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Abstract. Two-layer coupled or composite beams with discrete shear connectors of finite dimensions 
are commonly encountered in pre-fabricated construction. This paper presents the development of 
simplified closed-form solutions for such type of coupled beams for practical applications. A new 
coupled beam element is proposed to represent the unconnected segments in the beam. General 
solutions are then developed by an inductive method based on the results from the finite element 
analysis. A modification is subsequently considered to account for the effect of local deformations. For 
typical cases where the local deformation is primarily concerned about its distribution over the depth of 
the coupled beam, empirical modification factors are developed based on parametric calculations using 
finite element models. The developed analytical method for the coupled beams in question is simple, 
sufficiently accurate, and suitable for quick calculation in engineering practice.    

Keywords: Prefabrication; modular structures; coupled beam; discrete shear connection; composite 
effect; simplified solution. 

 
1. Introduction 

 
Pre-fabricated steel structures are increasingly used in modern building construction. In such 

structures, the occurrence of parallel beams situated one above another with a certain gap 
in-between are often encountered as a result of assembling pre-fabricated building units. Fig. 1 
shows a typical corner-supported module structure (Lawson 2007). Such modular structures are 
often designed to provide fully open sides and loads are transferred to the corner columns. The 
modules are transported and assembled onsite, such that adjacent modules are connected by weld or 
bolts near the top and the bottom of the corner columns, creating a situation with parallel-running 
beams separated by a sizeable gap.  

Coupling such two-layer beams to enable effective composite action is obviously beneficial in 
terms of structural efficiency, saving of structural materials, and increasing the clear internal space 
of the building. Clearly the best composite performance would be achieved by rigidly bonding the 
two beams continuously over the entire beam length. However, this is inefficient and labour 
intensive for on-site assembling of the building. It would be more practical to connect the beams in a 
discrete manner using shear connectors of appropriate dimensions. This produces a special type of 
two-layer coupled beam with discrete shear connection regions of finite dimensions, both in length 
and depth.  

Conventional composite beams have been widely studied in the last few decades, arguably 
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starting from the well-known Newmark model (Newmark 1951) which was formulated in 
accordance with the Euler beam theory. The model was then extended to Timoshenko beam with 
the consideration of the shear effect. The deformable shear connection between laminated layers 
was firstly considered as continuous, and subsequently discrete shear connections were also 
involved. Differing from these configurations, however, the present two-layer coupled beam 
problem involves a sizable gap between the two layers as well as shear connectors of a finite 
length, which cannot be simply treated as point connections as assumed in some existing two-layer 
beam models with discrete shear connection (Nguyen et al. 2011, Nguyen et al. 2010, Nie and Cai 
2003). In this respect, the present two-layer coupled beam is called herein as “coupled beam with 
discrete shear connection regions”, or CBDSCR.  

 

 
 

 (a) A typical primary steel frame         b) Two parallel steel beams separated by a gap 
Fig. 1 Corner supported module and connection (after Lawson (2007)) 

 
In this paper, an analytical method is developed for the evaluation of the composite effect and 

calculation of the stiffness and deflection in CBDSCR beams. The method is firstly formulated on 
the basis of simplified plane-section assumptions, leading to a simplified solution for the 
estimation of the stiffness, as well as the composite effect, of a CBDSCR. The above basic 
formulation involves only the rigidity (EI) of the two beam layers and thus is applicable for both 
single- and two-material scenarios. The margin and sources of potential errors are subsequently 
investigated with the aid of refined finite element models. A modification scheme is then 
introduced to account for the effect of local deformations around the connection regions; and for 
single-material coupled beams, detailed modification factors are proposed based on numerical 
parametric calculations using finite element models. The method proposed is simple and yet 
effective and thus is suitable for quick calculations in practice. Apart from the application in the 
module building construction, the method can also be applied in cases where stiffer and stronger 
beams may need to be created by coupling two smaller, standard section beams in an efficient 
manner. 

 
 

2. Background Theory  
 
Early study of composite beams with flexible shear connection dated back from the 
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well-known Newmark’s model (Newmark 1951) for a concrete slab and steel beam composite. 
Two Euler-Bernoulli beams were used to represent the top slab and the bottom beam, respectively. 
The model was extended to using Timoshenko beam model, in which the shear deformation of the 
slab and the beam is taken into account simultaneously (Berczyński and Wróblewski 2005). 
However, considering the relatively small shear deformation of the concrete slab, a hybrid model 
(Ranzi and Zona 2007) was subsequently proposed such that the steel beam is represented by 
Timoshenko beam while Euler-Bernoulli beam is employed for the concrete slab. 

