Modelling and Analysis of Collective Adaptive Systems with CARMA and its Tools

Citation for published version:

Digital Object Identifier (DOI):
10.1007/978-3-319-34096-8_4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Modelling and Analysis of Collective Adaptive Systems with CARMA and its Tools

Michele Loreti¹ and Jane Hillston²

¹ Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”, Università di Firenze
² Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract. Collective Adaptive Systems (CAS) are heterogeneous collections of autonomous task-oriented systems that cooperate on common goals forming a collective system. This class of systems is typically composed of a huge number of interacting agents that dynamically adjust and combine their behaviour to achieve specific goals.

This chapter presents CARMA, a language recently defined to support specification and analysis of collective adaptive systems, and its tools developed for supporting system design and analysis. CARMA is equipped with linguistic constructs specifically developed for modelling and programming systems that can operate in open-ended and unpredictable environments. The chapter also presents the CARMA Eclipse plug-in that allows CARMA models to be specified by means of an appropriate high-level language. Finally, we show how CARMA and its tools can be used to support specification with a simple but illustrative example of a socio-technical collective adaptive system.

1 Introduction

In the last forty years Process Algebras (see [3] and the references therein), or Process Description Languages (PDL), have been successfully used to model and analyse the behaviour of concurrent and distributed systems. A Process Algebra is a formal language, equipped with a rigorous semantics, that provides models in terms of processes. These are agents that perform actions and communicate (interact) with similar agents and with their environment.

At the beginning, Process Algebras were only focussed on qualitative aspects of computations. However, when complex and large-scale systems are considered, it may not be sufficient to check if a property is satisfied or not. This is because random phenomena are a crucial part of distributed systems and one is also interested in verifying quantitative aspects of computations.

This motivated the definition of a new class of PDL where time and probabilities are explicitly considered. This new family of formalisms have proven to be particularly suitable for capturing important properties related to performance and quality of service, and even for the modelling of biological systems. Among others we can refer here to PEPA [19], MTIPP [18], EMPA [4], Stochastic π-Calculus [23], Bio-PEPA [9], MODEST [5] and others [17, 8].

The ever increasing complexity of systems has further changed the perspective of the system designer that now has to consider a new class of systems, named Collective adaptive systems (CAS), that consist of massive numbers of components, featuring
complex interactions among components and with humans and other systems. Each component in the system may exhibit autonomic behaviour depending on its properties, objectives and actions. Decision-making in such systems is complicated and interaction between their components may introduce new and sometimes unexpected behaviours.

CAS operate in open and non-deterministic environments. Components may enter or leave the collective at any time. Components can be highly heterogeneous (machines, humans, networks, etc.) each operating at different temporal and spatial scales, and having different (potentially conflicting) objectives.

CAS thus provide a significant research challenge in terms of both representation and reasoning about their behaviour. The pervasive yet transparent nature of the applications developed in this paradigm makes it of paramount importance that their behaviour can be thoroughly assessed during their design, prior to deployment, and throughout their lifetime. Indeed their adaptive nature makes modelling essential and models play a central role in driving their adaptation. Moreover, the analysis should encompass both functional and non-functional aspects of behaviour. Thus it is vital that we have available robust modelling techniques which are able to describe such systems and to reason about their behaviour in both qualitative and quantitative terms. To move towards this goal, it is important to develop a theoretical foundation for CAS that will help in understanding their distinctive features. From the point of view of the language designers, the challenge is to devise appropriate abstractions and linguistic primitives to deal with the large dimension of systems, to guarantee adaptation to (possibly unpredicted) changes of the working environment, to take into account evolving requirements, and to control the emergent behaviours resulting from complex interactions.

To design this new language for CAS we first have identified the design principles together with the primitives and interaction patterns that are needed in CAS design. Emphasis has been given placed on identifying the appropriate abstractions and linguistic primitives for modelling and programming collective adaptation, locality representation, knowledge handling, and system interaction and aggregation.

To be effective, any language for CAS should provide:

- Separation of knowledge and behaviour;
- Control over abstraction levels;
- Bottom-up design;
- Mechanisms to take into account the environment;
- Support for both global and local views; and
- Automatic derivation of the underlying mathematical model.

These design principles have been the starting point for the design of a language, developed specifically to support the specification and analysis of CAS, with the particular objective of supporting quantitative evaluation and verification. We named this language CARMA, Collective Adaptive Resource-sharing Markovian Agents [7, 20].

CARMA combines the lessons which have been learned from the long tradition of stochastic process algebras, with those more recently acquired from developing languages to model CAS, such as SCEL [12] and PALOMA [13], which feature attribute-based communication and explicit representation of locations.

SCEL [12] (Software Component Ensemble Language), is a kernel language that has been designed to support the programming of autonomic computing systems. This
language relies on the notions of autonomic components representing the collective members, and autonomic-component ensembles representing collectives. Each component is equipped with an interface, consisting of a collection of attributes, describing different features of components. Attributes are used by components to dynamically organise themselves into ensembles and as a means to select partners for interaction. The stochastic variant of SCEL, called StocS [22], was a first step towards the investigation of the impact of different stochastic semantics for autonomic processes, that relies on stochastic output semantics, probabilistic input semantics and on a probabilistic notion of knowledge. Moreover, SCEL has inspired the development of the core calculus AbC [2,1] that focuses on a minimal set of primitives that defines attribute-based communication, and investigates their impact. Communication among components takes place in a broadcast fashion, with the characteristic that only components satisfying predicates over specific attributes receive the sent messages, provided that they are willing to do so.

PALOMA [13] is a process algebra that takes as its starting point a model based on located Markovian agents each of which is parameterised by a location, which can be regarded as an attribute of the agent. The ability of agents to communicate depends on their location, through a perception function. This can be regarded as an example of a more general class of attribute-based communication mechanisms. The communication is based on a multicast, as only agents who enable the appropriate reception action have the ability to receive the message. The scope of communication is thus adjusted according to the perception function.

A distinctive contribution of the language CARMA is the rich set of communication primitives that are offered. This new language supports both unicast and broadcast communication, and locally synchronous, but globally asynchronous communication. This richness is important to enable the spatially distributed nature of CAS, where agents may have only local awareness of the system, yet the design objectives and adaptation goals are often expressed in terms of global behaviour. Representing these rich patterns of communication in classical process algebras or traditional stochastic process algebras would be difficult, and would require the introduction of additional model components to represent buffers, queues, and other communication structures. Another feature of CARMA is the explicit representation of the environment in which processes interact, allowing rapid testing of a system under different open world scenarios. The environment in CARMA models can evolve at runtime, due to the feedback from the system, and it further modulates the interaction between components, by shaping rates and interaction probabilities.

The focus of this tutorial is the presentation of the language and its discrete semantics, which are presented in the FuTS style [11]. The structure of the chapter is as follows. Section 2 presents the syntax of the language and explains the organisation of a model in terms of a collective of agents that are considered in the context of an environment. In Section 3 we give a detailed account of the semantics, particularly explaining the role of the environment. The use of CARMA is illustrated in Section 4 where we describe a model of a simple bike sharing system, and explain the support given to the CARMA modeller in the current implementation. Section 5 considers the bike sharing
system in different scenarios, demonstrating the analytic power of the CARMA tools. Some conclusions are drawn in Section 6.

2 CARMA: Collective adaptive resource-sharing Markovian agents

CARMA is a new stochastic process algebra for the representation of systems developed according to the CAS paradigm [7, 20]. The language offers a rich set of communication primitives, and the exploitation of attributes, captured in a store associated with each component, to enable attribute-based communication. For most CAS systems we anticipate that one of the attributes could be the location of the agent [15]. Thus it is straightforward to model those systems in which, for example, there is limited scope of communication or, restriction to only interact with components that are co-located, or where there is spatial heterogeneity in the behaviour of agents.

The rich set of communication primitives is one of the distinctive features of CARMA. Specifically, CARMA supports both unicast and broadcast communication, and permits locally synchronous, but globally asynchronous communication. This richness is important to take into account the spatially distributed nature of CAS, where agents may have only local awareness of the system, yet the design objectives and adaptation goals are often expressed in terms of global behaviour. Representing these patterns of communication in classical process algebras or traditional stochastic process algebras would be difficult, and would require the introduction of additional model components to represent buffers, queues and other communication structures.

Another key feature of CARMA is its distinct treatment of the environment. It should be stressed that although this is an entity explicitly introduced within our models, it is intended to represent something more pervasive and diffusive of the real system, which is abstracted within the modelling to be an entity which exercises influence and imposes constraints on the different agents in the system. For example, in a model of a smart transport system, the environment may have responsibility for determining the rate at which entities (buses, bikes, taxis etc) move through the city. However this should be recognised as an abstraction of the presence of other vehicles causing congestion which may impede the progress of the focus entities to a greater or lesser extent at different times of the day. The presence of an environment in the model does not imply the existence of centralised control in the system. The role of the environment is also related to the spatially distributed nature of CAS — we expect that the location where an agent is will have an effect on what an agent can do.

