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Abstract: A comprehensive study has been carried out on the flexural behaviour of dovetail 

mortise-tenon joints in timber structures. Two types of the joints have been considered; type 1 

represents a joint at the top of a column where the beam tenon may be slid into the mortise 

from above the column, and type 2 represents a joint below the top of a column where the 

beam tenon needs to be inserted from the side into the mortise. Relationships of moment vs. 

rotation and tenon pull-out vs. rotation, as well as the failure modes were obtained from 

experiments under monotonic loading. Numerical simulation was conducted to examine the 

deformation states and the stress distributions. On the basis of the experimental and 

numerical data, a simplified mechanics model has been proposed for the analysis of the 

moment vs. rotation relationship. Results show that the main failure mode of the dovetail 

joints is pull-out, and due to the dovetail shape on the two sides of the tenon, the side gaps 

tend to have a more significant effect than the gaps at the top and the apex. The moment-

rotation relationship of the joints has an initial stage of gradual development of nonlinearity, 

followed by a prolonged yielding phase, and then a descending branch. The moment-rotation 

relationship may thus be approximated by a trilinear model. Simplified formulas for 

determining the key points on the moment-rotation relationship have been shown to agree 

well with the experimental results.  

 

Key words: dovetail mortise-tenon joints; flexural behaviour; moment-rotation relationship; 

failure modes; numerical simulation; simplified mechanics model 

1 Introduction 

Timber structures have been the traditional type of buildings in China, Japan, Korea and 

many other countries for thousands of years. In China, most existing ancient structures are 

timber structures or timber-brick composite structures. Research on Chinese ancient timber 
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structures started from the 19th century [1-2], but most of the early work was about the 

structural layout, process and history of buildings. In more recent years scholars all over the 

world have done much more specific research on ancient timber structures with the method of 

modern mechanics.   

Dovetail mortise-tenon joints connecting beams with columns are widely seen in ancient 

timber structures [3]. The origin of this joining method is not exactly known, but it was 

already common in ancient timber structures built in Ming and Qing dynasties in China [4]. 

The load-deformation behaviour of dovetail joints is very complex, and their rotational 

stiffness and strength plays an important role in the lateral stiffness, integrity and stability of 

the whole structure. But in general their strength is lower than that of the adjoining beams 

and columns. An appropriate analysis of the mechanical properties of the dovetail joints is 

therefore crucial for a reliable evaluation of the safety of a timber structure. 

The behaviour of joints in timber structures has been a subject of some extensive studies 

both experimentally and analytically. However, as generally recognised [5], the mechanical 

behaviour of timber joints varies among different practices. Some of the studies on various 

types of the timber joints are briefly summarised below. The joint rotational stiffness has been 

a focus of many of these studies.  

Chang et al [5-6] studied the behaviour of continuous and butted Nuki joints with a 

special interest in the rotational performance of the joints. An initial gap was considered in 

the joints. Theoretical models were developed to predict the rotational stiffness of both types 

of joints with gaps.   

King et al. [7] conducted experiments on a kind of commonly used beam-to-column 

connections, with a tenon in the beam and a mortise in the column. They compared prototype 

and damaged (with material degradation) joints, and developed a three-parameter semi-rigid 

connection model for the stiffness of the joints.  

D’Ayala and Tsai [8] conducted both experimental and numerical studies of the seismic 

behaviour of timber joints in a special type of timber structures called “Dieh–Dou” in Taiwan. 

It was also observed that the stiffness of the timber joints played a significant role in 

determining the overall displacement of the structure.  

Chang and Hsu [9] studied the hysteretic behaviour of traditional Go-Dou and stepped 

dovetail connections, which are usually used to connect frames together and provide out-of-

plane stiffness to timber frames. The prediction models for rotational stiffness and the 

ultimate moment capacity of these two types of joints were established based upon a 

statistical approach. 
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Regarding the specific behaviour of dovetail joints, Chun et al. [10] and Yue [11] 

conducted many experiments to study the flexural behaviour of dovetail joints and derived 

empirical skeleton curves. Li et al. [12] introduced various assumptions about the failure 

modes of dovetail joints and subsequently derived the capacity formulas respectively. The 

failure rotation limits were not provided. Xu et al. [13] developed a moment-rotation 

relationship of dovetail joints from the perspective of microcosmic relationship of stress-

strain, but the formula was very complex and some important parameters needed to be 

obtained empirically by regression from experimental data. Pang et al. [14] investigated the 

influence of beam shoulder on the moment-carrying capacity of dovetail mortise-tenon joints 

by static loading tests. The moment resistance and the failure mode indicated that the beam 

shoulder significantly affected the performance of the joints. Seo [15] conducted static and 

cyclic lateral load tests on two Korean ancient timber frames without vertical load. The 

frames used dovetail joints to connect beams with columns at the column top. The failure 

modes of the frames were shear failure or bending failure of mortise branches. Despite these 

studies, however, theoretical research about dovetail joints is still limited.   