The “slip”, or in general the relative axial (longitudinal) displacement between the top and 
bottom beams due to the deformation of the shear connection plays an important role in 
determining the composite stiffness. The shear connection in Newmark’s model allows 
longitudinal deformation but prevents vertical separation between the beams. In the hybrid model 
used by Ranzi and Zona (2007), the relative slip is derived from a displacement field considering 
the axial displacement, rotation and shear deformation. The principle of virtual work is utilized to 
obtain the weak form of the balance conditions. The integral-type linear viscous-elastic 
constitutive model is used in the concrete slab, while the steel beam, reinforced bars and shear 
connectors are considered as linear elastic. The problem is then solved numerically by the finite 
element method due to the complexity of the governing system of differential equations. Such a 
solution approach is however difficult to apply for a quick estimation of the stiffness of the 
composite beam in a design analysis situation. Ranzi et al. (2006) extended the displacement field 
formulation slightly to involve the separation, i.e. relative transverse displacement between the 
beams. A bi-linear constitutive law was used to simulate the contact behaviour between the beams, 
with a large normal stiffness being used for penetration penalty.   

It is noted that the shear connection in the above laminated beam models is continuous, which 
may be applicable to welding or gluing (by ideal adhesive) throughout the length, or when the 
spacing between connectors, such as shear studs, nails, rivets, etc, is small. For composite beams 
with large spacing (sparse) connectors, a discrete connection model is necessary. Nguyen et al. 
(2011) simulated the sparse shear connector by concentrated spring elements along the axial 
direction, while transverse separation is prevented. The spring element is a 4-degree of freedom 
(DOF) element. The unconnected beam segments are modelled by a 10-DOF element, which 
allows interaction between the two layers, such that the normal force and friction can be taken into 
account. The plane cross-section assumption is applied on both layers, which however need not be 
normal to the neutral axis of the composite. The results show that the discrete connection model is 
more accurate comparing to continuous model if sparse connection is involved. 

A number of other studies have also been conducted in the past dealing with extended 
properties of composite beams, including time-dependant properties of the concrete slab in a 
discrete connection model (Nguyen et al. 2010, Al-deen et al. 2011), stiffness reduction due to 
cracking concrete slab in the hogging moment region (Nguyen et al. 2009), vertical uplifting from 
intermediate supports (Ranzi et al. 2010), multi-layered beams (Gianluca 2008), geometric and 
material nonlinearities (Liang et al. 2004), and refined connector behaviour between the beams 
(Liang et al. 2004, Razaqpur and Nofal 1989, Salari et al. 1998, Wright 1990). 

In spite of the availability of a variety of composite beam models, the essential features of the 
present CBDSCR beams cannot be properly represented using the existing models. The discrete 
shear connection regions with sizable dimensions both in the depth (gap) and the length can not be 
simplified either as continuous shear connection or discrete connection with point connectors as 
studied before. The formulation of sophisticated FE models, as presented in some previous 
publications (Berczyński and Wróblewski 2005, Ranzi and Zona 2007), is not easy to implement 
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for a practical design analysis. Therefore development of a sufficiently accurate but also 
easy-to-apply solution for the analysis of CBDSCR becomes necessary. 

 
 

3. Basic Formulation of CBDSCR  
 

3.1 Basic Assumptions 
 

The main features of a CBDSCR beam are schematically shown in Fig. 2. The gap between the 
two layers of the beam may vary, and the connection region is not continuous. Furthermore, the 
shear connectors can be of significant length. Consequently, the effect of the dimensions of the 
connection regions, as well as their stiffness, should be appropriately considered in the analysis of 
the beam. 

 A 

L l 

Unconnected segment 

A 

 
 

N.A. 

dT 

dB 

IT , AT  

IB , AB  
 

Section A-A 
 

Fig. 2 A typical CBDSCR 
 
Three basic assumptions are made firstly in order to develop a basic theoretical model: 

1) No relative slip and separation occurs within the connection regions – this assumption 
will be compensated by an empirical correction factor to account for the influences of the shear 
deformation in the connectors as well as local deformation in the vicinity of these regions, 
which will be presented in the next section; 

2) The top and bottom beams and the connection regions can be described by three Euler 
beams, respectively; 

3) The top and bottom beams and the connection regions have the same rotation and 
deflection at their junctions. The cross-section of the junction between a connection region and 
an unconnected beam segment remains plane during bending. Thus, the compatibility 
relationship, as shown in Fig. 3, may be written as: 

CBT vvv ==           (1a) 

CBT rrr ==           (1b) 

TCCT drww −=          (1c) 

BCCB drww +=          (1d) 
where w  is the axial displacement of the neutral axial of the beam, v  is the transverse 

deflection, d  is the distance between the neutral axis of the composite section to that of the 
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top/bottom beam, and subscript T, C, B denotes the top, connection and bottom beam, respectively. 
 