This view of the environment coincides with the view taken by many researchers within the situated multi-agent community e.g. [26]. Specifically, in [27] Weyns et al. argue about the importance of having a distinct environment within every multi-agent system. Whilst they are viewing such systems from the perspective of software engineers, many of their arguments are as valid when it comes to modelling a multi-agent or collective adaptive system. Thus our work can be viewed as broadly fitting within the same framework, albeit with a higher level of abstraction. Just as in the construction of a system, in the construction development of a model distinguishing clearly between the responsibilities of the agents and of the environment provides separation of concerns and assists in the management of complex systems.
In [27] the authors provide the following definition: “The environment is a first-class abstraction that proves the surrounding conditions for agents to exist and that mediates both the interaction among agents and the access to resources.” This is the role that the environment plays within CARMA models through the evolution rules. However, in contrast to the framework of Weyns et al., the environment in a CARMA model is not an active entity in the same sense as the agents are active entities. In our case, the environment is constrained to work through the agents, by influencing their dynamic behaviour or by inducing changes in the number and types of agents making up the system.

In [24], Saunier et al. advocate the use of an active environment to mediate the interactions between agents; such an active environment is aware of the current context for each agent. The environment in CARMA also supports this view, as the evolution rules in the environment take into account the state of all the potentially participating components to determine both the rate and the probability of communications being successful, thus achieving a multicast communication not based on the address of the receiving agents, as suggested by Saunier et al. This is what we term “attribute-based communication” in CARMA. Moreover, when the application calls for a centralised information portal, the global store in CARMA can represent it. The higher level of abstraction offered by CARMA means that many implementation issues are ignored.

2.1 A running example

To describe basic features of CARMA a running example will be used. This is based on a bike sharing system (BSS) [10]. These systems are a recent, and increasingly popular, form of public transport in urban areas. As a resource-sharing system with large numbers of independent users altering their behaviour due to pricing and other incentives [14], they are a simple instance of a collective adaptive system, and hence a suitable case study to exemplify the CARMA language.

The idea in a bike sharing system is that bikes are made available in a number of stations that are placed in various areas of a city. Users that plan to use a bike for a short trip can pick up a bike at a suitable origin station and return it to any other station close to their planned destination. One of the major issues in bike sharing systems is the availability and distribution of resources, both in terms of available bikes at the stations and in terms of available empty parking places in the stations.

In our scenario we assume that the city is partitioned in homogeneous zones and that all the stations in the same zone can be equivalently used by any user in that zone. Below, we let \(\{z_0, \ldots, z_n\} \) be the \(n \) zones in the city, each of which contains \(k \) parking stations.

2.2 A gentle introduction to CARMA

The bike sharing systems described in the previous section represent well typical scenarios that can be modelled with CARMA. Indeed, a CARMA system consists of a collective (\(N \)) operating in an environment (\(E \)). The collective is a multiset of components that models the behavioural part of a system; it is used to describe a group of interacting agents. The environment models all those aspects which are intrinsic to the context
where the agents under consideration are operating. The environment also mediates agent interactions.

Example 1. Bike Sharing System (1/7) In our running example the collective N will be used to model the behaviour of parking stations and users, while the environment will be used to model the city context where these agents operate like, for instance, the user arrival rate or the possible destinations of trips.

We let SYS be the set of CARMA systems S defined by the following syntax:

$$S ::= N \text{ in } E$$

where N is a collective and E is an environment.

Collectives and Components. We let COT be the set of collectives N which are generated by the following grammar:

$$N ::= C \mid N \parallel N$$

A collective N is either a component C or the parallel composition of collectives $N_1 \parallel N_2$. The former identifies a multiset containing the single component C while the latter represents the union of the multisets denoted by N_1 and N_2, respectively. In the rest of this chapter we will sometimes use standard operations on multisets over a collective. We use $N(C)$ to indicate the multiplicity of C in N, $C \in N$ to indicate that $N(C) > 0$ and $N - C$ to represent the collective obtained from N by removing component C.

The precise syntax of components is:

$$C ::= 0 \mid (P, \gamma)$$

where we let COMP be the set of components C generated by the previous grammar.

A component C can be either the inactive component, which is denoted by 0, or a term of the form (P, γ), where P is a process and γ is a store. A term (P, γ) models an agent operating in the system under consideration: the process P represents the agent’s behaviour whereas the store γ models its knowledge. A store is a function which maps attribute names to basic values. We let:

- ATTR be the set of attribute names $a, a', a_1, \ldots, b, b', b_1, \ldots$;
- VAL be the set of basic values v, v', v_1, \ldots;
- Γ be the set of stores $\gamma, \gamma', \gamma_1, \ldots$, i.e. functions from ATTR to VAL.

Example 2. Bike Sharing System (2/7) To model our Bike Sharing System in CARMA we need two kinds of components, one for each of the two groups of agents involved in the system, i.e. parking stations and users. Both kinds of component use the local store to publish the relevant data that will be used to represent the state of the agent. We can notice that, following this approach, bikes are not explicitly modelled in the system. This is because we are interested in modelling only the behaviour of the active components in the system. Under this perspective, bikes are just the resources exchanged by parking stations and users.

The local store of components associated with parking stations contains the following attributes:
– loc: identifying the zone where the parking station is located;
– capacity: describing the maximal number of parking slots available in the station;
– available: indicating the current number of bikes currently available in the parking station.

Similarly, the local store of components associated with *users* contains the following attributes:

– loc: indicating current user location;
– dest: indicating user destination.

Processes.

The behaviour of a component is specified via a process *P*. We let **PROC** be the set of CARMA processes *P*, *Q*... defined by the following grammar:

\[
P, Q ::= \text{nil} \qquad \text{act} ::= \alpha^*[\pi_s](\pi_r)\sigma
\]

\[
| \quad act.P \quad | \quad \alpha^*[\pi_s](\pi_r)\sigma
\]

\[
| \quad P + Q \quad | \quad \alpha^*[\pi_s](\pi_r)\sigma
\]

\[
| \quad P | Q \quad | \quad \alpha^*[\pi_s](\pi_r)\sigma
\]

\[
| \quad [\pi] P \quad | \quad \alpha^*[\pi_s](\pi_r)\sigma
\]

\[
| \quad \text{kill} \quad e ::= a | \text{my}a | x | v | \text{now} | \cdots
\]

\[
| \quad A \quad (A \triangleq P) \quad \pi_s, \pi_r, \pi ::= \top | \bot | e_1 \bowtie e_2 | -\pi | \pi \land \pi | \cdots
\]

Above, the following notation is used:

– *α* is an *action type* in the set **ACTTYPE**;
– *π* is a *predicate*;
– *x* is a *variable* in the set of variables **VAR**;
– *e* is an expression in the set of expressions **EXP**;
– \(\to\) indicates a sequence of elements;
– *σ* is an *update*, i.e. a function from \(\Gamma\) to \(\text{Dist}(\Gamma)\) in the set of updates **Σ**; where \(\text{Dist}(\Gamma)\) is the set of probability distributions over \(\Gamma\).

CARMA processes are built by using standard operators of process algebras. Basic processes can be either **nil** or **kill**. The former represents the *inactive process* while the latter is used, when activated, to *destroy* a component. We assume that the term **kill** always occurs under the scope of an action prefix.

Choice (\(+\cdot\)) and parallel composition (\(\cdot\)) are the usual process algebra operators: \(P_1 + P_2\) indicates a process that can behave either like \(P_1\) or like \(P_2\); while the behaviour of \(P_1 | P_2\) is the result of the interleaving between \(P_1\) and \(P_2\). In the next section, when the stochastic operational semantics of CARMA will be presented, we will show how possible alternative computations of a process \(P\) are probabilistically selected.

3 The precise syntax of expressions *e* has been deliberately omitted. We only assume that expressions are built using the appropriate combinations of *values, attributes* (sometime prefixed with **my**), variables and the special term **now**. The latter is used to refer to current time unit.
Process behaviour can be influenced by the store γ of the hosting component. This is the case of the guard operator $[\pi]P$ where the process P is activated when the predicate π, i.e. a boolean expression over attribute names, is satisfied (otherwise it is inactive). This operator can be used to enable a given behaviour only when some conditions are satisfied. In the case of our Bike Sharing System, if P_c is the behaviour modelling bike retrieval, a predicate of the form $\text{available} > 0$ can be used to enable P_c only when there are bikes available.

CARMA processes located in different components interact while performing four types of actions: broadcast output $(\alpha^*\pi(\vec{v})\sigma)$, broadcast input $(\alpha^*\pi(\vec{v}/\vec{x})\sigma)$, output $(\alpha\pi(\vec{v})\sigma)$, and input $(\alpha\pi(\vec{v}/\vec{x})\sigma)$.

The admissible communication partners of each of these actions are identified by the predicate π. Note that, in a component (P, γ) the store γ regulates the behaviour of P. Primarily, γ is used to evaluate the predicate associated with an action in order to filter the possible synchronisations involving process P. In addition, γ is also used as one of the parameters for computing the actual rate of actions performed by P. The process P can change γ immediately after the execution of an action. This change is brought about by the update σ. The update is a function that when given a store γ returns a probability distribution over Γ which expresses the possible evolutions of the store after the action execution.

