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ABSTRACT 

 

To identify new risk loci for colorectal cancer (CRC) we conducted a meta-analysis of seven 

genome-wide association studies (GWAS) with independent replication, totalling 13,656 CRC 

cases and 21,667 controls of European ancestry. The combined analysis identified a new risk 

association for CRC at 2q35 marked by rs992157 (P = 3.15 × 10
−8

,
 
odds ratio = 1.10, 95% 

confidence interval = 1.06-1.13), which is intronic to PNKD and TMBIM1. Intriguingly this 

susceptibility SNP is in strong LD (r
2
 = 0.90, D’ = 0.96) with the previously discovered GWAS 

SNP rs2382817 for inflammatory bowel disease (IBD). Following on from this observation we 

examined for pleiotropy, or shared genetic susceptibility, between CRC and the 200 established 

IBD risk loci, identifying an additional 11 significant associations (FDR < 0.05). Our findings 

provide further insight into the biological basis of inherited genetic susceptibility to CRC, and 

identify risk factors that may influence the development of both CRC and IBD.  
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INTRODUCTION 

 

Colorectal cancer (CRC), a leading cause of cancer-related death worldwide, has a heritable basis 

(1, 2). Recent genome-wide association studies (GWAS) have successfully identified a number of 

common single-nucleotide polymorphisms (SNPs) influencing CRC risk thereby vindicating the 

assertion that part of the heritable risk is polygenic (3-7). These studies have also provided insights 

into the biology of CRC, highlighting the importance of bone morphogenetic protein signalling 

pathway genes (BMP2, BMP4, GREM1 and SMAD7) (4, 5), candidate genes (CDH1), as well as 

genes not previously implicated in CRC (POLD3, TERC, CDKN1A, VIT1A and SHROOM2) (6, 7). 

It is well established that inflammatory bowel disease (IBD), which primarily presents as Crohn’s 

disease or ulcerative colitis, is associated with an increased CRC risk (8-11). Despite IBD being 

strongly heritable (12), little evidence for shared genetic susceptibility or differential effects of 

genetic variation on IBD and CRC risk has been reported, although the presumption is that the 

direction of effect will be consistent between both diseases. 

 

A failure to uncover pleiotropy may be reflective of a lack of power of CRC GWAS conducted thus 

far. Indeed statistical modelling of GWAS data shows that although 19% of the heritability of CRC 

can be ascribed to common variation, only 10% of this is explained by currently identified risk 

SNPs (13). To empower the identification of new CRC susceptibility SNPs in persons of European 

ancestry, we conducted a genome-wide meta-analysis of a previously unreported GWAS with six 

published datasets in addition to independent replication totalling 13,810 cases and 21,754 controls.  

 

We report the identification of a new CRC risk association which also impacts on IBD risk. 

Extending our analysis to established IBD loci, we provide evidence of shared genetic susceptibility 

between CRC and IBD at 11 additional loci. 
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RESULTS 

 

Primary GWAS 

In the primary scan (termed the FIN GWAS), 1,172 CRC cases ascertained through the Finnish 

CRC collection and Finnish Cancer Registry were analysed with control data on 8,266 individuals 

from the FINRISK, Health2000, Finnish Twin Cohort and Helsinki Birth Cohort Study cohorts. 

After applying strict quality control criteria, 283,906 autosomal SNPs were available for association 

with CRC risk. A quantile-quantile (Q-Q) plot of observed versus expected χ
2
-test statistics showed 

little evidence for an inflation of test statistics, thereby excluding the possibility of substantive 

hidden population substructure, cryptic relatedness among subjects or differential genotype calling 

(inflation factor λ = 1.07). 

