1.0 & 0.05 than
for the complete distribution £. Selecting RB events implies a
resampling of the ensemble of events, where the distribution of
the record size is governed by the statistics of extremes. The
difference in slope is likely caused by the inherent sample
bias in choosing record-breaking events either (i) because
this preferentially filters out smaller events and/or (ii) larger
events may be associated with a greater degree of local stress
concentration (stress intensity), known to be associated with a
flatter slope [1]. In the shuffled event series large-size events
can occur earlier than during the original fracture process so
that small-size events have a lower chance to become a record.
As a consequence, the size distribution of shuffled records
has the same functional form, however, with a lower exponent
&’ = 0.8 £0.07, which indicates the lower fraction of small
records.

V. APPROACH TO FAILURE THROUGH BREAKING
OF RECORDS

The integrated statistics of records presented above gives an
overall description of the subset of RB events of the crackling
time series. It is a question of fundamental interest how
the system approaches failure through a sequence of record
breaking events. To obtain a quantitative understanding we
calculated averages of characteristic quantities of records as
a function of the record rank k. Figure 6(a) shows that as
the system evolves the average size of records (AX) rapidly
increases with k. The size increments (3¥) exhibit qualitatively
the same behavior, i.e., during the entire failure process records
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FIG. 6. Average value of the characteristic quantities of records
as a function of the record rank k: (a) size and increment, (b) relative
increment, (c) waiting time, and (d) strain of records normalized by
the critical strain of failure. The gray stripe highlights the strain range
between the records of rank k = 7 and k = 8. In (a), (b), (c) the open
and filled symbols represent the original and the surrogate data sets,
respectively.

get broken with an increasing sequence of increments. The
shuffled data set has the same qualitative tendencies with the
difference that low rank records reach higher sizes than in
the original data.

For a stationary sequence of IIDs the extreme value
statistics leads to a monotonous decrease of average relative
increments between consecutive records [32]. This is what we
find for the early part of our time series, when the timing and
size of events is dominated by the random structural disorder.
However, for the later RB events we find the opposite, i.e.,
an accelerating trend, most likely associated with processes
dominated by the dynamics, such as stress relaxation and
redistribution, and localization of events on to the eventual
failure plane. This change from deceleration to acceleration is
illustrated in Fig. 6(b) where the average value of the relative
increment (8 / A*) is presented. Initially the RB process slows
down, i.e., up to a characteristic record rank k* = 7-8 the
relative increment (5*/A¥) decreases, while for higher ranks
k > k* the onset of accelerating fracture is marked by the
increase of (8% / AK). The result is also supported by its absence
in the surrogate data where correlation are destroyed: the
relative increment monotonically decreases without any sign
of qualitative change.

After arecord has occurred as the n; th event of the sequence
it gets broken by the next record, which is the n;4 th event
of the evolving system. The waiting time mj = ngy| — ny is
an important characteristic of the dynamics; it provides the
number of events one has to wait to break the kth record by the
(k 4+ 1)th one. The quantity m is the lifetime of the kth record.
For IIDs it has been shown analytically that the probability
distribution p(m) of waiting times m has a power-law behavior

p(m) ~m™* ¥
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FIG. 7. Distribution p(m) of waiting times m between consec-
utive records for fracture simulations and for the surrogate data.
The bold lines represent best fit, which was obtained using the
generic functional form of Eq. (7). The value of the power-law
exponent is z = 0.62 and z = 0.98 for the simulated and shuffled
data, respectively.

with a universal exponent z;;p = 1. Figure 7 demonstrates
that the lifetime distribution of the surrogate is consistent
with the IID prediction with an exponent z; = 0.98 £ 0.07.
For the fracture process the same functional form is obtained,
however, with a different exponent z = 0.62 £ 0.03. The low
exponent z < z;;p reflects the fact that during compressive
failure of heterogeneous materials long waiting times between
records occur more frequently than for a random sequence
of IIDs. Since record breaking is controlled by the statistics
of extremes, in a sequence of IIDs waiting times get larger
with the record rank k, since it takes longer to break a larger
record. However, in the fracture process progressively longer
waiting times occur at the beginning. In spite of their larger
size, records of higher rank may get broken faster because of
the rapid increase of event size when approaching failure.