This paper presents a comprehensive experimental and analytical study on the flexural 

behaviour of dovetail mortise-tenon joints for beam-column connections. Two types of the 

joints are considered, representing respectively two different arrangements of the joint 

positions. Beam-column joint assemblies have been tested to failure under monotonic 

loading. To assist in the examination of the local stress and deformation distribution in the 

mortise and tenon, a finite element model has been developed to simulate the joint assembly 

with details of the mortise and tenon connections. Based on the experiment and numerical 

simulation, a set of simplification assumptions have been devised with regard to the stress 

and deformation patterns. Subsequently, a simplified mechanics model has been developed 

for the analysis of bending moment-rotation relationship of dovetail mortise-tenon joints. 

2 Experiment study 

2.1 Configurations of the joints 

Two types of dovetail joints are considered in the present study, as shown schematically 

in Figure 1. The first type (Type 1) has a traditional configuration and the joint is located at 

the top of the column. The second type (Type 2) is an extended version where the joint is 

located below the column top.  
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(a) Type 1 joint (located right at top of column)                     (b) Type 2 joint (located below top of column) 

Figure 1 Configurations of the dovetail joints 

Because of the dovetail shape of the tenon (the tenon apex is wider than the neck), the 

tenon cannot be inserted into the mortise directly, so Type 1 configuration has an advantage 

in that the tenon can be slotted into position vertically from above the mortise. When any 

other component is subsequently installed on top of the column, such a component will help 

to hold down the tenon and thus increase the resistance against the rotation of the tenon; 

otherwise a fixing cap may be required to enable a similar effect.  

Type 2 configuration permits a self-contained fixity. The dovetail tenon cannot be 

inserted directly into the joint in this case, and a wider opening slot needs to be created above 

the actual mortise to facilitate the installation of the tenon. This effectively renders the 

mortise to consist of two parts; a wider upper part of right rectangular shape whose width is 

just enough to allow the passage of the tenon apex, and a dovetail-shaped lower part in which 

the tenon finally fits. Thus the process of installing the tenon is to firstly bring the tenon into 

the vertical position through the upper part of the mortise, and then move it down into the 

lower part of the mortise. Finally a wedge is hammered into the upper part to complete the 

installation.  

 

2.1 Test specimens 

The prototype of the test specimens was made to follow the building practice 
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documented as from Qing Dynasty. Four 1:1.76 reduced-scale specimens were constructed, 

and these specimens were designated as JA-1, JA-2, JB-1 and JB-2, respectively. Specimens 

JA-1 and JA-2 were identical Type-1 joints, and specimens JB-1 and JB-2 were identical 

Type-2 joints. Detailed dimensions of these specimens are shown in Figure 2. For JA-1 and 

JA-2, a cap unit was installed on the top of the column to simulate the holding effect from 

another joining beam. Specimens JB-1 and JB-2 followed the installation procedure described 

in the previous section. 

          

(a) JA-1 and JA-2                                                   (b) JB-1 and JB-2 

Figure 2 Dimensions of the specimens (unit: mm) 

 
Table 1 Measured material properties 

Elastic 

constants 

Ec,R 

(N/mm2) 

Ec,T 

(N/mm2) 

Ec,L 

(N/mm2) 

GR,T 

(N/mm2) 

GR,L 

(N/mm2) 

GT,L 

(N/mm2) 
µR,T µR,L µT,L 

1018 572 12520 234 617 1321 0.683 0.022 0.048 

Strength 

properties 

fc,R 

(N/mm2) 

fc,T 

(N/mm2) 

fc,L 

(N/mm2) 

τR,T 

(N/mm2) 

τR,L 

(N/mm2) 

τT,L 

(N/mm2) 
   

3.3 2.5 27.5 20.6 9.3 9.3    

Note: Ec,R, Ec,T, Ec,L are radial, tangential, longitudinal compression elasticity modulus respectively. fc,R, fc,T, 
fc,L are radial, tangential, longitudinal compression strength respectively. GR,T, GR,L, GT,L are shear modulus of 
transverse section, radial section, tangential section respectively. τR,T, τR,L, τT,L are shear strength of transverse 
section, radial section, tangential section respectively. µR,T,  µR,L,  µT,L are Poisson’s  ratio. 

 
 

The timber material was fir which was widely used in ancient timber structures. The 

density of the timber material was 0.39g/mm3, and the moisture content was about 12%. 