 

Meta-analysis 

We performed a meta-analysis of our primary scan data with six other non-overlapping GWAS of 

European ancestry (CCFR1, CCFR2, COIN, UK1, Scotland1, VQ58), which have been previously 

reported (14). To maximise the prospects of identifying novel risk variants, we imputed the data 

with a merged reference panel using Sequencing Initiative Suomi (for the FIN data) or UK10K (for 

the UK data) in addition to 1000 Genomes Project data. After quality control procedures, over 10 

million variants, including over 1 million insertion-deletions, were analysed in 8,749 cases and 

18,245 controls.  

 

Associations for the 37 previously established European CRC risk SNPs showed a direction of 

effect consistent with previously reported studies, with 10 of these SNPs having P < 5.0 × 10
−8

 in 

this meta-analysis (Supplementary Table 1). Excluding these known risk SNPs, together with those 

correlated with r
2
 > 0.8, from the meta-analysis two novel regions of linkage disequilibrium (LD), 
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marked by rs992157 and rs2383207, showed the strongest association with CRC at P < 1.0 × 10
−6

 

(Supplementary Table 2). 

 

To replicate these associations, we genotyped rs992157 and rs2383207 in an additional 5,061 CRC 

cases and 3,509 controls, with only rs992157 showing evidence for an association with CRC (P = 

0.023). In the combined analysis the association was significant at the genome-wide threshold (P = 

3.15 x 10
-8

; Figure 1). There was no variation due to heterogeneity (I
2
 = 0, Phet = 0.79). rs992157 is 

located at 2q35, and is intronic to two genes: paroxysmal nonkinesigenic dyskinesia (PNKD) on the 

forward strand, and transmembrane BAX inhibitor motif containing 1 (TMBIM1) on the reverse 

strand (Figure 2).  

 

Relationship between genotype and colorectal cancer phenotype 

Using data on microsatellite instability (MSI) status from the FIN (n = 1,146), COIN (n = 1,239) 

and NSCCG replication (n = 1,282) series, together with information on KRAS and BRAF mutation 

status in tumours in COIN, we explored the possibility that the association at rs992157 is restricted 

to a specific molecular subtype of CRC (Supplementary Table 3). There was no evidence of an 

association between these SNPs and any of the variables after adjusting for multiple testing (i.e. P > 

0.05). Additionally we observed no consistent association between age, sex or tumour site using 

data from the UK1, Scotland1, VQ58, COIN, and NSCCG series (Supplementary Table 3). 

 

Inflammatory bowel disease SNPs influence colorectal cancer  

Another association at 2q35 defined by rs2382817 has previously been shown to influence IBD risk 

(CRC meta P = 1.02 x 10
-5

), which is also intronic to PNKD and TMBIM1, and is in strong LD with 

rs992157 (r
2
 = 0.90, D’ = 0.96). Paradoxically, the risk for rs2382817 in IBD is inverse to the CRC 

association. Given the compelling evidence for an association between IBD and CRC we sought 

evidence for additional shared susceptibility between the two diseases. Specifically, we examined 
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the risk of CRC in our meta-analysis at 200 loci that have been shown in previous GWAS to affect 

IBD risk (15, 16) (Supplementary Table 4). A Q-Q plot of the observed CRC association P-values 

against the expected P-values for each of the 200 IBD risk SNPs showed significant over-dispersion 

(λ = 1.33, Figure 3). This observation is compatible with a genetic relationship between CRC and 

IBD.  

 

To account for multiple testing we imposed an FDR-adjusted P-value of 0.05 as being statistically 

significant. At this threshold, in addition to rs2382817, 11 IBD risk SNPs were associated with 

CRC risk (Table 1), of which five were positively associated with CRC risk, while the other seven 

displayed an inverse relationship. A number of these SNPs annotate genes with documented roles 

that are relevant to CRC development, such as Wnt-signalling (WNT4, (17)), tumour suppression 

(MAPKAPK5, FOXO1 (18, 19)) and cellular transformation (CDC42, CEBPB (20, 21)) (Table 1). 

We examined for an association between the genotype of these 12 SNPs and the molecular subtype 

of CRC, and found no evidence of a relationship (Supplementary Table 3). 