The emergence of a characteristic record rank k* is further
supported by the behavior of the average value of waiting
times my. Figure 6(c) presents the remarkable result that
the record rank k* = 7 separates two qualitatively different
regimes of the time evolution of the compressed system: at the
beginning of the failure process k < k* the increasing waiting
time implies a deceleration of record breaking, where it takes
longer and longer to break the growing records. For IIDs the
average waiting time must be monotonically increasing [18]
as observed in Fig. 6(c) for the surrogate data set since records
can be overcome after a larger and larger number of trials
drawn from the same distribution. Comparing our simulation
results to the IID findings, the increasing regime of (m;) can be
attributed to the dominance of disorder in the fracture process
consistent with our earlier findings [11,12]. Beyond k* the
waiting time starts to decrease confirming the change of the
dynamics. In spite of their larger size, records get broken
after fewer and fewer small sized events, which indicate the
dominance of temporal and spatial correlations in triggering
consecutive events.

In Ref. [11] our simulations revealed the localization
of individual rupture events to a damage band, which oc-
curs at a characteristic strain value close to failure. Such
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FIG. 8. Probability distribution p(A¥) of record sizes A for fixed
ranks k rescaled with the average record size presented in Fig. 6(a).
Good quality collapse is obtained.

localization has also been seen in acoustic emission data
during laboratory experiments loaded at constant strain rate
[27]. The spatial localization is accompanied by a rapid
increase of the average event size [11,12]. In Fig. 6(d) the
average strain (g /¢.) where the records occurred is presented
normalized by the critical strain of macroscopic failure. The
strain range (er/e.) = 0.69—72 corresponding to the record
ranks k* = 7-8 is also highlighted in the figure. Comparing
to the strain of localization (g;/e.) ~ 0.85-0.9 it follows
that the acceleration of the RB process sets in significantly
earlier. The macroscopic response of the system proved to be
quasi-brittle, i.e., linearly elastic behavior is obtained where
stronger nonlinearity emerges solely close to failure due to the
intense nature of the crackling noise [11,12]. The yield stress
oy and the corresponding strain ey, which mark the onset of
nonlinearity of the constitutive curve o (¢), could be identified
by computer simulations as oy /o, ~ 0.73 and ey /e, ~ 0.7,
respectively. The characteristic strain (g¢+/e.) of accelerated
record breaking falls close to ey.

To get a more detailed characterization of the evolution of
the system towards failure, we evaluated the size distribution of
records for fixed ranks p(AF). Figure 8 presents a scaling plot
where distributions of different record ranks are rescaled with
the average record size (AX) presented in Fig. 6(a). Except for
the first few bins of the smallest record sizes good quality data
collapse is obtained, which implies the validity of the scaling
structure

p(a7) = (A7) (a7/(A7)), ©)
where ©(x) denotes the scaling function. The result demon-
strates that records of different ranks have the same size
distribution, they get only shifted to accommodate the in-
creasing average size. Note that the functional form of the
scaling function ®(x) can be approximated as a power law
for x > 1. The slope of the straight line in Fig. 8 is 2.55. In
the scaling analysis records of the lowest and highest ranks
are not included because their size spans only a narrow range,
and we do not have a sufficient number of events, respectively.
When the event series is shuffled, any event can be the first,
and hence, the first record. However, for higher ranks small
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FIG. 9. Probability distribution p(A*) of event sizes in subse-
quences of events between consecutive records. For demonstration
three curves were fitted with the functional form Eq. (10). For the
highest ranks k > 20 the distributions practically fall on top of each
other.

size events have a very low chance to become a record.
As a consequence the surrogate data set cannot have such
a scaling behavior because the functional form of the size
distribution changes with the record rank: the size distribution
of the first record is practically identical with the complete
size distribution of events (see Fig. 5), while for higher record
ranks the distribution must have a slower decay.