 
 

Fig. 3 Compatibility relations at the junction 
 
As shown in Fig. 2, the reference axis for the coupled beam element is at the neutral axis of the 

unconnected segment and this is also used for the connected region. It should be noted that in 
reality the neutral axes of the connected and unconnected regions are not actually co-linear. This 
may cause a difference in the axial deformation between the connected and unconnected regions at 
the junction, but since the rotation and deflection have been assumed to maintain the same at the 
junction, the derived flexural stiffness (rigidity) of the coupled beam would not be affected 
significantly by the simplification in the reference axis. The influence becomes further negligible 
by the fact that the depth of the shear connectors is usually much smaller than the depths of the top 
and bottom beams in practice, therefore the two neutral axes are effectively quite close to each 
other. 

 
 
3.2 Stiffness Matrix of Unconnected Beam Segments 
 
According to the compatibility relations described in Eq. (1), the unconnected two-layer beam 

segments (see Fig. 2b) can be simplified into a coupled element whose stiffness can be derived 
from the basic beam element formulation, as follows.  

The general constitutive equation of the original two-beam segments may be written as: 
FKδ =             (2)  

in which the displacement vector has 12 elements, including 3 DOFs (transverse displacement, 
axial displacement and rotation) at each of the four ends of the top and bottom beam:  

{ }T
BBBBBBTTTTTT rvwrvwrvwrvw 222111222111=δ   (3)  

The stiffness matrix of the coupled element is represented by the assembly of the element 
stiffness matrix of the two beams, 









=

B

T

K0

0K
K           (4) 
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     (5) 
The subscript e stands for T or B for the top and bottom beam, respectively. The constraint 

equations from the compatibility relationship in Eq. (1) are expressed by: 

111 CTCT rdww −=           (6a) 

11 CT vv =             (6b) 

11 CT rr =             (6c) 

222 CTCT rdww −=           (6d) 

22 CT vv =             (6e) 

22 CT rr =             (6f) 

111 CBCB rdww +=           (6g) 

11 CB vv =             (6h) 

11 CB rr =             (6i) 

222 CBCB rdww +=          (6j) 

22 CB vv =            (6k) 

22 CB rr =            (6l) 
With these coupling equations, the 12-DOF displacement vector reduces to a 6-DOF vector, as 

illustrated in Fig. 4, 

{ }T
CCCCCC rvwrvw 222111=*

δ       (7)  
The corresponding constitutive relations for the 6-DOF element is 

*** FδK =           (8a) 
*

cδTδ =            (8b) 

FTF c
* T=           (8c) 

cc
* KTTK T=           (8d) 

in which cT  is the transform matrix determined by the coupling equations: 
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Fig. 4 A new combined element for a two-layer unconnected beam segment 
 
For generality the Young’s modulus of the top and bottom beams is assumed to be ET and EB, 

respectively, thus allowing for applications where different materials are used. Subsequently, the 
stiffness matrix of the combined element is reduced to a 6-DOF stiffness matrix as: 
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Since Td  and Bd  is the distance between the neutral axis of the top and bottom beam, 
respectively, to the neutral axis of the composite section, it has the following relation: 

TTTBBB dAEdAE =            (11) 

Therefore, *K  in Eq. (10) is simplified into: 
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Elements in *K  indicate that the coupled beam element can be considered as the summation 
of the stiffness of the two individual beams plus an additional (composite) stiffness term 

LdAEdAELEI BBBTTT /)(/)( 22 +=∆ , with )(EI  denoting an equivalent flexural rigidity. *K  
can be further written as: 
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Any distributed load applied over an unconnected segment is converted to point loads applied 
at the ends of the coupled beam element, as per the standard procedure for a conventional beam 
element.  
 

3.3 Solution of Deflection Using the Coupled Beam Element 
 

With the above formulated coupled beam element for the unconnected beam segments, a 
CBDSCR beam can be modelled as a combination of the coupled elements (for unconnected 
segments) and the conventional beam elements (for the connection regions). Subsequently, it is 
possible to derive a closed-form solution for a CBDSCR beam under a standard loading condition. 
Details of the solutions will be given later in the Section 4. An example is shown in what follows.  