The broadcast output $\alpha^*\pi(\vec{v})\sigma$ models the execution of an action α that spreads the values resulting from the evaluation of expressions \vec{v} in the local store γ. This message can be potentially received by any process located at components whose store satisfies predicate π. This predicate may contain references to attribute names that have to be evaluated under the local store. For instance, if loc is the attribute used to store the position of a component, action

$$\alpha^*\text{my.loc} == \text{loc}(\vec{v})\sigma$$

potentially involves all the components located at the same location. The broadcast output is non-blocking. The action is executed even if no process is able to receive the values which are sent. Immediately after the execution of an action, the update σ is used to compute the (possible) effects of the performed action on the store of the hosting component where the output is performed.

To receive a broadcast message, a process executes a broadcast input of the form $\alpha^*\pi(\vec{v}/\vec{x})\sigma$. This action is used to receive a tuple of values \vec{v} sent with an action α from a component whose store satisfies the predicate $\pi(\vec{v}/\vec{x})$. The transmitted values can be part of the predicate π. For instance, $\alpha^*\{x > 5\}(\vec{v})\sigma$ can be used to receive a value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However, differently from broadcasts described above, these actions realise a point-to-point interaction. The output operation is blocking, in contrast with the non-blocking broadcast output.

Example 3. Bike Sharing System (3/7) We are now ready to describe the behaviour of parking stations and users components.

Each parking station is modelled in CARMA via a component of the form:

$$\langle G|\{\text{loc} = \ell, \text{capacity} = i, \text{available} = j\} \rangle$$
where \(\text{loc} \) is the attribute that identifies the zone where the parking station is located; \(\text{capacity} \) indicates the number of parking slots available in the station; \(\text{available} \) is the number of available bikes.

Processes \(G \) and \(R \), which model the procedure to get and return a bike in the parking station, respectively, are defined as follows:

\[
G \triangleq [\text{available} > 0] \, \text{get} [\text{my.loc} == \text{loc}] (\bullet) \{ \text{available} \leftarrow \text{available} - 1 \} \cdot G
\]

\[
R \triangleq [\text{available} < \text{capacity}] \, \text{ret} [\text{my.loc} == \text{loc}] (\bullet) \{ \text{available} \leftarrow \text{available} + 1 \} \cdot R
\]

When the value of attribute \(\text{available} \) is greater than 0, process \(G \) executes the unicast output with action type get that potentially involves components satisfying the predicate \(\text{my.loc} == \text{loc} \), i.e. the ones that are located in the same zone\(^4\). When the output is executed the value of the attribute \(\text{available} \) is decreased by one to model the fact that one bike has been retrieved from the parking station.

Process \(R \) is similar. It executes the unicast output with action type ret that potentially involves components satisfying predicate \(\text{my.loc} == \text{loc} \). This action can be executed only when there is at least one parking slot available, i.e. when the value of attribute \(\text{available} \) is less than the value of attribute \(\text{capacity} \). When the output considered above is executed, the value of attribute \(\text{available} \) is increased by one to model the fact that one bike has been returned in the parking station.

Users, who can be either bikers or pedestrians, are modelled via components of the form:

\[
(\text{Q}, \{ \text{loc} = \ell_1, \text{dest} = \ell_2 \})
\]

where \(\text{loc} \) is the attribute indicating where the user is located, while \(\text{dest} \) indicates the user destination. Process \(Q \) models the current state of the user and can be one of the following processes:

\[
P \triangleq \text{get} [\text{my.loc} == \text{loc}] (\bullet) \cdot B
\]

\[
B \triangleq \text{move}^* [\bot] (\bullet) \{ \text{loc} \leftarrow \text{dest} \} \cdot W
\]

\[
W \triangleq \text{ret} [\text{my.loc} == \text{loc}] (\bullet) \cdot \text{kill}
\]

Process \(P \) represents a pedestrian, i.e. a user that is waiting for a bike. To get a bike a pedestrian executes a unicast input over activity get while selecting only parking stations that are located in his/her current location (\(\text{my.loc} == \text{loc} \)). When this action is executed, a pedestrian becomes a biker \(B \).

A biker can move from the current zone to the destination. This activity is modelled with the execution of a broadcast output via action type move. Note that, the predicate used to identify the target of the actions is \(\bot \), denoting the value \(\text{false} \). This means that this action actually does not synchronise with any component (since \(\bot \) is never satisfied). This kind of pattern is used in CARMA to model spontaneous actions, i.e. actions that render the execution of an activity and that do not require synchronisation.

\(^4\) Here we use \(\bullet \) to denote the unit value.
After the broadcast move* the value of attribute loc is updated to dest and process W is activated. We will see in the next section that the actual rate of this action is determined by the environment and may also depend on the current time.

Process W represents a user who is waiting for a parking slot. This process executes an input over ret. This models the fact that the user has found a parking station with an available parking slot in their zone. After the execution of this input the user disappears from the system since the process kill is activated.

To model the arrival of new users, the following component is used:

\[(A, \{\text{loc} = \ell\})\]

where attribute loc indicates the location where users arrive, while process A is:

\[A \triangleq \text{arrival}^* \int \langle \bullet \rangle \{\} . A\]

This process only performs the spontaneous action arrival. The precise role of this process will be clear in a few paragraphs when the environment will be described. \[\Box\]

Environment. An environment consists of two elements: a global store \(\gamma_g\), that models the overall state of the system, and an evolution rule \(\rho\).

Example 4. Bike Sharing System (4/7) The global store can be used to describe global information that may affect the system behaviour. In our Bike Sharing System we use the attribute user to record the number of active users.

The evolution rule \(\rho\) is a function which, depending on the current time, on the global store and on the current state of the collective (i.e., on the configurations of each component in the collective) returns a tuple of functions \(\epsilon = (\mu_p, \mu_w, \mu_r, \mu_u)\) known as the evaluation context where \(\text{ACT} = \text{ACType} \cup \{\alpha^* | \alpha \in \text{ACType}\}\) and:

- \(\mu_p: \Gamma \times \Gamma \times \text{ACT} \to [0, 1], \mu_p(\gamma_s, \gamma_r, \alpha)\) expresses the probability that a component with store \(\gamma_r\) can receive a broadcast message from a component with store \(\gamma_s\) when \(\alpha\) is executed;
- \(\mu_w: \Gamma \times \Gamma \times \text{ACT} \to [0, 1], \mu_w(\gamma_s, \gamma_r, \alpha)\) yields the weight will be used to compute the probability that a component with store \(\gamma_r\) can receive a unicast message from a component with store \(\gamma_s\) when \(\alpha\) is executed;
- \(\mu_r: \Gamma \times \text{ACT} \to \mathbb{R}^\geq 0, \mu_r(\gamma_s, \alpha)\) computes the execution rate of action \(\alpha\) executed at a component with store \(\gamma_s\);
- \(\mu_u: \Gamma \times \text{ACT} \to \Sigma \times \text{COL}, \mu_u(\gamma_s, \alpha)\) determines the updates on the environment (global store and collective) induced by the execution of action \(\alpha\) at a component with store \(\gamma_s\).

For instance, the probability to receive a given message may depend on the number or faction of components in a given state. Similarly, the actual rate of an action may be a function of the number of components whose store satisfies a given property.

Functions \(\mu_p\) and \(\mu_w\) play a similar role. However, while the former computes the probability that a component receives a broadcast message, the latter associates to each
unicast interaction with a weight, i.e. a non negative real number. This weight will be used to compute the probability that a given component with store γ_s receives a unicast message over activity α from a component with store γ_r. This probability is obtained by dividing the weight $\mu_w(\gamma_s, \gamma_r, \alpha)$ by the total weights of all possible receivers.

Example 5. Bike Sharing System (5/7) In our scenario, function μ_w can have the following form:

$$
\mu_w(\gamma_s, \gamma_r, \alpha) = \begin{cases}
1 & \alpha = \text{get} \land \gamma_s(\text{loc}) = \gamma_r(\text{loc}) \\
1 & \alpha = \text{ret} \land \gamma_s(\text{loc}) = \gamma_r(\text{loc}) \\
0 & \text{otherwise}
\end{cases}
$$

where γ_s is the store of the sender, γ_r is the store of the receiver. The above function imposes that all the users in the same zone have the same weight, that is 1 when a user is located in the same zone of the parking station and 0 otherwise. This means that each user in the same zone have the same probability to be selected for getting a bike or for using a parking slot at a station. The weight associated to all the other interactions is 0.

Function μ_r computes the rate of a unicast/broadcast output. This function takes as parameter the local store of the component performing the action and the action on which the interaction is based. Note that the environment can disable the execution of a given action. This happens when the function μ_r (resp. μ_p or μ_w) returns the value 0.