Timber is naturally an orthotropic material, and its mechanical properties are normally 
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measured in three directions, namely radial, tangential (circumferential) and longitudinal. The 

Young’s modulus, shear modulus and Poisson’s ratios of the timber material in the three 

directions were determined from standard timber material tests and the results are 

summarised in Table 1. 

2.2 Test setup and loading scheme 

The test setup is schematically shown in Figure 3. The column was pin-supported at the 

bottom end and loaded with a hydraulic jack from the top to maintain a desired axial force. A 

pair of roller supports was provided near the column top to prevent side movement. A vertical 

load was applied at the beam end which in turn exerted a bending moment, along with a shear 

force, at the test joint. The axial force in the column was 20kN which was decided according 

to relevant guide [16] and taking into account the reduced scale. 

 

Figure 3 Schematic of the test setup  

Three displacement transducers (LVDTs), numbered D1, D2 and D3 respectively, were 

arranged to measure the vertical displacement at the beam end (D3) and the rotational 

displacements of the joint (D1 and D2), as illustrated in the figure. The loading process was 

controlled by the displacement measured by D3 and the specimens were subjected to 

monotonic loading until the failure of the joint, which typically involved the pull-out of the 

tenon from the mortise.  
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Figure 4 Characteristic deformations of the tenon relative to the mortise (beam-end 

deformations at the joint) 

The overall deformations of the tenon relative to the mortise may be represented by a 

rotation (θ) and a pull-out displacement (δ0). θ and δ0 may be deduced from the relative 

displacements measured on the top and bottom of the beam, as: 

1 2 1( ) / lθ δ δ= −                                                                    (1) 

0 1 2( ) / 2δ δ δ= +                                                                   (2) 

where δ1 and δ2 are the readings from D1 and D2; for an upward load, δ1 is positive and δ2 is 

negative. l1 is the vertical distance between D1 and D2. 

The bending moment exerted on the dovetail joint (M) can be calculated as:  

2M Pl=                                                                       (3) 

where P is the vertical load applied at the beam tip (measured by a load cell), l2 is the 

horizontal distance between the loading position and the right edge of the column.  

2.3 General observations from the tests 

Because of the jointing method in the dovetail joints, initial gaps of certain sizes always 

exist between the tenon and the mortise after installation. In the experiment these gaps were 

left untreated to represent an average condition in practice. In specimen JA-1, the apex gap 

was found to be 4.5mm and the top gap was 2mm before loading. The sizes of these gaps 

were 4.5mm and 3mm in specimen JA-2, and 5mm and 3mm in both JB-1 and JB-2. There 

was no side gap in both JA-1 and JA-2. The size of the side gaps was about 1mm in both JB-

1 and JB-2 before loading. 

The general observation from a typical test was as follows. Hiccup sound occurred 

δ0

δ1

δ2

θ
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firstly with the squeezing and slipping movements between the tenon and the mortise. Then 

squeak sound occurred due to squashing of timber fibres as the rotation deformation 

increased. Figure 5(a) shows an overall deformation pattern. After that, the sounds intensified 

slowly while the overall response remained steady until the tenon pulled out, as shown in 

Figure 5(b). There was noticeable dent on the downside of the tenons apex and more 

pronounced dent on the upside of the tenon neck, as shown in Figure 5(c). The bottom of the 

mortise expanded slightly, as shown in Figure 5(d). The beam and column members remained 

in a good condition in all cases.  

    

          (a) Rotation                    (b) Pull-out             (c) Fracture at tenon neck        (d) Mortise 

Figure 5 Failure modes of specimens JA-1 and JA-2 

    

          (a) Rotation                   (b) Pull-out      c) Pressing damage on tenon apex      (d) Mortise 

Figure 6 Failure modes of JB-1 and JB-2 

The general phenomenon during loading of Type-2 specimens was similar to that of JA-

1 and JA-2, as shown in Figure 6. In JB-2, however, severe splitting cracks occurred in the 

column at the bottom of the mortise in the later loading stage leading to the detachment of D1, 

as shown in Figure 6(b).  

2.4 Load – deformation relationships 

Figure 7(a) shows the relationship between bending moment and rotation at the joint for 

all the four specimens. Specimens JA-1 and JA-2 had a similar pattern, although the initial 

stiffness and the maximum moment capacities exhibited some differences which may be 

attributed to the differences in the initial conditions (gap sizes) and variation in the wood 

material properties. The moment-rotation relationship did not have a clear elastic stage but 

the moment increased rapidly as the rotation increased until 50-60% of the peak load. This 
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was followed by a more gradual increase of the moment until reaching the peak due to plastic 

deformation in the material in the vicinity of the joint interfaces. In the post-peak stage the 

moment decreased gradually with the increase of rotation due to the pull-out of the tenon, 

showing good ductility.  