Consider a simply-supported CBDSCR with 5 evenly distributed connection regions dividing 
the beam into 4 segments (refer to Fig. 2a). The length of each unconnected segment is thus 

4/)5( lL − , with L being the total length of the beam and l the length of a connection region. It is 
noted that the depth of the shear connectors is usually much smaller than the depths of the top and 
bottom beams, therefore the flexible rigidity of cross-section in the connection region may be 
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approximated as BBTTBBBTTT IEIEdAEdAE +++ 22 . After assembling the stiffness matrix of the 
overall beam with 5 conventional beam elements for the connection regions and 4 coupled beam 
elements for the unconnected beam segments, an analytical solution can be obtained. The solution 
for the maximum deflection when the beam is subjected to a mid-span point load F is as follows: 

( ) ( )
( )( )22

22
3

3

max
768

5
116

bBBTTTBBTTBBTT

bBBTTTBBTT

dAEdAEIEIEIEIE

dAEdAE
L

l
IEIEFL

++++











+







 −++

=δ       (13a) 

 
If the length of the connection region of the CBDSCR is negligible, the solution reduces to: 
 

( ) ( )[ ]
( )( )22

223

max
768

16

bBBTTTBBTTBBTT

bBBTTTBBTT

dAEdAEIEIEIEIE

dAEdAEIEIEFL

++++
+++=δ    (13b) 

 
 
4. Generalised Stiffness of CBDSCR and Parametric Analysis 
 

4.1 Equivalent Sectional Rigidity and Derivation 
 

The stiffness of a CBDSCR with a specific boundary condition, force and connection region 
configurations can be obtained theoretically using a similar procedure as described earlier in 
Section 3.2. Consider the solution in Eq. (13), the maximum deflection maxδ  of an equivalent 

uniform beam with an equivalent flexural rigidity eqEI )(  subjected to a mid-span concentrated 

force is calculated as: 

eqEI

FL

)(48

3

max =δ           (14) 

Substitute Eq. (13b), eqEI )(  is obtained as 

( )22
22

1
16

1

1
)( BBBTTTBBTT

BBTT

BBBTTT
eq dAEdAEIEIE

IEIE

dAEdAE
EI +++

+
+
+⋅

=   (15a) 

Let: 

BBTTO IEIEEI +=)(           (15b) 
22)( BBBTTTBBTTC dAEdAEIEIEEI +++=      (15c) 

22)( BBBTTTOC dAEdAEEIEIEI +=−=∆      (15d) 

where OEI )(  is the summation of the flexural rigidity of the top and the bottom beams, 

CEI )(  is the bending rigidity of the ideal composite beam, )(EI∆  is the increase of the flexural 
rigidity of section due to the ideal composite effect. Thus: 
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C

O

eq EI

EI

EI
EI )(

1
)(

)(

16

1
1

)(
+∆=         (15e) 

Eq. (15e) may be written in a general form as: 

CC

O

eq EIEI

EI

EI
EI )()(

1
)(

)(
1

)( α
β

=
+∆=       (15f) 

1
)(

)(
1

+∆=

OEI

EIβ
α            (15g)  

where α is the coefficient of the composite effect of the CBDSCR, β is a factor related to the 
boundary condition, loading condition and number of the segments of a CBDSCR.  

For the example CBDSCR with 4 evenly divided segments and a negligible connection region 
length, β =1/16. Conducting a similar analysis on CBDSCRs with different boundary and loading 
conditions and number of segments, eqEI )( for a variety of CBDSCRs can be determined and the 

results in terms of the coefficient β are shown in Table 1. It can be observed that the factor β can 
be expressed as a function of the number of the unconnected beam segments, n, as follows: 

a) For simply- supported (SS) beams under a mid-span concentrated load (CL): 
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b) For simply-supported beams under a uniformly distributed load (UDL): 
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c) For fixed-support (FS) beams under a mid-span concentrated load: 
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d) For fixed-support beams under a uniformly distributed load: 
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Eq. (16) indicate that β reduces exponentially with the increase of n. The maximum difference 
in the β values between the two loading patterns is about 25% in simply supported beams, whereas 
the difference is less significant in the fixed-support beams. The variation of the composite 
coefficient α with n is dependent upon β as well as the specific sectional properties. α calculated 
from Eq. (15g) increases with the increase of n. 

 
Table 1 β values for a CBDSCR with n evenly distributed unconnected segments, assuming a negligible 

connection region length 
 

 
  SS: simple-support, FS: fixed-support,  
  CL: concentrated loading at mid-span, UDL: uniformly distributed loading 

Number of unconnected  

segments n 

β values in eqEI )(  

SS and CL FS and CL SS and UDL FS and UDL 

2 
4

1  1 
5

1  1 

3 
12

1  
3

1  
135

11  
27

11  

4 
16

1  
4

1  
20

1  
4

1  

5 
500

17  
125

17  
3125

97  
625

97  

6 
36

1  
9

1  
45

1  
9

1  

7 
1372

25  
343

25  
12005

193  
2401

193  

8 
64
1  

16
1  

80
1  

16
1  

9 
972

11  
243

1  
32805

321  
6561

321  

10 
100
1  

25
1  

125
1  

25
1  

 

 
 