Example 6. Bike Sharing System (6/7) In our example μ_r can be defined as follows:

$$
\mu_r(\gamma_s, \alpha) = \begin{cases}
\lambda_g & \alpha = \text{get} \\
\lambda_r & \alpha = \text{ret} \\
m\text{time}(\text{now}, \gamma_s(\text{loc}), \gamma_s(\text{dest})) & \alpha = \text{move}^* \\
\text{a}\text{time}(\text{now}, \gamma_s(\text{loc}), \gamma_g(\text{users})) & \alpha = \text{arrival}^* \\
0 & \text{otherwise}
\end{cases}
$$

We say that actions get and ret are executed at a constant rate; the rate of movement is a function ($m\text{time}$) of actual time (now) and of starting location and final destination. Rate of user arrivals (computed by function atime) depends on current time now on location loc and on the number of users that are currently active in the system5. All the other interactions occurs with rate 0.

Finally, the function μ_u is used to update the global store and to activate a new collective in the system. The function μ_u takes as parameters the store of the component performing the action together with the action type and returns a pair (σ, N). Within this pair, σ identifies the update on the global store whereas N is a new collective installed in the system. This function is particularly useful for modelling the arrival of new agents into a system.

5 Here we assume that functions $m\text{time}$ and atime are obtained after some observations on real systems
Example 7. Bike Sharing System (7/7) In our scenario function update is used to model the arrival of new users and it is defined as follows:

\[
\mu_u(\gamma, \alpha) = \begin{cases}
\{\text{users} \leftarrow \gamma_u(\text{users}) + 1\}, & \alpha = \text{arrival}^* \\
(W, \{\text{loc} = \gamma_i(\text{loc}), \text{dest} = \text{destLoc}(\text{now}, \gamma_i(\text{loc}))\}) & \alpha = \text{arrival} \\
\{\text{users} \leftarrow \gamma_u(\text{users}) - 1\}, 0 & \alpha = \text{ret} \\
\{\}, 0 & \text{otherwise}
\end{cases}
\]

When action arrival* is performed a component associated with a new user is created in the same location as the sender (see Example 3). The destination of the new user will be determined by function destLoc that takes the current system time and starting location and returns a probability distribution over locations. Moreover, the global store records that a new user entered in the system. The number of active users is decremented by 1 each time action ret is performed. All the other actions do not trigger any update on the environment.

3 CARMA semantics

The operational semantics of CARMA specifications is defined in terms of three functions that compute the possible next states of a component, a collective and a system:

1. the function \(C\) that describes the behaviour of a single component;
2. the function \(N\) builds on \(C\) to describe the behaviour of collectives;
3. the function \(S\) that shows how CARMA systems evolve.

Note that, classically behaviour of (stochastic) process algebras is represented via transition relations. These relations, defined following a Plotkin-style, are used to infer possible computations of a process. Note that, due to nondeterminism, starting from the same process, different evolutions can be inferred. However, in CARMA, there is not any form of nonterminism while the selection of possible next state is governed by a probability distribution.

In this chapter we use an approach based on FuTS style [11]. Using this approach, the behaviour of a term is described using a function that, given a term and a transition label, yields a function associating each component, collective, or system with a non-negative number. The meaning of this value depends on the context. It can be the rate of the exponential distribution characterising the time needed for the execution of the action represented by \(\ell\); the probability of receiving a given broadcast message or the weight used to compute the probability that a given component is selected for the synchronisation. In all the cases the zero value is associated with unreachable terms.

We use the FuTS style semantics because it makes explicit an underlying (time-inhomogeneous) Action Labelled Markov Chain, which can be simulated with standard algorithms [16] but is nevertheless more compact than Plotkin-style semantics, as the functional form allows different possible outcomes to be treated within a single rule. A complete description of FuTS and their use can be found in [11].
The behaviour of a single component is defined by a function

$$\mathbb{C} : \text{COMP} \times \text{LAB} \rightarrow [\text{COMP} \rightarrow \mathbb{R}_{\geq 0}]$$

Function \mathbb{C} takes a component and a transition label, and yields a function in $[\text{COMP} \rightarrow \mathbb{R}_{\geq 0}]$. LAB is the set of transition labels ℓ which are generated by the following grammar, where π_{ℓ} is defined in Section 2.2:

$$\ell ::= \alpha^{*}[\pi_{\ell}](\mathcal{V}), \gamma \text{ Broadcast Output}$$
$$| \alpha^{*}[\pi_{\ell}](\mathcal{V}), \gamma \text{ Broadcast Input}$$
$$| \alpha[\pi_{\ell}](\mathcal{V}), \gamma \text{ Unicast Output}$$
$$| \alpha[\pi_{\ell}](\mathcal{V}), \gamma \text{ Unicast Input}$$

These labels are associated with the four CARMA input-output actions and contain a reference to the action which is performed (α or α^*), the predicate π_{ℓ} used to identify the target of the actions, and the value which is transmitted or received.

Function \mathbb{C} is formally defined in Table 1 and Table 2 and shows how a single component evolves when a input/output action is executed. For any component C and transition label ℓ, $\mathbb{C}[C, \ell]$ indicates the possible next states of C after the transition ℓ. These states are weighted. If $\mathbb{C}[C, \ell] = C'$ and $\mathcal{G}(C') = p$ then C evolves to C' with a weight p when ℓ is executed.

Table 1: Operational semantics of components (Part 1)
The process nil denotes the process that cannot perform any action. The behaviour associated to this process at the level of components can be derived via the rule Nil. This rule states that the inactive process cannot perform any action. This is derived from the fact that function C maps any label to function Φ (rule Nil), where Φ denotes the 0 constant function.

The behaviour of a broadcast output \((α^*[π_ι](\gamma))σ.P, γ\) is described by rules B-Out and B-Out-F1. Rule B-Out states that a broadcast output \(α^*[π_ι](\gamma)σ\) sends message \([\mathcal{P}]γ\) to all components that satisfy \([π_ι]γ = π_ι'\). The possible next local stores after the execution of an action are determined by the update \(σ\). This takes the store \(γ\) and yields a probability distribution \(p = σ(γ) \in \text{Dist}(Γ)\). In rule B-Out, and in the rest of the chapter, the following notations are used:

- let \(P \in \text{PROC}\) and \(p \in \text{Dist}(Γ)\), \((P, p)\) is a probability distribution in \(\text{Dist}((\text{COMP}))\) such that:
 \[
 (P, p)(C) = \begin{cases}
 1 & P \equiv Q|\text{kill} \land C \equiv 0 \\
 p(γ) C \equiv (P, γ) \land P \neq Q|\text{kill} \\
 0 & \text{otherwise}
 \end{cases}
 \]

- let \(c \in \text{Dist}(\text{COMP})\) and \(r \in \mathbb{R}_{\geq 0}\), \(r \cdot c\) denotes the function \(\mathcal{C} : \text{COMP} \rightarrow \mathbb{R}_{\geq 0}\) such that: \(\mathcal{C}(C) = r \cdot c(C)\)

Note that, after the execution of an action a component can be destroyed. This happens when the continuation process after the action prefix contains the term \text{kill}. For instance, by applying rule B-Out we have that:

\[
\mathcal{C}(α^*[π_ι](v)σ.(\text{kill}(Q), γ), α^*[π_ι](v), γ) = [0 \mapsto r]
\]

Rule B-Out-F1 states that a broadcast output can be only involved in labels of the form \(α^*[π_ι](\mathcal{V}), γ\).

Computations related to a broadcast input are labelled with \(α^*[π_ι](\mathcal{V}), γ\). There, \(π_ι\) is the predicate used by the sender to identify the target components while \(\mathcal{V}\) is the sequence of transmitted values. Rule B-In states that a component \(α^*[π_ι](\mathcal{V})σ.P, γ\) can evolve with this label when its store \(γ\) (the store of the receiver) satisfies the sender predicate, i.e. \(γ \models π_ι\), while the store of the sender, i.e. \(γ\) satisfies the predicate of the receiver \(π_ι|\mathcal{V}/\mathcal{V}\).

Rule B-In-F1 models the fact that if a component is not in the set of possible receivers \((γ \not\models π_ι)\) or the received values do not satisfy the expected requirements then the component cannot receive a broadcast message. Finally, the rule B-In-F2 models the fact that \(α^*[π_ι](\mathcal{V})σ.P, γ\) can only perform a broadcast input on action \(α\) and that it always refuses input on any other action type \(β \neq α\).

The behaviour of unicast output and unicast input is defined by the first five rules of Table 2. These rules are similar to the ones already presented for broadcast output and broadcast input.