In specimens JB-1 and JB-2 (joints below the column top), the moment-rotation 

relationship showed an initial settling stage, but as one can imagine the extent of this stage 

could vary with the workmanship. Ignoring the initial settling stage, the overall curves were 

similar to those of JA-1 and JA-2, except that the peak moments were markedly lower. The 

reduced moment capacities are believed to be mainly due to the effect of side gap. 

  

(a) Relationships of moment vs. rotation                (b) Relationships of tenon pull-out vs. rotation 

Figure 7 Flexural behaviours of joints under monotonic load 

Figure 7(b) shows the tenon pull-out as a function of the rotation. An idealised 

relationship of 75tanθ (to be explained later in the next paragraph) is also included. Because 

of the effect of pre-existing gaps, the measured results in the early stage of loading did not 

exhibit a consistent relationship, but after a certain settlement stage, the relationship tended to 

follow the slope as expressed by the idealised curve. It is noted that because of the damage at 

the bottom of the mortise in specimen JB-2, the rotation measurement in the last part of the 

curve for JB-2 is not included. 

The idealised relationship assumes no initial gap at the tenon top and that the centre of 

rotation is located at the top of the tenon neck section. The observed dent damage on the 

upside of the tenon neck in all specimens tends to support this assumption, barring the initial 

gap. Subsequently, the relationship between the tenon pull-out displacement δ0, the height of 

tenons h and the rotation θ can be worked out easily by geometry, thus δ0=0.5htanθ, where h 

is 150mm for all the four specimens. 
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3 Numerical simulation 

Numerical simulation has been increasingly used to analyse the behaviour of timber 

structures / joints [17-18]. In the present study, finite element analysis has been conducted using 

ABAQUS software [19] to examine the deformation states and the stress distributions in the 

tenon and mortise of the joints. This information has been used to supplement the 

experimental observations to support the development of the theoretical model. To simplify 

the modelling analysis, complexities in the geometric imperfections were not considered in 

the finite element model. The specimen chosen for the modelling was JA-1 which had the 

smallest gaps among all four specimens. Based on the measurement from the experiment, the 

size of the gap to the top surface of the tenon was given 2mm in the finite element model. 

3.1 Finite element model 

The FE model has been developed using ABAQUS/Standard and the element type is 

C3D8R. Considering both the accuracy and the computational cost, the final mesh size was 

chosen to be 10mm for the tenon and mortise, and 20mm for the beam and column. Figure 

8(a) shows the finite element mesh. 

The basic constitutive model for timber is elasto-brittle in tension, and elasto-plastic in 

compression. The modulus of elasticity and the strength were made the same for both tension 

and compression, as shown in Figure 8(b).  

Timber was modelled as an orthotropic material, and the nine mutually independent 

elastic constants and six strength values were given the measured material properties as 

shown in Table 1. Yielding was made to follow Hill yield criterion, which is suitable for 

orthotropic material and the yield surface is an elliptic cylinder.  

The interaction between the tenon and the mortise was modelled as “hard contact” in the 

normal direction and “static-kinetic exponential decay” in the tangential direction. This 

means the interfaces can transfer pressure and tangential (friction) force but not tension. 

When the tangential force is smaller than the critical force fs expressed in Equation (4), the 

two sides of the interface stick together. When the tangential force exceeds fs, relative sliding 

would occur between the two sides of the interface, and a friction incurred in the process of 

sliding. The friction coefficient was assumed to decay with the sliding speed as expressed in 

Equation (5).  

s sf Nµ=                                                                 (4) 

e eq

k s k( ) de γµ µ µ µ −= + −                                                     (5) 
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In the above equations, µs and µk are the static and dynamic friction coefficient, 

respectively.  dc is a decay coefficient of the friction coefficient, and γeq is the relative sliding 

speed between the tenon and the mortise. Assuming µs = 0.33, µk = 0.26 and dc = 3 according 

to relevant literature [20-21], the friction coefficient µ can be obtained as a function of γeq as 

shown in Figure 8(c). 

                          

(a) FE mesh                            (b) Stress-strain relationship 

  

(c) Exponential decay friction model 

Figure 8 FE model and material descriptions 

3.2 Simulation results 

The computed moment-rotation relationship using the FE model is compared with the 

experimental curve in Figure 9. The comparison shows a reasonably good agreement in terms 

of the overall trend, the peak moment, and the post-peak plastic deformation. Some 

discrepancies exist in the initial stiffness and the detail of pre-peak nonlinear response, but 

considering the complex interface actions and sliding movement, the FE simulation is can be 

regarded as satisfactory.   
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Figure 9 Comparison of moment-rotation relationships between FE and experimental results  

The deformation of the joint and the distributions of stress within the tenon and the 

mortise region are shown in Figure 10. From Figure 10(a) it can be seen that the failure mode 

of the dovetail joint in the FE model is due to the pull-out of the tenon, which echoes the 

experimental observation. The FE model also captures the slight expansion deformation in 

the lower part of the mortise as the tenon is pulled out from there, as shown in Figure 10(b). 