 

Functional effect prediction analysis 

The genomic region containing rs992157 is the site of active structure and has regulatory motifs for 

both enhancer and promotor function in multiple cell types (Figure 2). Moreover ChIP-seq data 

identifies over 122 transcription factors binding to the region, including CRC related transcription 

factors such as MYC, HNF4A and TCF7L2 (Supplementary Table 5). We also performed an eQTL 

analysis and found no significant relationship between the rs992157 genotype and PNKD and 

TMBIM1 expression in colorectal adenocarcinoma cells (Supplementary Table 6). The risk 

genotype was however associated with altered gene expression in other tissues, including 

lymphoblastoid cells (FDR P-value < 0.05, Supplementary Table 6). This apparent difference in 

eQTLs may be reflective of the differences in epigenetic profiles at 2q35 between CRC and 

lymphoblastoid cells (Figure 2). 
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To further investigate the relationship between CRC and IBD risk we performed eQTL analysis on 

the 12 IBD SNPs associated with CRC risk in the colorectal adenocarcinoma data, and found two 

significant relationships between rs174537 and the expression of fatty acid desaturase 2 (FADS2, 

FDR P-value = 3.28 x 10
-6

) and between rs516246 and fucosyltransferase 2 (FUT2, FDR P-value = 

2.08 x 10
-17

) (Supplementary Table 6). Additional evidence for these eQTLs was found in other 

tissues in the Geuvadis, Blood and GTEx databases (Supplementary Table 6). Similarly to 

rs992157, as reported above, rs2382817 is an eQTL for PNKD and TMBIM1 in both 

lymphoblastoid and whole blood tissues.  

 

Following on from this we investigated the presence of shared genetic pathways between CRC and 

IBD using the LENS pathway tool (22), which allows exploration of interactions between the gene 

products in proximity to the GWAS SNPs. Across the 594 CRC proteins and 1,574 IBD proteins, a 

network of 542 overlapping proteins was identified. Figure 4 shows the common network and 

interactions between key proteins. Of interest was the direction of association between the CRC 

SNPs with IBD risk. Pathways with evidence of enrichment (i.e. P < 0.001) with a consistent effect 

between CRC and IBD were involved in immune and inflammatory response, such as co-

stimulation by the CD28 family, Fc epsilon receptor signalling, and downstream B-cell receptor 

signalling. In contrast, the protein networks defined by reciprocal SNPs association for CRC and 

IBD were enriched for interleukin and calmodulin signalling. Pathways that were enriched in both, 

albeit involving different proteins, included those related to the adaptive immune response, cytokine 

signalling and interferon signalling (Supplementary Table 7).  
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DISCUSSION 

In this meta-analysis we combined seven independent GWAS, and have identified a risk locus for 

CRC risk at 2q35 marked by rs992157. Since this SNP is intronic to both PNKD and TMBIM1, and 

these are the only transcripts within the region of high LD, it is a plausible that the genetic basis of 

the 2q35 association for CRC is through functional effects on one of these genes a priori. This is 

coupled with the fact that rs992157 localises to a genomic region with regulatory function and the 

eQTL data showing allele-specific cis-regulatory relationship between SNP genotype and PNKD 

and TMBIM1 expression. Although speculative the long isoform of PNKD appears to function in a 

pathway to detoxify alpha-ketoaldehyde using glutathione as a cofactor (23). Since glutathione is 

essential for maintaining cellular redox status, reduced glutathione levels in cells through 

dysfunctional PNKD may lead to increasing oxidative stress levels, which have been linked to 

inflammation (24). TMBIM1 has been reported to have a role in regulating the level of Fas ligand 

(FasL) (25, 26), which mediates both apoptosis and inflammation (27). Therefore, both gene 

products indirectly contribute to the regulation of inflammation, a physiological process linked with 

the onset of IBD and CRC. 