The other rules of Table 2 describe the behaviour of other process operators, namely choice \(P + Q\), parallel composition \(P|Q\), guard and recursion. The term \(P + Q\) identifies
\[
\begin{align*}
[\pi_1]_y &= [\pi_1']_y, \quad \|\pi\|_y = \pi' \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{Out} \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{Out-F} \\
\gamma = \pi_1, \quad \gamma \models \pi_1[\nu/\nu'] \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{In} \\
\gamma \not\models \pi_1 \lor \gamma \not\models \pi_1[\nu/\nu'] & \text{In-F1} \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{In-F2} \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{Plus} \\
\gamma \models \pi & \text{Guard} & \gamma \not\models \pi & \text{Guard-F} \\
\Gamma((\alpha[\pi_1](\nu)).\sigma.P, \gamma) &= \pi \sigma(\gamma) & \text{Rec} \\
\end{align*}
\]
a process that can behave either as P or as Q. The rule Plus states that the components that are reachable by $(P + Q, \gamma)$ are the ones that can be reached either by (P, γ) or by (Q, γ). In this rule we use $\mathcal{C}_1 \oplus \mathcal{C}_2$ to denote the function that maps each term C to $\mathcal{C}_1(C) + \mathcal{C}_2(C)$, for any $\mathcal{C}_1, \mathcal{C}_2 \in \text{COMP} \to \mathbb{R}_{\geq 0}$.

In $P|Q$ the two composed processes interleave for all the transition labels. In the rule the following notations are used:

- for each component C and process Q we let:

 $$C|Q = \begin{cases}
 0 & C \equiv 0 \\
 (P|Q, \gamma) & C \equiv (P, \gamma)
 \end{cases}$$

 $Q|C$ is symmetrically defined.

- for each $\mathcal{C} : \text{COMP} \to \mathbb{R}_{\geq 0}$ and process Q, $\mathcal{C}|Q$ (resp. $Q|\mathcal{C}$) denotes the function that maps each term of the form $C|Q$ (resp. $Q|C$) to $\mathcal{C}(C)$, while the others are mapped to 0;

Rule Rec is standard. The behaviour of $(\pi P, \gamma)$ is regulated by rules Guard and Guard-F. The first rule states that $(\pi P, \gamma)$ behaves exactly like (P, γ) when γ satisfies predicate π. However, in the first case the guard is removed when a transition is performed. In contrast, no component is reachable when the guard is not satisfied (rule Guard-F).

The following lemma guarantees that for any C and for any $\ell \in \text{COL}[C, \ell]$ is either a probability distribution or the 0 constant function θ.

3.2 Operational semantics of collectives

The operational semantics of a collective is defined via the function

$$\mathbb{N}_\ell : \text{COL} \times \text{LAB}_I \to \left[\text{COL} \to \mathbb{R}_{\geq 0} \right]$$

that is formally defined in Table 3, where we use a straightforward adaptation of the notations introduced in the previous section. This function shows how a collective reacts when a broadcast/unicast message is received. Indeed, LAB_I denotes the subset of LAB with only input labels:

$$\ell ::= \alpha^* [\pi_i] (\overrightarrow{\nu}), \gamma \quad \text{Broadcast Input}$$

$$\mid \quad \alpha [\pi_i] (\overrightarrow{\nu}), \gamma \quad \text{Unicast Input}$$

Given a collective N and an input label $\ell \in \text{LAB}_I$, function $\mathbb{N}_\ell[N, \ell]$ returns a function \mathcal{N} that associates each collective N' reachable from N via ℓ with a value in $\mathbb{R}_{\geq 0}$. If ℓ is a broadcast input $(\alpha^* [\pi_i] (\overrightarrow{\nu}), \gamma)$ this value represents the probability that the collective is reachable after ℓ. When ℓ is a unicast input $\alpha [\pi_i] (\overrightarrow{\nu}), \gamma, \mathcal{N}(N')$ is the weight that will be used, at the level of systems, to compute the probability that N' is selected after ℓ. Note that this difference is due from the fact that while the probability to receive a broadcast input can be computed locally (each component identifies its own probability), to compute the probability to receive a unicast input the complete collective
\[
\mathbb{N}_e[0, \ell] = \emptyset \quad \text{Zero}
\]

\[
\mathbb{C}((P, \gamma), \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{N} \quad \mathcal{N} \neq \emptyset \quad \varepsilon = (\mu_p, \mu_w, \mu_r, \mu_u)
\]

\[
\mathbb{N}_e((P, \gamma), \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \frac{\mu_p[\gamma]}{\varepsilon} \cdot \mathcal{N} + \mathcal{N} \rightarrow ((P, \gamma) \mapsto (1 - \mu_p(\gamma, \alpha^*))) \quad \text{Comp-B-In}
\]

\[
\mathbb{C}((P, \gamma), \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \emptyset
\]

\[
\mathbb{N}_e((P, \gamma), \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = ((P, \gamma) \mapsto 1) \quad \text{Comp-B-In-F}
\]

\[
\mathbb{C}((P, \gamma_2), \alpha[\pi_1](\overrightarrow{\nu}), \gamma_1) = \mathcal{N} \quad \mathcal{N} \neq \emptyset \quad \varepsilon = (\mu_p, \mu_w, \mu_r, \mu_u)
\]

\[
\mathbb{N}_e((P, \gamma_2), \alpha[\pi_1](\overrightarrow{\nu}), \gamma_1) = \mu_u(\gamma_1, \gamma_2, \alpha) \cdot \frac{1}{\varepsilon}
\]

\[
\mathbb{C}((P, \gamma_2), \alpha[\pi_1](\overrightarrow{\nu}), \gamma_1) = \emptyset
\]

\[
\mathbb{N}_e((P, \gamma_2), \alpha[\pi_1](\overrightarrow{\nu}), \gamma_1) = \emptyset \quad \text{Comp-In}
\]

\[
\mathbb{N}_e(N_1, \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_1 \quad \mathbb{N}_e(N_2, \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_2
\]

\[
\mathbb{N}_e(N_1 \parallel N_2, \alpha^*[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_1 \parallel \mathcal{M}_2 \quad \text{B-In-Sync}
\]

\[
\mathbb{N}_e(N_1, \alpha[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_1 \quad \mathbb{N}_e(N_2, \alpha[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_2
\]

\[
\mathbb{N}_e(N_1 \parallel N_2, \alpha[\pi](\overrightarrow{\nu}), \gamma) = \mathcal{M}_1 \parallel \mathcal{M}_2 \oplus \mathcal{M}_1 \parallel \mathcal{M}_2 \quad \text{In-Sync}
\]

Table 3: Operational semantics of collective
Function $N \varepsilon$ is also parametrised with respect to the evaluation function ε, obtained from the environment where the collective operates, that is used to compute the above mentioned weights.

The first four rules in Table 3 describe the behaviour of the single component at the level of collective. Rule \textbf{Zero} is similar to rule \textbf{Nil} of Table 1 and states that inactive component 0 cannot perform any action. Rule \textbf{Comp-B-In} states that if (P, γ) can receive a message sent via a broadcast with activity $\alpha (C[(P, \gamma), \alpha^*[\pi_i](\gamma^v), \gamma] = N \neq \emptyset)$ then the component receives the message with probability $\mu_p(\gamma, \alpha^*)$ while the message is not received with probability $1 - \mu_p(\gamma, \alpha^*)$. In the first case, the resulting function is renormalised by $\oplus N$ to indicate that each element in P receives the message with the same probability. There we use $\oplus N$ to denote $\sum_{N \in \text{Col}} N(N)$. On the contrary, rule \textbf{Comp-B-In-F} states that if (P, γ) is not able to receive a broadcast message, $(C[(P, \gamma), \alpha^*[\pi_i](\gamma^v), \gamma] = \emptyset)$, with probability 1 the message is received while the component remains unchanged.

Rule \textbf{Comp-In} is similar to \textbf{Comp-B-In}. It simply lifts the transition at the level of component to the level of collective while the resulting function is multiplied by the weight $\mu_p(\gamma_1, \gamma_2, \alpha)$. The latter is the probability that this component is selected for the synchronisation. As in \textbf{Comp-B-In}, function N is divided by $\oplus N$ to indicate that any possible receiver in P is selected with the same probability. Rule \textbf{Comp-In-F} is applied when a component is not involved in a synchronisation.

Rule \textbf{B-In-Sync} states that that two collectives N_1 and N_2 that operate in parallel synchronise while performing a broadcast input. This models the fact that the input can be potentially received by both of the collectives. In this rule we let $N_1 \parallel N_2$ denote the function associating the value $N_1(N_1) \cdot N_2(N_2)$ with each term of the form $N_1 || N_2$ and 0 with all the other terms. We can observe that if

$$N_\varepsilon[N, \alpha^*[\pi_i](\gamma^v), \gamma] = N$$

then, as we have already observed for rule \textbf{Comp-B-In}, $\oplus N = 1$ and N is in fact a probability distribution over Col.

Rule \textbf{In-Sync} controls the behaviour associated with unicast input and it states that a collective of the form $N_1 \parallel N_2$ performs a unicast input if this is performed either in N_1 or in N_2. This is rendered in the semantics as an interleaving rule, where for each $N : \text{Col} \to \mathbb{R}_{\geq 0}, N_1 \parallel N_2$ denotes the function associating $N(N_1)$ with each collective of the form $N_1 || N_2$ and 0 with all other collectives.