In Fig. 1 it has been highlighted that consecutive records
enclose subsequences of the complete time series. To explore
this further we analyzed how the size distribution p(A*) of
these subsequences between the kth and (k + 1)th records
evolve as the system approaches failure. We excluded the
two record events at the left- and right-hand sides of the
sub-sequence from the statistics. Figure 9 presents the resulting
size distributions p(A*) for several k except for the lowest
ranks (k < 5) where event sizes span only a very narrow
region so that no meaningful distributions could be obtained.
The distributions cannot be collapsed by rescaling with the
average, only the cutoff of the distributions could be scaled on
the top of each other. The reason is that the distributions have a
power-law functional form followed by an exponential cutoff,

P(AK) ~ (AF) e AYA (10)

however, the power-law exponents t;, are different for different
record ranks k. It can also be observed in Fig. 9 that the cutoff
scale AX grows with the record rank k and the curves of the
highest ranks k > 20 fall practically on top of each other.
Figure 10 presents the exponent 7; obtained by fitting with
Eq. (10). For the lowest rank the exponent has a high value
7 = 3.26 then it monotonically decreases and for the highest
ranks it tends to the vicinity of 7, = 1.0.

The result is an interesting manifestation of the b-value
anomaly [33] (i.e., the change in the exponent of the log-
linear frequency-magnitude distribution) we have pointed
out before in DEM simulations of compressive failure [11].
In subsequences between records the number of events is
practically equal to the waiting time m;, which covers a broad
range [see Fig. 6(b)]. In the traditional analysis of the time
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FIG. 10. The value of the exponent 7; of the size distribution of
subsequences of events between consecutive records as a function of
the record rank k, together with the error bars.

series of events, event windows are considered with a fixed
number (typically a few hundred) of events. This has the
consequence that windows close to failure involve more and
more records and subsequences, which results in an exponent
different from the one of single subsequences presented above
[11,12].

Figure 11 shows that no such behavior exists when
correlations are destroyed by shuffling the event series. Except
for the lowest ranks, practically all the distributions of the sub-
sequences fall on the top of each other. The emerging master
curve can be well fitted with the functional form Eq. (10) where
the exponent takes the value 7 = 2.1 falling close to the size
distribution exponent of the whole population of the events.
The result is reasonable since all the subsequences are random
samples of the complete event set.
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FIG. 11. Probability distribution p(A*) of event sizes in subse-
quences of the shuffled event series between consecutive records.
Except for the lowest ranks the curves fall on the top of each other. The
white curve was obtained by fitting the functional form Eq. (10) with
an exponent 7 = 2.1 nearly equal to the one of the size distribution
including all the events.
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VI. STRUCTURE OF THE TIME SERIES

Records are major events of the breaking activity of the
compressed sample, which can have a strong effect on both
the spatial and temporal occurrence of subsequent events. In
Fig. 1 the increasing value of the moving average of the event
size towards records may indicate some kind of precursory
activity preceding record-breaking events. In order to obtain a
more detailed description of the internal structure of the time
series we calculated the average size of events (A,) before
and after records of different ranks & as a function of the event
index n — n; relative to the records n;. In Fig. 12 zero index
corresponds to the records while positive and negative values
of n — ny stand for events preceding and following records,
respectively. For clarity, the (A,) curves are normalized by
the average size (A¥) of the corresponding record.

It can be observed in Fig. 12 that low rank records just
randomly pop up on a flat background without any signature
of the imminent record event. However, high rank records
are approached through a sequence of precursory events with
an increasing average event size, and they are followed by
a relaxation process characterized by a gradually decreasing
event size. In this sense the later record-breaking events mimic
the behavior of the final dynamic rupture event. The functional
form of (A,) can be well fitted by an inverse power law

(An) ~ In =i |7 Y

on both sides of high rank records. In Fig. 12 a best fit is
obtained with the exponents y = 0.38 and y = 0.31 before
and after records, respectively, considering the curves of
k = 18,20.