 

Another SNP in the 2q35 locus (rs2382817), which is in strong LD with rs992157, has previously 

been shown to influence IBD risk (15). In addition, contemporaneous with our analysis, a recent 

study (28) has also found evidence, albeit not GWAS significant, for a relationship between 2q35 

variation and CRC risk (P = 7.0 x 10
-5

), additionally finding an inverse relationship with risk of 

IBD. The identified SNP, rs11676348, is correlated with both rs992157 and rs2382817 (LD metrics, 

r
2
 and D’ = 0.32, 0.65 and 0.33, 0.71 respectively). The opposing effects of the rs2382817-C allele 

with increased risk of CRC but decreased risk of IBD may initially appear paradoxical, given the 

increased risk of CRC associated with IBD. The risk of CRC in IBD increases with longer duration, 

extent of colitis and the degree of inflammation (11). The inflammatory response has been linked to 

 at E
dinburgh U

niversity on A
pril 1, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


11 

 

increased oxidative stress, and this oxidative state stimulates antioxidant defences that promote the 

survival pathways in cancer cells, favouring tumour proliferation (29). Nonetheless, these SNPs 

may indicate shared pathways in which there are opposing relationships between carcinogenesis and 

inflammation. 

 

Motivated by the observation that the 2q35 locus influences IBD risk, we sought additional 

evidence for a common genetic basis for both diseases by evaluating the CRC risk at previously 

established IBD loci (15, 16). While not formally significant globally, there was an over-

representation of association signals for CRC defined by the IBD risk SNPs. Through this analysis 

we identified potential risk variants for CRC mapped to regions in the proximity of genes encoding 

WNT4 and CDC42, previously shown to be involved in the risk of CRC (14); MAPKAPK5, a 

member of the MAPK family reported to regulate MYC protein levels (18); and the transcription 

factor CEBPB, found to be highly expressed in samples derived from CRC patients (21). Moreover 

our eQTL analysis on IBD SNPs showed altered expression of FADS2 and FUT2 genes in CRC 

tissues. Both the genes have previously been reported to have a role in the development of IBD (30, 

31) providing further evidence of possible shared genes. Further studies are required to delineate the 

genetic basis and implicate perturbation of a specific gene as the functional basis of the 

associations. Collectively these data are consistent with a degree of commonality in genetically-

defined pathways in the development between CRC and IBD, albeit that many of the associations 

have opposite effects. 

 

Considering the low prevalence of IBD in European populations (< 0.5%) (32), together with the 

observation that other SNPs that are strongly associated with risk of IBD were not associated with 

CRC, it is unlikely that sampling has biased our findings. Moreover if the association between these 

IBD SNPs and CRC was simply mediated by its association with IBD per se, we would have 
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expected directionality of the association to be identical but this was not the case for many of the 

SNPs. 

 

In summary, we have identified a new risk association for CRC which also influences IBD risk. Our 

association signals for CRC defined by other established IBD risk SNPs also serve to highlight the 

importance of shared gene pathways in the development of CRC and IBD. Deciphering the 

functional and biological basis of these SNPs associations has the potential to translate into a better 

understanding of the biological basis of how IBD transitions to CRC. Finally our analysis serves to 

illustrate that inter-relationships between diseases do not necessarily equate to consistent allelic 

architecture in risk, thus adding an extra layer of complexity to interpretation.  

 at E
dinburgh U

niversity on A
pril 1, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


13 

 

 

MATERIALS AND METHODS 

 

Ethics  

Collection of blood samples and clinico-pathological information from subjects was undertaken 

with informed consent and ethical review board approval at all sites in accordance with the tenets of 

the Declaration of Helsinki. 