3.3 Operational semantics of systems

The operational semantics of systems is defined via the function

$$S_t : \text{SYS} \times \text{LAB}_S \to [\text{SYS} \to \mathbb{R}_{\geq 0}]$$

that is formally defined in Table 4. This function only considers synchronisation labels LAB_S:

$$\ell ::= \alpha^*[\pi_i](\gamma^v), \gamma \quad \text{Broadcast Output}$$

$$\tau[\alpha[\pi_i](\gamma^v), \gamma] \quad \text{Unicast Synchronization}$$
The behaviour of a CARMA system is defined in terms of a *time-inhomogeneous Action Labelled Markov Chain* whose transition matrix is defined by function S_{ℓ}. For any system S and for any label $\ell \in \text{LAB}_{S}$, if $S_{\ell}[S, \ell] = S'$ then $S'(S')$ is the rate of the transition from S to S'. When $S'(S') = 0$ then S' is not reachable from S via ℓ.

The first rule is Sys-B. This rule states that, when $\varepsilon = (\mu_{p}, \mu_{w}, \mu_{r}, \mu_{u}) = \rho(t, \gamma, N)$, a system of the form $N \mathbf{in} (\gamma, \rho)$ at time t can perform a broadcast output when there is a component $C \in N$ that performs the output while the remaining part of the collective ($N - C$) performs the complementary input. The outcome of this synchronisation is computed by the function bSync_{e} defined below:

$$
\varepsilon = (\mu_{p}, \mu_{w}, \mu_{r}, \mu_{u}) \quad \text{bSync}_{e}(C, N, \alpha^{*}[\pi_{i}](\gamma), \gamma) = \mu_{p}(\gamma, \alpha^{*}[\pi_{i}](\gamma)) \cdot C \parallel N
$$

This function combines the outcome of the broadcast output performed by C, (ε) with the complementary input performed by N (N), the result is then multiplied by the rate of the action induced by the environment $\mu_{r}(\gamma, \alpha^{*}[\pi_{i}](\gamma))$. Note that, since both C and N are probability distributions, the same is true for $C \parallel N$.

To compute the total rate of a synchronisation we have to sum the outcome above for all the possible senders $C \in N$ multiplied by the multiplicity of C component in N ($N(C)$). After the synchronisation, the global store is updated and a new collective can be created according to function μ_{u}. In rule Sys-B the following notations are used. For each collective N_{2}, $\mathcal{N} : \text{COL} \rightarrow \mathbb{R}_{>0}$, $\mathcal{S} : \text{SYS} \rightarrow \mathbb{R}_{>0}$ and $p \in \text{Dist}(\Gamma)$ we let $N \mathbf{in} (p, \rho)$ denote the function mapping each system $N \mathbf{in} (\gamma, \rho)$ to $\mathcal{N}(N) \cdot p(\gamma)$.

The second rule is Sys that regulates unicast synchronisations, which is similar to Sys-B. However, there function uSync_{e} is used. This function is defined below:

$$
\varepsilon = (\mu_{p}, \mu_{w}, \mu_{r}, \mu_{u}) \quad \text{uSync}_{e}(C, N, \alpha^{*}[\pi_{i}](\gamma), \gamma) = \mu_{p}(\gamma, \alpha^{*}[\pi_{i}](\gamma)) \cdot C \parallel N
$$

$$
\frac{\text{uSync}_{e}(C, N, \alpha^{*}[\pi_{i}](\gamma), \gamma) = \emptyset}{\text{uSync}_{e}(C, N, \alpha^{*}[\pi_{i}](\gamma), \gamma) = \emptyset}
$$

Similarly to bSync$_e$, this function combines the outcome of a unicast output performed by C, (ε) with the complementary input performed by N (N). The result is then multiplied by the rate of the action induced by the environment $\mu_{r}(\gamma, \alpha^{*}[\pi_{i}](\gamma), \gamma)$. However, in uSync$_e$ we have to renormalise \mathcal{N} by the value $\oplus \mathcal{N}$. This guarantees that the total synchronisation rate does not exceed the capacity of the sender. Note that, \mathcal{N} is not a probability distribution while $\frac{1}{\mathcal{N}}$ is.

4 CARMA implementation

To support simulation of CARMA models, a prototype simulator has been developed. This simulator, which has been implemented in Java, can be used to perform stochastic simulation and will be the basis for the implementation of other analysis techniques. An
\[\rho(t, \gamma, N) = e = (\mu_p, \mu_w, \mu_r, \mu_u) \quad \mu_a(\gamma, \alpha^*) = (\sigma, N') \]

\[\sum_{C \in N} N(C) \cdot bSync(N - C, \alpha^*[\pi], \gamma) = N \]

\[\mathcal{S}_{\rho}[N \in \gamma, \rho], \alpha^*[\pi], \gamma] = N \parallel N' \in \sigma(\gamma, \rho) \]

Sys-B

\[\rho(t, \gamma, N) = e = (\mu_p, \mu_w, \mu_r, \mu_u) \quad \mu_a(\gamma, \alpha^*) = (\sigma, N') \]

\[\sum_{C \in N} N(C) \cdot uSync(N - C, \alpha[\pi], \gamma) = N \]

\[\mathcal{S}_{\rho}[N \in \gamma, \rho], \alpha[\pi], \gamma] = N \parallel N' \in \sigma(\gamma, \rho) \]

Sys

Table 4: Operational Semantics of Systems.

Eclipse plug-in for supporting specification and analysis of CAS in CARMA has also been developed. In this plug-in, CARMA systems are specified by using an appropriate high-level language for designers of CAS, named the CARMA Specification Language. This is mapped to the process algebra, and hence will enable qualitative and quantitative analysis of CAS during system development by enabling a design workflow and analysis pathway. The intention of this high-level language is not to add to the expressiveness of CARMA, which we believe to be well-suited to capturing the behaviour of CAS, but rather to ease the task of modelling for users who are unfamiliar with process algebra and similar formal notations. Both the simulator and the Eclipse plug-in are available at https://quanticol.sourceforge.net/.

In the rest of this section, we first describe the CARMA Specification Language then an overview of the CARMA Eclipse Plug-in is provided. In Section 5 we will show how the Bike Sharing System considered in Section 2 can be modelled, simulated and analysed with the CARMA tools.

4.1 CARMA specification language

In this section we present the language that supports the design of CAS in CARMA. To describe the main features of this language, following the same approach used in Section 2, we will use the Bike Sharing System.

Each CARMA specification, also called a CARMA model, provides definitions for:

- structured data types and the relative functions;
- prototypes of components;
- systems composed of collective and environment;
- measures, that identify the relevant data to measure during simulation runs.

Data types. Three basic types are natively supported in our specification language. These are: **bool**, for booleans, **int**, for integers, and **real**, for real values. However, to model complex structures, it is often useful to introduce custom types. In a CARMA specification two kind of custom types can be declared: **enumerations** and **records**.

Like in many other programming languages, an enumeration is a data type consisting of a set of named values. The enumerator names are identifiers that behave as...
constants in the language. An attribute (or variable) that has been declared as having an
enumerated type can be assigned any of the enumerators as its value. In other words, an
everated type has values that are different from each other, and that can be compared
and assigned, but which are not specified by the programmer as having any particular
concrete representation. The syntax to declare a new enumeration is:

 enum name = elem₁,...,elemₙ;

where name is the name of the declared enumeration while elemᵢ are its value names.
Enumeration names start with a capitalised letter while the enumeration values are com-
posed by only capitalised letters.

Example 8. Enumerations can be used to define predefined set of values that can be
used in the specification. For instance one can introduce an enumeration to identify the
possible four directions of movement:

 enum Direction = NORTH, SOUTH, EAST, WEST;

To declare aggregated data structures, a CAS designer can use records. A record
consists of a sequence of a set of typed fields:

 record name = [type₁ field₁ ,..., typeₙ fieldₙ] ;

Each field has a type typeᵢ and a name fieldᵢ; typeᵢ can be either a built-in type or one
of the new declared types in the specification; fieldᵢ can be any valid identifier.

Example 9. Record can be used to model structured elements. For instance, a position
over a grid can be rendered as follows:

 record Position = [int x , int y] ;

A record can be created by assigning a value to each field, within square brackets:

[field₁:=expression₁ ,..., fieldₙ:=expressionₙ]

Example 10. The instantiation of a location referring to the point located at (0,0) has
the following form:

[x:=0 , y:=0]

Given a variable (or attribute) having a record type, each field can be accessed using the
dot notation:

 variable . fieldᵢ
Constants and Functions. A CARMA specification can also contain constants and functions declarations having the following syntax:

\begin{verbatim}
const name = expression;
fun type name(type1 arg1, ..., typek argk) {
 ...
}
\end{verbatim}

where the body of an expression consists of standard statements in a high-level programming language. The type of a constant is not declared but inferred directly from the assigned expression.