To characterize the temporal occurrence of events we
analyzed in a similar way the average value of the physical
waiting time (7},) between consecutive events before and after
records as a function of the event index n — n; relative to
record indices ny. Figure 13 shows that for low record ranks
k < 7 the (T,) curves have a sharp local minimum at records,
which implies that the records are approached by a short

k
<An>/<Ar >
=

FIG. 12. Average size of events (A, ) in the vicinity of records as
a function of their integer index relative to records n — nj. High
rank records are preceded by events of increasing size and they
are followed by a relaxation process where the event size gradually
decreases. The bold line represents fit with Eq. (11).
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[ (a)

FIG. 13. Average value of the physical waiting time (7,,) between
consecutive events as a function of the event index relative to records
n — ny. The low and high rank records are presented separately in (a)
and (b), respectively. The red bold continuous lines in (b) represent
fit with Eq. (11).

period of increasing event rate and they are followed by a few
relaxation events with increasing waiting times in between.
However, for higher record ranks k > 7 the overall behavior
drastically changes: The (7,) curves develop a broader and
broader maximum at records, which shows that large-size
events occurring in the vicinity of records (compare also to
Fig. 12) are followed by longer waiting times. This behavior
is the consequence of the strain-controlled loading, i.e., after
large-size events it takes longer to build up again the stress field
and initiate the next event. In a different context, studying the
correlation of event size and the waiting time after events we
have found analogous behavior in Ref. [11,12]. The present
result is another form of appearance of the size-waiting-time
correlation.

In the deceleration and acceleration periods the (7,,) curves
can be well fitted with the power-law functional form. For the
exponents providing best fit in Fig. 13 the same value 0.29 was
obtained numerically on both sides of records.

VII. DISCUSSION

We investigated the statistics of record-breaking events
generated during the compressive failure of heterogeneous
materials. A synthetic time series of crackling events was
generated by discrete element simulations of a realistic
model where a cylindrical sample was subject to uniaxial
compression in a strain-controlled way. Records of the time

PHYSICAL REVIEW E 93, 033006 (2016)

series of crackling events are identified as a local dynamic
rupture event with size greater than any previous event. The
large system size in the model and the large number of samples
generated by simulations allowed us to obtain high-quality
results for the statistics of records. In order to reveal the
role of correlations of events the analysis was repeated for
a surrogate time series, which was generated by randomly
reshuffling the simulated events. Additionally, our results were
compared to the corresponding analytic findings on sequences
of independent identically distributed random variables.

The overall statistics of records is characterized by power-
law distributions of the size and lifetime of records and by
the power law increase of the record number with the total
number of events. This behavior deviates from the surrogate
data set where correlations were destroyed, however, the later
one agreed very well with the stationary process of 1IDs.

As the compression proceeds the system gradually evolves
towards macroscopic failure where the sample loses its
integrity. We have shown earlier [11,12] that the failure process
has two qualitatively different stages: the beginning of the
failure process is dominated by the structural disorder of the
sample giving rise to an uncorrelated emergence of small-
sized events. Later on as macroscopic failure is approached
the fracture process accelerates, which is indicated by the
increasing event size and by the decreasing waiting times
between consecutive events. This second stage is dominated by
the growing spatial and temporal correlations of local rupture
events in the sample. In the present paper we showed that
analyzing the statistics of record-breaking events and their
evolution with increasing rank, provides an alternative way for
the quantitative characterization of the emerging correlations
in the fracture process as the loaded system evolves towards
failure.

Our analysis revealed the existence of a characteristic
record rank £*, which separates two regimes of the fracture
process: for low record rank k < k* the process of record
breaking slows down, i.e., it takes longer and longer to break
a record. At k* the RB process starts to accelerate indicated
by the rapidly decreasing record lifetime and by the increasing
relative size increments of records. The surrogate event series
proved to follow the IID predictions without any sign of the
emergence of a characteristic record rank.

Records are found to affect the surrounding structure of
the time series: approaching high rank records, events have a
gradually increasing size separated by an increasing physical
waiting time, while after records the event size decreases and
the temporal occurrence accelerates with decreasing waiting
times. The evolution of both the event size and waiting time
is characterized by power-law functional forms as a function
of the distance from records. The result is consistent with
our earlier finding presented in Ref. [12], where the increase
of waiting time after large-size events has been pointed
out by analyzing the size-waiting-time correlation of events.
The reason is the strain controlled loading, which has the
consequence that larger events release the stress in a larger
volume of the specimen, and hence, it takes longer to build up
the stress field again and trigger the next event.