 

Primary GWAS 

The Finnish GWAS (FIN) was based on 1,172 CRC cases and 8,266 cancer free controls 

ascertained through Finnish Hospitals (33) and through the Finnish Cancer Registry. Cases were 

genotyped using Illumina HumanOmni 2.5M8v1 according to the manufacturer’s 

recommendations. For controls, we made use of Illumina HumanHap 670k and 610k array data on 

individuals from the FINRISK (34), Health 2000 (35), Finnish Twin Cohort (36) and Helsinki Birth 

Cohort Studies (37). Individuals were excluded with: <90% successfully genotyped SNPs, 

discordant sex information, duplication or cryptic relatedness (identity by descent >0.2). We 

excluded SNPs from the analysis with: call rate <95%, MAF < 0.01, and departure from Hardy-

Weinberg equilibrium in controls at P < 10
−6

. The adequacy of the case-control matching and the 

possibility of differential genotyping of cases and controls were assessed using quantile-quantile 

(Q-Q) plots of test statistics. 

 

Published GWAS for meta-analysis 

We made use of six previously published GWAS: UK1 (CORGI study) (7) comprised 940 cases 

with colorectal neoplasia and 965 controls; Scotland1 (COGS study) (7) included 1,012 CRC cases 

and 1,012 controls; VQ58 comprised 1,800 CRC cases from the UK-based VICTOR and 

QUASAR2 adjuvant chemotherapy clinical trials (38) and 2,690 population control genotypes from 
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the Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958 birth cohort (39); CCFR1 

comprised 1,290 familial CRC cases and 1,055 controls from the Colon Cancer Family Registry 

(CCFR) (40); CCFR2 included a further 796 cases from the CCFR and 2,236 controls from the 

Cancer Genetic Markers of Susceptibility (CGEMS) studies of breast and prostate cancer (41, 42); 

and the COIN GWAS (14) was based on 2,244 CRC cases ascertained through two independent 

Medical Research Council clinical trials of advanced/metastatic CRC (COIN and COIN-B) (43) and 

controls comprised 2,162 individuals from the UK Blood Service Control Group genotyped as part 

of the WTCCC2 (39). 

 

The VQ58, UK1 and Scotland1 GWAS series were genotyped using Illumina Hap300, Hap240S, 

Hap370, Hap550 or Omni2.5M arrays. 1958BC genotyping was performed as part of the WTCCC2 

study on Hap1.2M-Duo Custom arrays. The CCFR samples were genotyped using Illumina Hap1M, 

Hap1M-Duo or Omni-express arrays. CGEMS samples were genotyped using Illumina Hap300 and 

Hap240 or Hap550 arrays. The COIN cases were genotyped using Affymetrix Axiom Arrays and 

the Blood Service controls were genotyped using Affymetrix 6.0 arrays. After applying the same 

quality control as that performed for FIN, data on 8,749 CRC cases and 18,245 controls were 

available for the meta-analysis. 

 

The adequacy of the case-control matching and possibility of differential genotyping of cases and 

controls was assessed using Q-Q plots of test statistics. λGC values (44) for the UK1, Scotland1, 

VQ58, CCFR1, CCFR2 and COIN studies were 1.02, 1.01, 1.01, 1.02, 1.03 and 1.05 respectively. 

Any ethnic outliers or individuals identified as related were excluded. 

 

Replication series  

5,061 CRC cases from the National Study of Colorectal Cancer Genetics (NSCCG) (45) were 

genotyped. Controls (n = 3,509) were from NSCCG and the Genetic Lung Cancer Predisposition 
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Study (GELCAPS) (46). None of the controls had a known history of malignancy at ascertainment. 

All subjects were British residents with self-reported European ethnicity and there were no obvious 

demographic differences between cases and controls. DNA was extracted from EDTA-venous 

blood samples using conventional methodologies and PicoGreen quantified (Invitrogen 

Corporation, Carlsbad, CA, USA). Genotyping of two SNPs was conducted using KASPar 

competitive allele-specific PCR chemistry (LGC, Hoddesdon, UK; primer sequences and conditions 

available on request). To monitor quality control, duplicate samples were included in assays, and 

concordance between duplicate samples was >99%.  