The stress distribution within the tenon shown in Figure 10(c) indicates that high stresses 

develop in the upper part of the tenon apex, causing compressive deformation (dent) while 

the top side of the tenon neck experiences also higher stresses. All of these simulated 

phenomena agree well with the respective experimental observations. 

 

    

(a) Deformation                    (b) Mortise                     (c) Tenon 

Figure 10 Deformation and stress contours at onset of tenon pull-out from FE analysis  

The profile of the pressure on the two side faces of the tenon reflects how the joint 

behaves and will form an important assumption in the simplified theoretical model described 

later. Figure 11 shows the distributions of the normal pressure on the side faces over the 

height of the tenon near the apex and along the length of the tenon at the bottom level. It can 

be seen that compressive stress on the side faces of the tenon decreases with increase of the 
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distance from the bottom (in elevation) and from the apex (in plan). The distributions along 

both directions may be treated as approximately triangular.   

 

  

(a) Along the height of tenon                (b) Along the length of tenon  

Figure 11 Distributions of normal stress (pressure) on two side faces of tenon 

3.3 Effect of dovetail slope 

The width of the tenon apex is wider than that of the tenon neck, and the difference in the 

width gives rise to the dovetail slope. A comparison of the effect with and without the slope 

was made using the finite element model. The case with a typical slope was the same as in 

the test specimens shown in Figure 2(a), whereas the case without a slope had a uniform 

tenon width equal to 40mm (average of the dovetail tenon width). Figure 12 shows a 

comparison of moment-rotation relationship between the two joint cases. 

 

 

Figure 12 Effect of dovetail slope  

It can be clearly observed that the case with a typical slope (dovetail tenon) has a 

considerably higher moment resistance than the case without a slope (flat tenon), due to much 

enhanced pressure and friction on the two side faces of the dovetail tenon as compared to the 

flat tenon.  
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4 Theoretical analysis 

4.1 Basic assumptions 

In this section we derive a simplified analytical model for the calculation of the moment-

rotation relationship of general dovetail mortise-tenon joints.  

A few basic assumptions are adopted, as follows: 

 (1) The bending deformation of the tenon itself is neglected. That is to say, the tenon 

only has a rigid motion within the mortise, thus the global displacement of every point in the 

tenon can be related to the rotation θ and the pull-out displacement δ0 (refer to Figure 4). 

(2) When extrusion occurs between longitudinal and transverse timber areas, the 

deformation takes place only in the transverse timber area.  

(3) As the interaction on the two side interfaces between the tenon and the mortise are 

both under compression in the timber transverse direction, the compression deformation of 

the tenon is equal to the expanding deformation of the mortise at the same position. 

4.2 Geometric conditions 

The dimensions and geometric conditions before and after the deformation of a dovetail 

joint are depicted in Figure 13. 

 

     

                  (a) Before deformation (original)                              (b) With deformation  

Figure 13 Geometric conditions of dovetail joint 

The length and height of the tenon are denoted as l and h respectively, and the width of 

the tenon apex and tenon neck are denoted as a and b respectively. The gaps at the apex, top 

and sides of the tenon are denoted as l′, a′ and h′ respectively. Because the beam will shoulder 

any inward movement at the top of the tenon neck (refer to Figure 1), the tenon will 
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effectively rotate about a fixed point “A” in Figure 13(b), and so the tenon apex face (end 

face) will hardly come into contact with the mortise, rendering the apex face to be effectively 

free of stress. Define the two angles α and β, as shown in Figure 13(a). The subscripts “b”, 

“t” and “s” denote bottom, top and side faces of the tenon, respectively. 

The intersection between the tenon neck and the beam centreline is defined as the origin 

the x-y system (point “o” in Figure 13(a)). The positive direction of the x-axis (horizontal) is 

leftward and the positive direction of the y-axis (vertical) is upward. The compression 

deformation and the length of interface can be obtained by the geometric conditions. 