Scaling analysis revealed that records of fixed ranks have
the same size distribution, which has power-law asymptotics.
Records split the time series of events into subsequences,
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which typically contain fewer and fewer events as the system
approaches macroscopic failure. We showed that the size
distribution of events in subsequences are characterized by
power-law size distributions, however, the exponent spans
a broad range decreasing to the vicinity of one towards
failure. This result is consistent with the trend of the b-value
anomaly of the time series [1]. In traditional b-value analysis
of crackling time series windows of events are considered
either with a fixed number of events or with a fixed strain or
stress increment. Since records affect the structure of the time
series, our analysis suggests that focusing on subsequences
between records can provide significant additional and relevant
information to that which can be inferred from the average
properties of the time series of the whole population of all
events. In principle this could improve forecasting power for
catastrophic failure, but this depends on our being able to
detect the processes revealed here in real time, and in a single
realization, during a live experiment.

Our simulations were carried out with samples of about
100000 particles, which corresponds to practically labora-
tory scale sample sizes. Comparison to simulations of a
significantly smaller system size of 20000 particles (see
Refs. [11,12]) showed that in larger systems a larger number
of events are generated whose size distribution spans a
broader range. However, the probability distributions of the
characteristic quantities of the event ensemble are quite robust,
i.e., the value of the power-law exponents are the same within
the error bars. The same is valid for the number and size of
records, however, for the value of the characteristic record rank
k* no size dependence could be identified. In the simulations
with 100000 particles the relative fluctuations in the total
number of events is quite moderate (below 0.1). Tests of the
effect of these fluctuations, e.g., by restricting the analysis to
simulations where the number of events exceeds a threshold,
revealed that they mainly affect the statistics of the results but
no systematic bias occurred.

Our analysis strongly relies on the comparison of the record
statistics of crackling noise time series to the corresponding
IID findings and to the results of uncorrelated surrogates. A
similar strategy has recently been applied in Ref. [18] to study
the avalanche dynamics of models of self-organized criticality
where IID results were derived by substituting the known
steady-state distribution of avalanche sizes into the generic
IID formulas. Deviations of the record statistics of SOC
models from the IID results were identified as signatures of
correlations emerging in the dynamics of avalanches. Record
breaking statistics of daily temperatures has proven a useful
tool to investigate the effect of global warming. It has been
pointed out in Ref. [34] that the observed frequency and
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average value of record temperatures, at least one locality,
can be understood in terms of a stationary climate, so that
the current warming rate does not have a noticeable effect on
the record statistics of daily temperatures (at least in the city
of Philadelphia where the data was measured). Additionally,
the ratio of the number of record high (record of the highest
temperature of a given day) and record low (record of the
lowest temperature of a given day) temperatures was suggested
as a useful measure to point out trends in time series [34].
This idea was extended to earthquakes by Ref. [16] where
the sequence of interval times between successive earthquakes
were analyzed. It was shown that for global earthquakes the
statistics of both record-breaking longer and record-breaking
shorter intervals is consistent with IID processes. This implies
that record-breaking earthquakes in the global catalog are
independent each other, as indeed are most main shocks.
However, within an isolated aftershock sequence, where
interevent times get systematically longer, the number of
record-breaking longer intervals was found to increase as a
power law of the event number similarly to our result Eq. (4).
At the same time the ratio r of the number of record-breaking
longer and shorter intervals proved to be predominantly greater
than one, which was suggested as a measure to distinguish
between background seismicity and aftershock sequences
[16]. Extending the calculation of the ratio r to a broader
spatiotemporal interval, before and after the main shock,
r <1 and r > 1 were found, respectively, which addressed
a possibility of using record-breaking statistics for forecasting
[16]. For interevent times of aftershocks the Omori-type
relaxation was proved to be responsible for the power-law
increase of the number of records, while in our case the
monotonically increasing average event size towards failure
plays a similar role. For earthquakes, the frequency-magnitude
distributions for main shocks and aftershocks are the same,
however, for fracture processes both the event magnitude
and interevent time exhibit a systematic evolution towards
macroscopic failure. In the present study we focused on the
record-breaking process of event magnitudes, the extension
to interevent times is a work in progress including also the
analysis of the correlation of consecutive records [35].
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