 

Imputation and meta-analysis 

Analyses were undertaken using R (v3.02) (47) and PLINK (v1.9) (48) software. Phasing of GWAS 

SNP genotypes was performed using SHAPEIT (v2.r644 and v2.r790 for FIN) (49). Prediction of 

the untyped SNPs was carried out using IMPUTE (v2.3.1) (50). The FIN dataset used a merged 

reference panel based on data from the 1000 Genomes Project (Phase 1 v3) (51) together with an 

additional population matched reference panel of 3,882 Sequencing Initiative Suomi (SISu) 

haplotypes. The UK samples used a merged reference panel using data from the 1000 Genomes 

Project and UK10K (April 2014 release). The fidelity of imputation, as assessed by the concordance 

between imputed and sequenced SNPs, was examined in a subset of 200 UK cases (14). The 

association between each SNP and the risk of CRC was assessed by a frequentist association test 

under an additive model, using SNPTEST (v2.5.1) (52), utilising the genotype probabilities from 

IMPUTE where a SNP was not directly typed. Population stratification was controlled in the FIN 

samples using sex and six principal components. Association meta-analyses only included markers 

with info scores >0.8, imputed call rates/SNP >0.9 and MAFs >0.005. Meta-analyses were carried 

out using META (v1.6) (53). We calculated Cochran's Q statistic to test for heterogeneity and the I
2
 

statistic to quantify the proportion of the total variation that was caused by heterogeneity (54). I
2 

values ≥75% are considered characteristic of large heterogeneity (54). 
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Characterisation of cancer phenotype  

Associations by sex, age and clinico-pathological phenotypes were examined by logistic regression. 

MSI status was determined using BAT25 and BAT26 markers, and samples showing ≥ 5 novel 

alleles when compared with normal DNA at either or both markers were assigned as MSI-H 

(corresponding to MSI-high) (55). Tumours were screened for KRAS codons 12, 13, and 61 and 

BRAF codon 600 mutations by pyrosequencing (43). Additionally, KRAS (all three codons) and 

BRAF (codons 594 and 600) were screened for mutations by MALDI-TOF mass array (Sequenom, 

San Diego, CA, USA) (56). Differences between the various sites of the tumour (colonic [ICD-

9:153], rectal [ICD-9:154.1], and recto sigmoid junction [ICD9:154.0]) were also analysed. 

 

Functional prediction 

To explore epigenetic profiles of genomic location associated with CRC, we used ENCODE histone 

modification data, HaploReg and RegulomeDB (57, 58) to examine whether any of the SNPs or 

their proxies (i.e. r
2
 > 0.8 in the 1000 Genomes EUR reference panel) annotate transcription factor 

binding or enhancer elements. Additionally we made use of ChIP-seq data on the LoVo CRC cell 

line (59). We used ChromHMM to integrate DNAse, H3K4me3, H3K4me1, H3K27ac, Pol2 and 

CTCF states from the CRC cell line HCT116 using a multivariate Hidden Markov Model (60). 

ChromHMM tracks for lymphoblastoid cells were obtained from ENCODE (61). We assessed 

sequence conservation using: PhastCons (62) (>0.3 indicative of conservation) and Genomic 

Evolutionary Rate Profiling (GERP) (63) (>2 indicative of conservation). SNAP plots were created 

using the visPIG tool (64). 

 

eQTL analysis 

To examine for a relationship between SNP genotype and mRNA expression in CRC we analysed 

Tumor Cancer Genome Atlas (TCGA) RNA-seq expression and Affymetrix 6.0 SNP data (dbGaP 
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accession number: phs000178.v7.p6) on 416 colorectal adenocarcinoma samples (65). Association 

between normalised RNA counts per-gene and SNP genotype was quantified using the Kruskal-

Wallis trend test. To look for a relationship between SNP genotype and expression levels in other 

tissues we used publicly available expression data generated from the MuTHER (66), eQTL Blood 