As mentioned before, the relationship between the tenon pull-out δ0, height h and 

rotation θ can be expressed as: 

 δ0 =0.5hθ                               (6) 

The maximum vertical compression deformation at the bottom of the tenon can be 

expressed as: 

b 0sin( ) / cos 0.5 sinl h hδ α θ α δ θ ′= + − − −                                        (7) 

The length of the contact area at the bottom of the tenon can be written as:  

b b cosl δ θ=                                                              (8) 

       

(a) Idealised                 (b) Simplified 

Figure 14 Compressive deformation of the two side faces of the tenon 

The compressive deformation states of the two side faces of the tenon can be established 

by consulting the results from the FE analysis shown in Figure 11. These may be idealised by 

a linear variation both in the elevation and plan views, as shown in Figure 14(a). Based on the 

geometry, the governing compression deformation at the bottom of the tenon apex can be 

expressed as: 

δs0

δs0 δs

δs

h'
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s0 0{[ cos( ) / cos cos ]tan } / 2l l aδ α θ α δ θ β ′= − + + −                                   (9) 

In order to simplify the calculation, the compression deformation is further 

approximated with a uniform distribution along the tenon length as shown in Figure 14(b). 

Thus the side compression deformation at the bottom position, δs, becomes: 

s 0{[ cos( ) / cos cos ]tan } / 4l l aδ α θ α δ θ β ′= − + + −                                 (10) 

Taking into account the side gap a′, the height of the side contact area can be obtained 

as: 

s s4 / (4 )h h aδ δ′ ′= +                                                             (11) 

4.3 Equilibrium conditions 

             

(a) Stress distribution on two side faces   (b) Overall diagram of forces  

Figure 15 Force diagram of the tenon in the elastic stage 

Figure 15 illustrates the distribution of the normal and friction stresses on the side faces 

in the elastic stage, and the overall diagram of forces acting on the tenon of the dovetail joint. 

Fb and Ft represent the compression (normal) force on the bottom and top face of the tenon, 

respectively. Ft is located at point “A”, which is the centre of rotation as mentioned before, 

and Fb is located at the centroid of bottom normal stress block. fb is the friction corresponding 

to Fb, and ft represents the friction corresponding to Ft as well as the mechanical locking force 

produced by the beam shoulder at the tenon neck. The horizontal distance from Ft to point o 

is very small, so the moment produced by Ft about “o” can be ignored. The friction stress on 

the two side faces is expressed as τs and their resultant is denoted as fs. The moment produced 

by fs about point o is Ms.  

h'

σs

τs

σsτs

Ms
y t

y b

f s

ox

y

f b

Fb

f t

Ft

M V
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ft can be obtained by the equilibrium of the horizontal forces: 

t b sf f f= +                                                                    (12) 

Taking moment about “o”, the total moment in the elastic stage produced by all 

components of the forces exerted on the tenon (which would be equal to the bending moment 

acting on the joint from the beam) can be obtained as. 

b b b b t t sM F x f y f y M= + + +                                                 (13) 

             

(a) Stress distribution on two side faces   (b) Overall diagram of forces  

Figure 16 Force diagram of the tenon in the elastoplastic stage 

When the stressed areas of timber enter into elastoplastic stage, the stress patterns 

change from a triangle to a trapezoid, as shown in Figure 16. Replacing Fb, fb, ft, fs, τs, Ms, xb, 

yb, yt  with F′b, f′b, f′t, f′s, τ′s, M′s, x′b, y′b, y′t, equations (12) and (13) still apply.  

4.4 Physical conditions 

4.4.1 Elastic stage 

The normal stress acting on the bottom face of the tenon may be related to the normal 

(vertical) compressive strain, which is in turn related to the vertical deformation. 

Approximating the vertical strain at the tenon apex along the height as linear, we can relate 

the governing vertical compressive strain εb to the vertical deformation δb as: 

b b b0.5 0.5h hδ ε ε= × × =                                                          (14) 

Therefore the maximum compressive stress at the bottom level of the tenon is: 

b c,R b c,R b2 /E E hσ ε δ= =                                                      (15) 

Note that the timber material property parameters follow the definitions given in Section 
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2.1 and Table 1.  

The resultant forces on the bottom face of the tenon are therefore: 

b b b0.5F al σ=                                                             (16) 

b bf Fµ=                                                                 (17) 

The lever arms of the respective forces with respect to point “o”: 

b b / 3x l l= −                                                             (18) 

b t 0.5y y h= =                                                           (19) 

The maximum normal and shear (friction) stresses over the two side faces can be 

expressed as follows: 

s
s s c,T c,T c,T s

2
4 / ( )

0.5( )
E E E a b

a b

δσ ε δ= = = +
+

                                      (20) 

s sτ µσ=                                                              (21) 

The distribution of the friction over the two side faces in the elastic stage is shown in 

Figure 17(a). Accordingly the horizontal resultant force is: 

s s 0 s 02 0.5 ( ) ( )f h l h lτ δ τ δ′ ′= × × × × − = −                                          (22) 