Example 11. A constant can be used to represent the number of zones in the Bike Sharing System:

```
const ZONES = 5;
```

Moreover, functions can be used to perform complex computations that cannot be done in a single expression:

```
fun real ReceivingProb( int size ) {
  if (size != 0) {
    return 1.0/real(size);
  } else {
    return 0.0;
  }
}
```

Components prototype. A component prototype provides the general structure of a component that can be later instantiated in a CARMA system. Each prototype is parameterised with a set of typed parameters and defines: the store; the component’s behaviour and the initial configuration. The syntax of a component prototype is:

```
component name( type1 arg1, ..., type_n arg_n ) {
  store { ... attr_kind aname := expressioni; ... }
  behaviour { ... proc_i = pdef_i; ... }
  init { P_1 | ... | P_n }
}
```

Each component prototype has a possibly empty list of arguments. Each argument arg_i has a type type_i that can be one of the built-in types (bool, int and real), a custom type (an enumeration or record), or the type process that indicates a component behaviour. These arguments can be used in the body of the component. The latter consists of three (optional) blocks: store, behaviour and init.

The block store defines the list of attributes (and their initial values) exposed by a component. Each attribute definition consists of an attribute kind attr_kind (that can
be either `attrib` or `const`, a `name` and an expression identifying the initial attribute value. When an attribute is declared as `const`, it cannot be changed. The actual type of an attribute is not declared but inferred from the expression providing its initialisation value.

The block `behaviour` is used to define the processes that are specific to the considered components and consists of a sequence of definitions of the form

\[\text{proc}_i = \text{pdef}_i ; \]

where `proc_i` is the process name while `pdef_i` is its definition having the following syntax\(^7\):

\[\text{pdef} ::= \text{pdef} + \text{pdef} \]
\[\quad | \ [\text{expr}] \text{pdef} \]
\[\quad | \ \text{act}.\text{proc} \]

\[\text{act} ::= \text{act}_\text{name}[\text{expr}]<\text{expr}_1, \ldots, \text{expr}_n>\{\text{aname}_1:= \text{expr}_1', \ldots, \text{aname}_k:= \text{expr}_k'\} \]
\[\quad | \ \text{act}_\text{name}*[\text{expr}]<\text{expr}_1, \ldots, \text{expr}_n>\{\text{aname}_1:= \text{expr}_1', \ldots, \text{aname}_k:= \text{expr}_k'\} \]
\[\quad | \ \text{act}_\text{name}[\text{expr}]\{\text{var}_1, \ldots, \text{var}_n\}\{\text{aname}_1:= \text{expr}_1', \ldots, \text{aname}_k:= \text{expr}_k'\} \]
\[\quad | \ \text{act}_\text{name}*[\text{expr}]\{\text{var}_1, \ldots, \text{var}_n\}\{\text{aname}_1:= \text{expr}_1', \ldots, \text{aname}_k:= \text{expr}_k'\} \]

Finally, block `init` is used to specify the initial behaviour of a component. It consists of a sequence of terms \(P_i\) separated by the symbol `|`. Each \(P_i\) can be a process defined in the block `behaviour`, `kill` or `nil`.

Example 12. The prototypes for Station, Users and Arrival components, already described in Example 2, can be defined as follows:

```plaintext
component Station( int loc , int capacity , int available )
{
    store {
        attrib loc := loc;
        attrib available := available;
        attrib capacity := capacity;
    }
    behaviour {
        G = [my.available >0]
        get<>{ my.available := my.available −1 }.G;
        R = [my.available <my.capacity]
        ret<>{ my.available := my.available+1 }.R;
    }
    init {
        G \| R
    }
}
```

\(^7\) All the operators are right associative and presented in the order of priority.

component User(int loc , int dest) {
 store {
 attrib loc := loc;
 attrib dest := dest;
 }
 behaviour {
 P = get[my.loc == loc]().B;
 B = move*[false]<>[my.loc := my.dest].W;
 W = ret[my.loc == loc]().kill;
 }
 init {
 P
 }
}

component Arrival(int loc) {
 store {
 attrib loc := loc;
 }
 behaviour {
 A = arrival*[false]<>A;
 }
 init {
 A
 }
}

System definitions. A system definition consists of two blocks, namely **collective** and **environment**, that are used to declare the collective in the system and its environment, respectively:

```
    system name {
        collective {
            inist_stmt
        }
        environment { ... }
    }
```

Above, **inist_stmt** indicates a sequence of commands that are used to instantiate components. The basic command to create a new component is:

```
    new name( expr1 .... exprn )
```

where **name** is the name of a component prototype. However, in a system a large number of collectives can occur. For this reason, our specification language provides specific constructs for the instantiation of multiple copies of a component. A first construct is the **range operator**. This operator is of the form:

```
[ expr1 : expr2 : expr3 ]
```
and can be used as an argument of type integer. It is equivalent to a sequence of integer values starting from $expr_1$, ending at $expr_2$. The element $expr_3$ (that is optional) indicates the step between two elements in the sequence. When $expr_3$ is omitted, value 1 is assumed. The range operator can be used where an integer parameter is expected. This is equivalent to having multiple copies of the same instantiation command where each element in the sequence replaces the command.

For instance, assuming $ZONES$ to be the constant identifying the number of zones in the city, while $CAPACITY$ and $INITIAL_AVAILABILITY$ refer to the station capacity and to the initial availability, respectively, the instantiation of the stations can be modelled as:

```plaintext
new Station([0:ZONES-1], CAPACITY, INITIAL_AVAILABILITY);
```

The command above is equivalent to:

```plaintext
new Station(0, CAPACITY, INITIAL_AVAILABILITY);
...
new Station(ZONES-1, CAPACITY, INITIAL_AVAILABILITY);
```

Two other commands are used to control instantiation of components. These are:

```plaintext
for (var_name = $expr_1$; $expr_2$; $expr_3$) {
inist_stmt
}
if ($expr$) {
inist_stmt
} else {
inist_stmt
}
```

The former is used to iterate an instantiation block for a given number of times while the latter can be used to differentiate the instantiation depending on a given condition.

Example 13. The following block can be used to instantiate $SITES$ copies of component $Station$ at each zone. The same block instantiates a component $Arrival$ at each zone:

```plaintext
collective {
for (i; i<ZONES; 1) {
for (j; j<SITES; 1) {
new Station(i, CAPACITY, INITIAL_AVAILABILITY);
}
new Arrival(i);
}
}
```

The syntax of a block environment is the following:

```plaintext
environment {
store { ... }
prob { ... }
}
```
weight { ... }
rate { ... }
update { ... }
}

The block store defines the global store and has the same syntax as the similar block already considered in the component prototypes.

Example 14. In the Bike Sharing System we use a global attribute to count the amount of active users in the system:

```
store {
  attrib users := 0;
}
```

Blocks prob and weight are used to compute the probability to receive a message. Syntax of prob is the following:

```
prob { ... 
  [guard] acti : expri; ...
  default : expr;
}
```

```
weight { ... 
  [guard] acti : expri; ...
  default : expr;
}
```

In the above, each guardi is a boolean expression over the global store and the stores of the two interacting components, i.e. the sender and the receiver, while acti denotes the action used to interact. In guardi, attributes of sender and receiver are referred to using sender.a and receiver.a, while the values published in the global store are referenced by using global.a. This probability value may depend on the number of components in a given state. To compute this value, expressions of the following form can be used:

```
#{\Pi \mid expr }
```

This expression denotes the number of components in the system satisfying boolean expression expr where a process of the form \Pi is executed. In turn, \Pi is a pattern of the following form:

```
\Pi ::= * | *[ proc ] | comp[ * ] | comp[ proc ]
```

Example 15. In our example the block weight can be instantiated as follows:

```
weight{
  [receiver.loc==sender.loc] get : 1;
  [receiver.loc==sender.loc] ret : 1;
  default : 0;
}
```
Above, we say that each user in a zone receives a bike/parking slot with the same probability. All the other interactions are disabled having the associated weight equal to 0.

Block rate is similar and it is used to compute the rate of an unicast/broadcast output. This represents a function taking as parameter the local store of the component performing the action and the action type used. Note that the environment can disable the execution of a given action. This happens when evaluation of block rate (resp. prob) is 0. Syntax of rate is the following:

```
rate {  
  [guard_i] act_i : expr_i; ...  
  default : expr;  
}
```

Differently from prob, in rate guards guard_i are evaluated by considering only the attributes defined in the store of the component performing the action, referenced as sender.a, or in the global store, accessed via global.a.

Example 16. In our example rate can be defined as follow:

```
rate {  
  [true] get : get_rate;  
  [true] ret : ret_rate;  
  [true] move* : move_rate;  
  [true] arrival* :  
    (global.users<TOTAL_USERS? arrival_rate : 0.0);  
  [true] default : 1;  
}
```

Above we say that actions move*, get and ret are executed at a constant rate. Rate of user arrivals depends on the number of active users. Action arrival* is executed with rate arrival_rate when the total number of users active in the system is less than TOTAL_USERS. Otherwise, the same action is disabled (i.e. executed with rate 0.0).

Finally, the block update is used to update the global store and to install a new collective in the system. Syntax of update is:

```
update {  
  [guard_i] act_i : attr_updt_i; inst_cmd_i; ...  
}
```

As for rate, guards in the update block are evaluated on the store of the component performing the action and on the global store. However, the result is a sequence of attribute assignments followed by an instantiation command (above considered in the collective instatiation). If none of the guards are satisfied, or the performed action is not listed, the global store is not changed and no new collective is instantiated. In both cases, the collective generating the transition remains in operation. This function is particularly useful for modelling the arrival of new agents into a system.