Browser (67), GTEx (68) and Geuvadis/1000 Genomes (69) resources. For the Geuvadis data, the 

relationship between SNPs and expression of genes located within 1 Mb was analysed using the 

Matrix eQTL (70) package under a linear model. When the SNPs were not directly typed, a proxy 

SNP was used (r
2
 ≥ 0.8). In all the datasets, eQTL results were included where FDR P < 0.05  

 

Relationship between established risk SNPs for inflammatory bowel disease and colorectal 

cancer 

To investigate pleiotropic (shared genetic susceptibility) between CRC and inflammatory bowel 

disease (IBD), we examined the 201 SNPs identified in GWAS that have been shown to affect IBD 

risk (15, 16). One SNP (rs71559680) is an indel that was not present in the CRC genotyping arrays 

or the reference panels, and was thus removed from the analysis. We obtained the lead SNPs from 

the IBD GWAS and extracted the P-values for the corresponding SNPs in our CRC meta-analysis.  

 

Pathway analysis  

To investigate the possibility of shared genetic susceptibility between CRC and IBD, we performed 

pathway analysis. First, we selected the two closest coding genes for the leading SNPs in each 

GWAS and then performed pathway analysis using LENS tool (22), which identifies gene product 

and protein-protein interactions from HPRD (71) and BioGRID (72). Enrichment of pathways was 

assessed using Fisher’s exact test, comparing the overlap of the genes in the network with the genes 

in the pathway. Pathway data was obtained from REACTOME (73). Cytoscape was used to perform 

network analyses (74), and the Hive Plot was drawn using HiveR 

(academic.depauw.edu/~hanson/HiveR/HiveR.html). 
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FIGURE LEGENDS 

Figure 1: Forest plot of the odds ratios for the association between rs992157 and colorectal 

cancer. Studies were weighted according to the inverse of the variance of the log of the OR. 

Horizontal lines: 95% confidence intervals (95% CI). Box: OR point estimate; its area is 

proportional to the weight of the study. Diamond: overall summary estimate, with confidence 

interval given by its width. Vertical line: null value (OR = 1.0). 

 

Figure 2: Regional plot of association results and recombination rates for the 2q35 locus. In 

the panel, −log10 P values (y axis) of the SNPs are shown according to their chromosomal positions 

(x axis). The top SNP is shown as a large triangle and is labelled by its rsID. The colour intensity of 

each symbol reflects the extent of LD with the top SNP: white (r
2
 = 0) through to dark red (r

2
 = 

1.0), with r
2
 estimated from the 1000 Genomes Phase 1 data. Genetic recombination rates (cM/Mb), 

are shown with a light blue line. Physical positions are based on NCBI build 37 of the human 

genome. Also shown are the relative positions of genes and transcripts mapping to each region of 

association. The lower panel shows the chromatin state segmentation track (ChromHMM) in 

HCT116 CRC and GM12878 lymphoblastoid cell lines.  

 

Figure 3: Quantile-Quantile (Q-Q) plot of observed and expected colorectal cancer association 

P-values for 200 inflammatory bowel disease risk SNPs (15, 16). 

 

Figure 4: Hive Plot of common protein-protein interactions between colorectal cancer and 

inflammatory bowel disease defined by risk SNPs. Each arc represents an interaction between 

two proteins, and the distance from the centre of the plot corresponds to a greater number of 

protein-protein interactions (higher degree of the node). The left arm represents proteins that were 

only identified using the CRC SNPs, the right arm represents proteins that were only identified 
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using the IBD SNPs, and the central arm represents the common proteins, highlighting the 

previously associated tag genes. 

 

 at E
dinburgh U

niversity on A
pril 1, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


32 

 

 
1

 at E
dinburgh U

niversity on A
pril 1, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


33 

 

TABLES 

 

Table 1: Table of the IBD SNPs with FDR corrected P-value < 0.05 in the CRC GWAS.  