If the length of the connection region is considered, eqEI )(  in Table 1 is modified as shown in 

Table 2. Correspondingly, the composite coefficient α may be expressed similarly as Eq. (15g) 
with the introduction of a factor γ, as:  

1

1

+∆=

OEI

EIβγ
α          (17a) 

where  

( ) 3
1

1 




 +−=
L

lnγ        for concentrated load      (17b) 
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( )







 −




 +−≈
L

l

L

ln
1

1
1

3

γ  for uniformly distributed load    (17c) 

 
 
Table 2 eqI of a CBDSCR with n evenly distributed unconnected segments, assuming non-negligible 

connection region length*  
 

 
           * Note: For coupled beam with two different materials, all “I” terms in the table are changed to “(EI)”,  
         e.g. eqI  to eqEI , CI  to CEI )( , and the same formulas apply.   
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4.2 Verification with Refined Finite Element Model 
 
In order to verify the accuracy of the theoretical solution, a number of CBDSCR beams are 

constructed and calculated using both the theoretical solution and refined finite element models. 
The beams are assumed to be made of steel with a Young’s modulus of 210 GPa and a Poisson’s 
ratio of 0.3, and have the same overall length of 5.0m. The top and bottom beams are of 
rectangular cross-section with a uniform width of 0.1m, and the depth of the bottom beam is fixed 
at 100mm. Totally 12 CBDSCR beam scenarios are constructed for comparison, with variations in 
the loading patterns, boundary conditions, number of unconnected segments, height of the gap, 
length of the connection region, and the height of the top beam, as summarised in Table 3. A 
refined finite element model is employed to model the CBDSCRs. Element PLANE42 in ANSYS 
is used to construct the FE model. The mesh of the FE model is made sufficiently fine such that at 
least 6 plane elements are used over the height of each component beam, which proved to be 
adequate after a mesh convergence check. 
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Table 3 List of CBDSCRs used in comparison 

Beam 
l  

(mm) 

Th  

(mm) 

g  

(mm) 
n  

Bonding  

conditions 
Loading 

1 200 100 20 4 SS CL: 1000N at mid span 

2 200 100 20 4 SS UDL: 1000N/m  

3 200 100 20 4 FS CL: 1000N at mid span 

4 200 100 20 4 FS UDL: 1000N/m 

5 200 100 20 5 SS CL: 1000N at mid span 

6 200 100 20 6 SS CL: 1000N at mid span 

7 200 100 30 4 SS CL: 1000N at mid span 

8 200 100 50 4 SS CL: 1000N at mid span 

9 400 100 20 4 SS CL: 1000N at mid span 

10 600 100 20 4 SS CL: 1000N at mid span 

11 200 150 20 4 SS CL: 1000N at mid span 

12 200 200 20 4 SS CL: 1000N at mid span 

 
 

Table 4 Comparison of maximum deflections predicted using the proposed beam model 
with FE results 

Beam 
FE model 

maxδ (mm) 

Eq. (15)  
(without connection length) 

Eq. (17)  
(with connection length) 

α  maxδ (mm) Error α  maxδ (mm) Error 

1 0.164 0.79 0.178 8.1% 0.88 0.159 -3.1% 
2 0.495 0.82 0.531 7.2% 0.90 0.483 -2.5% 
3 0.059 0.48 0.073 22.9% 0.64 0.054 -8.3% 
4 0.015 0.48 0.018 25.3% 0.65 0.013 -7.8% 
5 0.152 0.85 0.164 7.7% 0.93 0.150 -1.2% 
6 0.149 0.89 0.157 4.9% 0.96 0.146 -2.2% 
7 0.148 0.76 0.161 8.9% 0.86 0.142 -3.9% 
8 0.123 0.70 0.136 10.3% 0.82 0.116 -5.8% 
9 0.151 0.79 0.178 17.4% 0.94 0.148 -2.1% 
10 0.144 0.79 0.178 23.2% 0.98 0.142 -1.4% 
11 0.088 0.82 0.092 4.6% 0.90 0.084 -4.6% 
12 0.052 0.86 0.053 1.2% 0.92 0.049 -5.8% 

 

Table 4 compares the mid-span deflections of the 12 CBDSCRs calculated by Eqs. (15) and (17) 
and the results obtained using the refined plane element models. As the length of each connection 
region in all the cases is substantial comparing to the total depth of the composite beam, ignoring 
the connection length (i.e. assuming point connections and using Eq. (15)) results in larger errors, 
and in some cases the error is up to about 26%. On the other hand, with the consideration of the 
connection length, i.e., using Eq. (17), the theoretical predictions match the FE results 
satisfactorily and the maximum error is less than 9%. 
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4.3 Factors Influencing the Composite Effect of CBDSCR 