The resisting moment produced by fs about point “o” can be expressed as: 

s s 0 s 0( ) ( / 2 / 3) ( / 2 / 3)( )M h l h h h h h lτ δ τ δ′ ′ ′ ′= − × − = − −                              (23) 

 

                       

 (a) Elastic stage                      (b) Elastoplastic stage 

Figure 17 Distribution of friction on side faces along the height of tenon 

 

4.4.2 Elastoplastic stage 

The respective stresses and forces can be expressed as follows: 

c,R
b b

c,R b

[1 (1 )]
2

f h
F F

E δ
′ = − −                                                        (24) 
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o

h
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b bf Fµ′ ′=                                                                      (25) 

s c,Tfτ µ′ =                                                                     (26) 

The lever arms of the forces are respectively:  

2 2 2 2
b c,R c,R c,R c,R

b
b c,R c,R b b

( / 4 ) / 48

(2 / 2 ) /

f h E f h E
x l

f h E l

δ
δ δ

− +
′ = −

−
                                        (27) 

b t 0.5y y h′ ′= =                                                                 (28) 

The distributions of the friction over the two side faces in the elastoplastic stage are 

shown in Figure 17(b). The horizontal resultant force can be expressed as:  

s s s 0 s(2 ) ( ) /sf h lτ τ τ δ τ′ ′ ′ ′= − −                                                    (29) 

The resisting moment produced by f′s about point o can be obtained as: 

2 s s
s s

s
s 0 s

s

( )
( ) [ ]

2 3
( ){ ( ) }

2 3

hh

h h
M h l

τ ττ τ
τδ τ

τ

′ ′−′− −
′′ ′= − − −                              (30) 

4.5 Simplified calculation procedure 

With the complete formulation presented in Section 4.4, the detailed moment-rotation 

relationship of a dovetail joint can already be calculated; however, it will require a significant 

amount of calculation. Considering that the generation of the complete curve may not always 

be necessary in actual applications, a simplified calculation procedure for the determination 

of the key points of the moment-rotation relationship can be very useful and this is presented 

in what follows. 

4.5.1 Simplified formulation  

Four characteristic points are of interest to practical applications, namely: 

(1) The settling point when the moment begins to develop, with an initial rotation θi and 

a zero moment (Mi = 0). 

(2) The initial yield point when the timber material at the two side faces begins to enter 

into plastic range, with a rotation θy and a moment My. 

(3) The maximum (peak) moment, Mp, and the corresponding rotation, θp. 

(4) The failure or ultimate point when the tenon is at the onset of pull-out from the 

mortise, with a rotation θu and a moment Mu. 

For relatively small θ (as in general applications), 2cos 1θ θ≅ − , sinθ θ≅ , tanθ θ≅ . The 

compression stress patterns are further simplified from a trapezoid to a rectangular shape, and 
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the higher order terms involving θ which have litter effect on the result are ignored. 

Simplified formulas are thus obtained for the above mentioned characteristic points, as 

detailed below. 

a) The initiation point 

Let the rotation required to settle the top and side gaps of the tenon be θ1 and θ2, 

respectively. The initiation rotation is therefore:  

i 1 2min{ , }θ θ θ=                                                                (31) 

θ1 can be obtained by making δt in Equation (7) equal to 0: 

2

1

2( 3 )

3

l l hh

h
θ

′− −=                                                            (32) 

θ2 can be obtained by making δs in Equation (10) equal to 0: 

2

2

2 cot )h h la

l

βθ
′− + +

=                                                       (33) 

b) Initial yield point 

The initial yield rotation can be obtained by making σs in Equation (20) equal to fc,T: 

c,T2

c,T

y

( )
2 [ ]cot

a b f
h h l a

E

l

β
θ

+
′− + + +

=                                                  (34) 

The yield moment can be obtained by substituting Equation (34) into (13):  
2

c,T y 1 1 1
y

1 1

4 ( 0.5 ) 4 4
[1 ]

4 3(4 )

E l h h k k k
M

a b k a k a

µ θ−
= −

′ ′+ + +
                                   (35) 

where  

2
1 [(0.5 ) tan ] / 4k l h aθ θ β ′= + −                                                  (36) 

c) Peak point 

The peak rotation can be obtained by rearranging Equation (13) to get θ: 

c,T
p 1 2 i2

c,T

( )

tan

a b f l

E h
θ θ θ θ

β
+

= + + −                                                 (37) 

where θi, θ1 and θ2 are determined from equations(31), (32)and(33). 