 

 

rsid Chr Position Tag genes CRC risk allele IBD risk allele CRC RAF CRC p-value CRC FDR corrected CRC OR CRC 95% CI 

rs12568930 1 22,702,231 WNT4, CDC42 T T 0.85 6.58x10
-05

 3.29x10
-03

 1.12 (1.06; 1.18) 

rs7554511 1 200,877,562 GPR25, C1orf106 A C 0.29 6.95x10-04 0.02 1.08 (1.03; 1.13) 

rs7608910 2 61,204,856 PUS10, REL A G 0.63 7.28x10
-04

 0.02 1.07 (1.03; 1.12) 

rs17229285 2 199,523,122 PLCL1, SATB2 C C 0.49 2.46x10
-03

 0.04 1.06 (1.02; 1.1) 

rs2382817 2 219,151,218 TMBIM1, PNKD C A 0.62 1.02x10
-05

 1.02x10
-03

 1.09 (1.05; 1.14) 

rs4722672 7 27,231,762 HOXA13, HOXA11 C C 0.20 2.46x10
-03

 0.04 1.08 (1.03; 1.13) 

rs174537 11 61,552,680 MYRF, TMEM258 G T 0.67 2.63x10
-03

 0.04 1.06 (1.02; 1.11) 

rs653178 12 112,007,756 ATXN2, MAPKAPK5 T C 0.54 2.23x10-05 1.49x10-03 1.09 (1.05; 1.13) 

rs17085007 13 27,531,267 GPR12, UPS12 C C 0.19 5.81x10
-04

 0.02 1.09 (1.04; 1.15) 

rs941823 13 41,013,977 MRPS31, FOXO1 T C 0.27 2.47x10
-03

 0.04 1.07 (1.02; 1.12) 

rs516246 19 49,206,172 FUT2, MAMSTR T T 0.54 4.71x10
-04

 0.02 1.07 (1.03; 1.11) 

rs913678 20 48,955,424 CEBPB, PTPN1 C T 0.34 7.30x10
-06

 1.02x10
-03

 1.10 (1.05; 1.14) 

50
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52
53
54
55
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ABBREVIATIONS 

 

CRC: colorectal cancer 

GWAS: genome-wide association studies 

LD: linkage disequilibrium 

IBD: inflammatory bowel disease 

MSI: microsatellite instability 

SNP: single-nucleotide polymorphism 
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Figure 1 Forest plot of the odds ratios for the association between rs992157 and CRC. Studies were 
weighted according to the inverse of the variance of the log of the OR. Horizontal lines: 95% confidence 
intervals (95% CI). Box: OR point estimate; its area is proportional to the weight of the study. Diamond: 

overall summary estimate, with confidence interval given by its width. Vertical line: null value (OR = 1.0).  
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Figure 2 Regional plot of association results and recombination rates for the 2q35 locus. In the panel, 
−log10 P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis). The top 
SNP is shown as a large triangle and is labelled by its rsID. The colour intensity of each symbol reflects the 

extent of LD with the top SNP: white (r2 = 0) through to dark red (r2 = 1.0), with r2 estimated from the 
1000 Genomes Phase 1 data. Genetic recombination rates (cM/Mb), are shown with a light blue line. 

Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of 
genes and transcripts mapping to each region of association. The lower panel shows the chromatin state 

segmentation track (ChromHMM) in HCT116 CRC and GM12878 lymphoblastoid cell lines.  
254x190mm (300 x 300 DPI)  
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Figure 3 Quantile-Quantile (Q-Q) plot of observed and expected colorectal cancer association P-values for 
200 inflammatory bowel disease risk SNPs  
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Figure 4 Hive Plot of common protein-protein interactions between colorectal cancer and inflammatory bowel 
disease defined by risk SNPs. Each arc represents an interaction between two proteins, and the distance 

from the centre of the plot corresponds to a greater number of protein-protein interactions (higher degree of 
the node). The left arm represents proteins that were only identified using the CRC SNPs, the right arm 

represents proteins that were only identified  
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