 
It can be generally understood that the composite effect in a CBDSCR is affected by the following 
main factors, i) the differential bending stiffness between that of the full composite section and that 
of the uncoupled section, which effectively defines the overall demand on the connectors and is 
closely associated with the gap size between the top and bottom parts of the beam, ii) spacing or 
the number of the shear connectors, iii) the length of each connector, and iv) the shear stiffness of 
the connectors themselves. Herein we assume a sufficiently large stiffness in the connectors. The 
influences of the remaining factors can be evaluated based on the theoretical solution given in Eqs. 
(15) and (17). For simplicity, we shall first examine the situation where the top and bottom parts of 
the CBDSCR have identical section properties.  

a) The differential flexural rigidity OEIEI )/()(∆  

From Eqs. (15) and (17) it can be understood that the stiffness of a CBDSCR, and hence the 
composite coefficient, will decrease with the increase of the differential bending rigidity 

OEIEI )/()(∆ . For the case of beam-1 described in Section 4.2, when the gap depth g increases 

from 0.01 m to 0.10 m, OEIEI )/()(∆  increases from 3.6 to 12.5. Fig. 5 shows a persistent 
decrease of the theoretical α ; the FEA results agree reasonably well with the theoretical solution 
with slightly increasing discrepancy as OEIEI )/()(∆  increases. The discrepancy will be 
discussed in the next section. 

 

 
 

Fig. 5 Effect of OEIEI /∆  on α  

 

b) Number of unconnected segments n 

Increasing the number of the shear connectors results in an increase of the number of unconnected 
segments, denoted by n, and is expected to enhance the overall composite effect, and hence 
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increasing the composite ratio α of a CBDSCR. Fig. 6 shows the variation of α with n in both 
simply-support and fixed-support conditions. The theoretical curves agree reasonably well with the 
FEA results. α increases and eventually approaches 1.0 with the increase of n. In the 
simple-support cases, α increases from 0.58 in the 2-segment case to 0.82 in the 3-segment and 
0.94 in the 5-segment cases. In the fixed-support cases, where the two end supports serve as 
connectors themselves, α increase from 0.25 in 2-segment case to 0.80 in the 5-connector case and 
0.91 in the 7-segments case. 
 

 
 (a) Simple-support CBDSCR        (b) Fix-support CBDSCR 

Fig. 6 Effect of number of shear connectors 
 

 
 (a) n = 4 (b) n = 6 

Fig. 7 Effect of length ratio l/L of the connection region 
 

c) Relative length of the shear connection region 

Similar to increasing the number of connectors, a larger connector length (l) is expected to lead to 
a better coupling effect between the top and bottom beams. Eq. (17) shows that increasing l 
reduces γ, and as a result α increases. Fig. 7 shows the influencing trend of Ll /  on the 
composite effect in a simply supported CBSDCR with the number of shear connectors (n) being 4 
and 6, respectively. It can observed that for the case n = 4, with Ll /  increasing from 0.01 to 0.19, 
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α increases from 0.82 to 1.0; for the case n = 6, with Ll /  increasing from 0.01 to 0.14, α  
increases from 0.92 to 1.0. 
 
 
5. Modification to Basic Formulation Considering Local Deformation 
 

5.1 Local Deformation and Stress Distribution around Connection Regions 
 
The basic formulation for CBDSCR presented above has assumed that the cross-section at the 
junction between the connectors and the unconnected segments remain plane during bending. This 
assumption is apparently a source of errors in the predicted beam responses. To illustrate this, we 
create a modified FE model in which rigid beam elements are inserted vertically at all junction 
sections, as shown in Fig. 8(a), such that these sections are artificially constrained to deform as 
plane sections. Fig. 8(b) shows a comparison of the resulting composite ratio α between the two 
FE models as well as that predicted using the basic beam formulation. It can be observed that the 
results from the modified FE model match closely the simplified beam formulation, and both 
results exhibit similar overestimation of the composite effect as compared with the original FE 
model. This indicates that the plane cross-section assumption at the junctions is indeed the major 
source of the discrepancy in the predicted beam response with the proposed beam formulation. 
 

 
(a) FE model with artificial plane section (rigid elements) inserted at the junction interfaces 

 

 
(b) Variation of composite effect predicted using different models 

 
Fig. 8 Evaluation of effect of the plane section assumption on prediction accuracy 

 
The deviation from the plane section assumption may be attributed to the following 

mechanisms of local deformation around the connection regions:  
1) Local deformation within the main beam sections in the vicinity of the shear connectors, 
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i.e., the Saint-Venant’s effect, as can be observed from the stress distribution from a FE analysis 
shown in Fig. 9(a); 

2) The deformation within the connectors, as depicted in Fig. 9(b), causing a relative 
displacement between the top and bottom of a connector, or “shear slide” in a generic sense. 
The effect due to the shear slide of the connectors could be significant in a CBDSCR with 
slender connectors (i.e. large lg /  ratio) and when the number of connectors is small.  