Example 17. In our scenario block update is used to model the arrival of new users and the exit of existing ones. It is defined as follows:
When action `arrival*` is performed a component associated with a new user is created in the same location as the sender (see Example 3). The destination of the new user is probabilistically selected. Indeed, above we use $U[0:ZONES-1]$ to indicate the uniform probability over the integer values between 0 and $ZONES-1$ (included). When a bike is returned, the user exits from the system (process `kill` is enabled) and the global attribute `users` is updated accordingly.

Measure definitions. To extract observations from a model, a CARMA specification also contains a set of measures. Each measure is defined as:

```
measure m_name [ var1=range1, ..., var=[range] ] = expr;
```

Expression `expr` can be used to count, by using expressions of the form `#{ Π | expr }` already described above, or to compute statistics about attribute values of components operating in the system: `min{ expr | guard }`, `max{ expr | guard }` and `avg{ expr | guard }`. These expressions are used to compute the minimum/maximum/average value of expression `expr` evaluated in the store of all the components satisfying boolean expression `guard`, respectively.

Example 18. In our scenario, we are interested in measuring the number of available bikes in a zone. For this reason, the following measures are used:

```
measure AverageBikes[l:=0:4] =
  avg{ my.available | my.loc == l };
measure MinBikes[l:=0:4] =
  min{ my.available | my.loc == l };
measure MaxBikes[l:=0:4] =
  max{ my.available | my.loc == l };
```

4.2 CARMA Eclipse Plug-in

The CARMA specification language is implemented as an Eclipse plug-in using the Xtext framework. It can be downloaded using the standard procedure in Eclipse by pointing to the update site at http://quanticol.sourceforge.net/updates/8. After the installation, the CARMA editor will open any file in the workspace with the `carma` extension.

Given a CARMA specification, the CARMA Eclipse Plug-in automatically generates the Java classes providing the machinery to simulate the model. This generation procedure can be specialised to enable the use of different kind of simulators. Currently, a simple ad-hoc simulator, is used. The simulator provides generic classes for representing simulated systems (named here `models`). To perform the simulation each model

8 Detailed installation instructions can be found at http://quanticol.sourceforge.net
Fig. 1: A screenshot of the CARMA Eclipse plug-in.
provides a collection of activities each of which has its own execution rate. The simulation environment applies a standard kinetic Monte-Carlo algorithm to select the next activity to be executed and to compute the execution time. The execution of an activity triggers an update in the simulation model and the simulation process continues until a given simulation time is reached. In the classes generated from a CARMA specification, these activities correspond to the actions that can be executed by processes located in the system components. Each of these activities in fact mimics the execution of a transition of the CARMA operational semantics. Specific measure functions can be passed to the simulation environment to collect simulation data at given intervals. To perform statistical analysis of collected data the Statistics package of Apache Commons Math Library is used\(^9\).

To access the simulation features, a user can select the menu Carma→Simulation. When this menu is selected, a dialogue box pops up to choose the simulation parameters (see Figure 2). This dialogue box is automatically populated with appropriate values from the model. When the selection of the simulation parameters is completed, the simulation is started. The results are reported within the Experiment Results View (see Figure 3). Two possible representation are available. The former, on the left side of Figure 3, provides a graphical representation of collected data; the latter, on the right side of Figure 3, shows average and standard deviation of the collected values, which correspond to the measures selected during the simulation set-up, are reported in a tabular form. These values can then be exported in CSV format and used to build suitable plots in the preferred application.

5 CARMA tools in action

In this section we present the Bike Sharing System in its entirety and demonstrate the quantitative analysis which can be undertaken on a CARMA model. One of the main advantages of the fact that we structure a CARMA system specification in two parts – a collective and an environment – is that we can evaluate the same collective in different enclosing environments.

We now consider a scenario with 5 zones and instantiate the environment of the Bike Sharing Systems with respect to two different specifications for the environment:

Scenario 1: Users always arrive in the system at the same rate;
Scenario 2: User arrival rate is higher at the beginning (modelling the fact that bikes are mainly used in the morning) and then decreases.

The first scenario is the one presented in Section 4 and reported below for completeness:

```java
system Scenario1 {
  collective {
    for (i:i<ZONES;1) {
      for (j:j<SITES;1) {
        new Station(i,CAPACITY,INITIAL_AVAILABILITY);
      }
    }
  }
}
```

\(^{9}\) http://commons.apache.org
Fig. 2: CARMA Eclipse Plug-In: Simulation Wizard.
Fig. 3: CARMA Eclipse Plug-In: Experiment Results View.
new Arrival(i);
}
}
environment {
 store {
 attrib users := 0;
 }
 prob {
 default: 1;
 }
 weight{
 [receiver.loc==sender.loc] get: 1;
 [receiver.loc==sender.loc] ret: 1;
 default: 0;
 }
 rate {
 get: get_rate;
 ret: ret_rate;
 move*: move_rate;
 arrival*: (global.users<TOTAL_USERS?arrival_rate : 0.0);
 default: 1;
 }
 update {
 arrival*:
 users:=global.users+1,
 new User(sender.loc,U[0:ZONES-1]);
 ret:
 users:=global.users-1;
 }
}
}

The second scenario can be simply obtained by changing the rate block as follows:

rate {
 get: get_rate;
 ret: ret_rate;
 move*: move_rate;
 arrival*:
 (global.users<TOTAL_USERS?
 (now<360?4*arrival_rate:arrival_rate /2):0.0);
 default: 1;
}

The results of the simulation of the two CARMA models are reported in Figure 4 where we report max/average/min number of bikes available at zone 0. Due to the symmetry of the considered model, any other location in the border presents similar results.

We can notice that, in both the scenarios the use of stations is not well balanced. Indeed, when the system is not overloaded, there are stations that are almost empty while others are full. This is due to the fact that stations do not collaborate and concur
to attract users. To overcome this problem we change the behaviour of stations to let them exchange information about their availability. The new prototype is the following:

```plaintext
component CollaborativeStation( int loc, int capacity, int available ) {
  store {
    attrib loc := loc;
    attrib available := available;
    attrib capacity := capacity;
    attrib get_enabled := true;
    attrib ret_enabled := true;
  }

  behaviour {
    G = [my.available >0 && my.get_enabled]
    get<>[ my.available := my.available -1 ].G;
    R = [my.available <my.capacity && my.ret_enabled]
    ret<>[ my.available := my.available +1 ].R;
    C = [my.get_enabled || my.ret_enabled] spread<< my.
        available >.C
    +
    spread*[true]( x )
        { my.get_enabled := my.available >= x , my.
          ret_enabled := my.available <= x }.C;
  }
```
Collaborative Stations use action spread* to communicate to components in the same zone the number of bikes locally available. Actions get and ret, used by users to get and return a bike, are enabled only when no other components with an higher number of bikes/parking slots is present in the zone. The simulation of these collectives in the two scenarios is reported in Figure 5. We can notice that in both the scenarios the average number of available bikes is the same as in Figure 4. However, differently from in Figure 4, the use of bikes in the stations is more balanced.

6 Concluding remarks

In this paper we have presented CARMA, a novel modelling language which aims to represent collectives of agents working in a specified environment and support the analysis of quantitative aspects of their behaviour such as performance, availability and dependability. CARMA is a stochastic process algebra-based language combining several innovative features such as the separation of behaviour and knowledge, locally synchronous and globally asynchronous communication, attribute-defined interaction and a distinct environment which can be changed independently of the agents. We have demonstrated the use of CARMA on a simple example, showing the ease with which the same system can be studied under different contexts or environments.

Together with the modelling language presented as a stochastic process algebra, we have also described a high level language (named the CARMA Specification Language) that can be used as a front-end to support the design of CARMA models and to support
quantitative analyses that, currently, are performed via simulation. To support simulation of CARMA models a prototype simulator has been also developed. This simulator, which has been implemented in Java, can be used to perform stochastic simulation and can be used as the basis for implementing other analysis techniques. These tools are available in an Eclipse plug-in that has been used to specify and verify a simple scenario.

One of the main issues related with CAS is scalability. For this reason is strongly desirable to develop alternative semantics that, abstract on the precise identities of components in a system and when appropriate offer mean-field approximation [6]. We envisage providing CARMA with a fluid semantics and in general the exploitation of scalable specification and analysis techniques [25] to provide a key focus for on-going work. In this direction we refer also here to [21] where the process language ODE-LINDA has been proposed which provides an asynchronous, tuple-based, interaction paradigm for CAS. The language is equipped both with an individual-based Markovian semantics and with a population-based Markovian semantics. The latter forms the basis for a continuous, fluid-flow, semantics definition, in a way similar to [13].

Acknowledgements

This work is partially supported by the EU project QUANTICOL, 600708. The authors thank Stephen Gilmore for his helpful comments on the chapter.

References