The peak moment can be obtained by substituting Equation (37) into (13): 

2
1

p c,R 2 2 c,T p
1

4
( 0.5 ) ( 0.5 )

4

k h
M af k l k h f l h

k a
µ µ θ= − + + −

′+
                               (38) 

where k1 is defined in Equation (36) and k2 is expressed as: 
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2 p
p

0.75
h

k h lθ
θ

′
= − + −                                                       (39) 

d) Failure point 

The tenon is at the onset of pull-out from the mortise when δ0 reaches 0.5l (refer to 

Figure 1). The failure rotation can therefore be determined by:  

u arctan /l hθ =                                                          (40) 

The failure moment can be deteremined by substituting Equation (40) into (13): 

2 1
u c,T

1

2

4

k
M f lh

k a
µ=

′+
                                                    (41) 

4.5.2 Verification of simplified calculations 

The verification of the above simplified calculation procedure is firstly carried out on 

the experiments described in Section 2. The value of friction coefficient µ is 0.26. The 

dimensions and material properties of the specimens are assumed in accordance with the 

actual values shown in Figure 2 and Table 1. The sizes of the gaps also follow the measured 

values; h′ is 2mm and 3mm for the traditional and modified dovetail joints, respectively, a′ is 

0mm and 1mm for the traditional and modified dovetail joints, respectively.  

The four key points can be calculated by substituting the relevant parameters into the 

simplified formulas (31)-(41), and the results are shown in Figure 18 with comparison to the 

experimental curves. It can be seen that the results from the simplified mechanical model are 

consistent with the experimental data; the peak strength, peak deformation, as well as the 

stiffness in the first stage of the response, all agree well with the experimental results. The 

differences in the detailed response may be attributed primarily to the measuring errors of the 

gaps. 

 

Figure 18 Comparison between the predicted moment-rotation relationship using the 

simplified mechanical model and the experimental results 

Figure 18 also indicates that the moment-rotation relationship may be simplified into a 
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trilinear model consisting of an elastic segment, a plastic segment and a descending segment. 

There will be an initial settlement stage (horizontal line at zero moment) prior to the trilinear 

model if gaps are present around the tenon. 

Further verification of the simplified mechanical model is carried out with respect to the 

experiments reported by Xu et al. [13]. The specimens in the above paper were dovetail joints, 

and the transverse compressive strength and modulus of elasticity of the timber material were 

3MPa and 872MPa, respectively. Other parameters from the experiments included: l = 50mm, 

h = 150mm, a = 50mm, b = 40mm, h′=1mm. No information was available about the size of 

the side gaps, and this is assumed to be 0.5mm on the basis of the average gap size from the 

present study. The comparisons between the predictions using the simplified mechanical 

model and the experimental results are shown in Figure 19. It should be noted that the 

original experiments were under cyclic loading and the results being compared here are the 

envelope curves. It can be observed again that the simplified mechanical model produces a 

reasonable prediction as compared with the experimental results.  

 

Figure 19 Further verification of the simplified mechanical model  

5 Conclusions 

This paper presents a comprehensive study on the behaviour of the timber dovetail joints 

by means of both experimental and numerical investigations. A theoretical model for the 

dovetail joints is also developed with the support from the experimental and numerical 

results. Finally a simplified calculation procedure is proposed for the determination of 

characteristic points on the moment-rotation relationship, from which a piece-wise linear 

moment-rotation curve can be established for the design analysis of timber structures 

involving dovetail joints. More specific conclusions from the experimental and numerical 

studies include: 

(1) The main failure mode of the dovetail joints from the current experiments has been 
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the pull-out of the tenon. In this process, local pressing damage (dent) to the tenon and 

apparent expansion of the mortise have been observed. The beam and column members have 

been found to remain intact, and this indicates that the joint has been the weak link in the 

beam-column assemblies. 

(2) The gaps within the joint have a great influence on the flexural behaviour, as can be 

expected. Relatively speaking, the side gaps have been found to affect more significantly than 

the top gaps, whereas the gaps on the apex have had the least effect. Such influences of the 

gaps are believed to be an important feature of the dovetail joints, and they reflect the 

significant role of the interface through the two dovetail sides of the tenon in the major 

deformation process.  

 (3) Both experimental and FE analysis results have shown that the moment-rotation 

relationship of the joints has an initial stage of gradual development of nonlinearity, followed 

by a prolonged yielding phase, and then a descending branch. As such, the moment-rotation 

relationship may be simplified into a trilinear model consisting of an elastic segment, a 

plastic segment and a descending segment.  

(4) The simplified version of the theoretical model captures well the characteristic states, 

and thereby the key points, in the moment-rotation relationship for the dovetail joints. The 

model can also predict the initial settlement stage when gaps are involved in the joints. 

Due to the uncertainties involved in the construction of the dovetail joints, particularly 

the size of the gaps within the joint region, further work is required to establish the statistical 

features of the moment-rotation relationship due to such uncertainties.  
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