 

 
(a) Axial stress distribution near the connection region  

 
(b) XY shear stress distribution near the connection region 

 
Fig. 9 Stress concentration around a connection region 

 
5.2 Modification to the Basic Beam Formulation 

 
To take into account the above mentioned deviations from the idealised beam formulation, a 

modification is considered herein. If the relative displacement mainly comes from the shear 
deformation of the connectors, i.e., the “shear slide”, a theoretical solution of the additional 
deflection in the beam due to such an effect has been derived previously for a simply supported 
composite beam (Nie and Cai 2003), as follows:  

a) Concentrated load at mid span:    

)])(([4 2

2

TBTBcTB

CTB

IIAAdAAhKn

dAAPL
d

+++
≈∆       (18a) 

b) Uniformly distributed load:     

)])(([8 2

3

TBTBcTB

cTB

IIAAdAAhKn

dAAqL
d

+++
≈∆         (18b) 

where BTC ddd += , BT hhh += . K is the shear stiffness of the connector. 
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Fig. 10 Calculation of the basic shear stiffness shearK  

 
In a CBDSCR, the overall effect of the local deformation causes a further increase of the beam 

deflection, and hence a further reduction of the beam stiffness. In this respect, Eq. (18 ) may be 
adopted in an extended manner, with changes of ghhd BTC ++= 2/2/  and ghhh BT ++= , 

whereas the shear stiffness of the connector K is modified to eqK , which denotes an equivalent 

stiffness of the shear connection region in a CBDSCR and accounts for all local effects around a 
connector, including the shear slide. The basic shear stiffness of the connection region, as 
schematically shown in Fig. 10, may be calculated as:  

( ) c
shear d

Ebl
K

ν+
=

12
        (19) 

 
The equivalent eqK  is related to shearK by a reduction factor ϕ,  

sheareq KK ϕ=            (20) 

The approximation of ϕ may be obtained by an empirical method. As far as the strain 
distribution along the section depth is concerned, it can be envisaged that ϕ is primarily a function 
of the parameters relating to the local deformations, namely Th , Bh , g and l, or in a more general 

sense the normalised parameters of TB hh / , Thg /  and Thl / . Thus, 









=

TTT

B

h

l

h

g

h

h
,,ϕϕ           (21) 

The actual function may be established numerically through finite element calculations. For the 
FE analysis, the top beam is assumed to have a reference depth of mhT 1.0= , while all the other 
dimensions are assigned subsequently in accordance with the specified ratios, and the material is 
assumed to be the same. TB hh /  is assumed to vary from 1 to 3, Thg /  from 0.0 to 1.0, Thl /  
from 0.2 to 8.0. These ranges are chosen to cover most of practical CBDSCR cases. Totally 75 
CBDSCR models are constructed and analysed using FE model to derive the empirical ϕ. The 
results are summarised in Table 5. 

The modified composite ratio α can be calculated by the following simple steps:  
1) Use the composite ratio α  in Eq. (17) to calculate the deflection of the CBDSCR 

without considering the local deformation;  
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2) Use Eqs. (18), (20), (21) and Table 5 to calculate the additional deflection of a CBDSCR.  
3) Use the summation of the two deflections above to calculate the modified composite 

ratio α. 
 

Table 5 ϕ  as a function of TB hh / , Thg /  and Thl /  

 

1=
T

B

h

h
 Thg /  

0.00 0.25 0.50 0.75 1.00 

Th

l
 

0.2 5.643 1.520 0.606 0.324 0.208 

0.5 3.321 1.507 0.897 0.591 0.422 

1.0 1.964 1.053 0.744 0.565 0.452 

2.0 1.196 0.661 0.477 0.372 0.306 

4.0 0.879 0.518 0.374 0.288 0.235 

8.0 0.940 0.767 0.605 0.477 0.388 
 

 

2=
T

B

h

h
 Thg /  

0.00 0.25 0.50 0.75 1.00 

Th

l
 

0.2 4.474 1.678 0.811 0.488 0.344 

0.5 2.463 1.219 0.802 0.577 0.439 

1.0 1.728 0.903 0.653 0.517 0.428 

2.0 1.211 0.650 0.494 0.413 0.360 

4.0 0.845 0.470 0.365 0.313 0.279 

8.0 0.714 0.504 0.416 0.367 0.335 
 

 

3=
T

B

h

h
 Thg /  

0.00 0.25 0.50 0.75 1.00 

Th

l
 

0.2 5.080 2.168 0.598 0.214 0.114 

0.5 2.613 1.357 0.373 0.160 0.090 

1.0 1.760 0.942 0.230 0.111 0.068 

2.0 1.216 0.665 0.149 0.078 0.051 

4.0 0.795 0.332 0.107 0.060 0.040 

8.0 0.543 0.269 0.112 0.067 0.046 

  

 
Table 6 Comparison of maximum deflections of 12 CBDSCR beams  

Beam 
FE model 

maxδ  (mm) 
Basic beam formulation With local deformation correction  

α  maxδ  (mm) Error α  maxδ  (mm) Error 

1 0.164 0.88  0.159 -3.1% 0.73 0.164 -0.1% 
2 0.495 0.90  0.483 -2.5% 0.73 0.495 0.0% 
3 0.059 0.64  0.054 -8.3% - - - 
4 0.015 0.65  0.013 -7.8% - - - 
5 0.152 0.93  0.150 -1.2% 0.73 0.153 0.3% 
6 0.149 0.96  0.146 -2.2% 0.73 0.149 0.0% 
7 0.148 0.86  0.142 -3.9% 0.60 0.148 0.0% 
8 0.123 0.82  0.116 -5.8% 0.48 0.123 -0.1% 
9 0.151 0.94  0.148 -2.1% 0.57 0.151 -0.1% 
10 0.144 0.98  0.142 -1.4% 0.81 0.144 -0.3% 
11 0.088 0.90  0.084 -4.6% 0.72 0.088 -0.2% 
12 0.052 0.92  0.049 -5.8% 0.72 0.052 -0.0% 
 
It should be noted that Table 5 has been generated from FE analysis for coupled beams with the 
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same material, but it is not restricted to single-material coupled beams and is applicable to 
different material cases as far as the effect of local deformation concerned is along the depth of the 
coupled beam. For beams with wide flanges where local deformation over the width of the flange 
may become a factor, the exact modification pertaining to the local deformation should be treated 
accordingly and this is not covered in Table 5. 

The modified composite ratio α for the cases described in Section 4.3 is provided in Fig. 11. It 
can be observed that the results match the FE results closely, as can be expected due to the 
empirical modification, and comparing with the un-modified results the accuracy is markedly 
improved. Finally, the 12 CBDSCR beams studied in Section 4.2 (shown in Table 4) are 
re-calculated and the results are summarised in Table 6. Note that these beam cases are not 
involved in the generation of the modification factors in Table 5. Again, a marked improvement of 
the accuracy is achieved. The maximum error which happens in beam-12 is reduced to 0.8% from 
5.8% when the local deformation was not considered. 

 

 
 

(a) α  vs. OII /∆  (b) α  vs. n  

 
(c) α  vs. Ll /  

 
Fig. 11 Improvement of the accuracy of the proposed method considering additional deflection due to local 

deformation 
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6. Conclusions 
 

This paper presents an analytical approach for the calculation of the composite effect and the 
bending stiffness of a special class of composite beams, called CBDSCR, where discrete shear 
connectors are employed as the coupling mechanism. A coupled beam element is established for 
the unconnected segments in accordance with the compatibility relations at the junctions between 
an unconnected segment and the connection regions. On this basis, the deflection and the stiffness 
of the entire beam are constructed, and an analytical solution for CBDSCR with evenly distributed 
connectors is deduced from assembling the global beam stiffness matrix for a broad range of the 
CBDSCR configurations.  

Comparison of the basic analytical solution with results from refined finite element models 
shows a reasonably good agreement. Results also show that when a significant connector length, 
e.g. around or above the total beam depth, is involved, the influence of the connector length can be 
significant, and the analytical solution with the consideration of the connector length is capable of 
handling well this factor. 

To further improve the accuracy of the analytical solution, a modification factor is introduced to 
compensate for the local deformations around the junction areas that lead to the relative axial 
displacements (or in a general sense “shear slips”) between the top and bottom beams. The 
modification factor is related to three dimensionless parameters, and the detailed relationships are 
established by means of an empirical method using data generated from FE models. With the 
incorporation of the modification factor the analytical solutions are found to match very well the 
FEA results.  

The proposed general solution of CBDSCR provides a simple and yet sufficiently accurate 
means for modular building designers to determine desirable coupling configurations and calculate 
the stiffness and deformations of this type of beams. The basic formulation and the modification 
scheme are readily applicable to coupled beams with different materials as well as single material. 
The specific modification factors may also be applied for different material cases as long as the 
local deformation effect is primarily concerned about the distribution over the depth of the coupled 
beam. For coupled beams involving wide flanges where the local deformation across the width of 
the flange may also have an influence on the behaviour of the coupled beam, extended finite 
element analysis may be required to generate the specific modification data.  
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